Blue Cheeses: Microbiology and Its Role in the Sensory Characteristics
Abstract
:1. Introduction
2. Types of Blue Cheese
3. Microbiology
3.1. Ecological Factors
3.2. Blue Cheese Microbiota
3.2.1. Microbial Techniques
3.2.2. Microbial Diversity and Succession in Blue Cheeses
- Bacterial populations
- Yeast and moulds
3.3. Lactic Cultures
3.4. Penicillium roqueforti and Other Adjunct Cultures
3.5. Potential Mycotoxin Production
3.6. Pathogens and Spoilage in Blue Cheeses
3.6.1. Pathogenic Microorganisms
3.6.2. Spoilage
4. Proteolysis and Lipolysis
5. Sensory Characteristics
6. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cantor, D.M.; Van den Tempel, T.; Kronborg Hansen, T.; Ardö, Y. Blue Cheese. In Cheese; Academic Press: Cambridge, MA, USA, 2017; pp. 929–954. [Google Scholar] [CrossRef]
- Mayo, B.; Alonso, L.; Alegría, A. Blue cheese. In Handbook of Cheese in Health: Production, Nutrition and Medical Sciences; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 277–288. [Google Scholar]
- Lopez Morales, A.B.; Ardö, Y.; Berthier, F.; Karatzas, K.-A.G.; Bintsis, T. Blue-veined cheeses. In Global Cheesemaking Technology: Cheese Quality and Characteristics; Papademas, P., Bintsis, T., Eds.; Wiley: Hoboken, NJ, USA, 2018; pp. 415–435. [Google Scholar]
- Engelman, B.; Holler, P. Manual del Gourmet del Queso; Tandem Verlag GmbH: Rheinbreitbach, Germany, 2008. [Google Scholar]
- Ardö, Y. Blue Mold Cheese. In Encyclopedia of Dairy Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 30–35. [Google Scholar] [CrossRef]
- Gobbetti, M.; Burzigotti, R.; Smacchi, E.; Corsetti, A.; De Angelis, M. Microbiology and biochemistry of Gorgonzola cheese during ripening. Int. Dairy J. 1997, 7, 519–529. [Google Scholar] [CrossRef]
- Duval, P.; Chatelard-Chauvin, C.; Gayard, C.; Rifa, E.; Bouchard, P.; Hulin, S.; Picque, D.; Montel, M.C. Microbial dynamics in industrial blue veined cheeses in different packaging. Int. Dairy J. 2016, 56, 198–207. [Google Scholar] [CrossRef]
- Ferroukhi, I.; Bord, C.; Alvarez, S.; Fayolle, K.; Theil, S.; Lavigne, R.; Chassard, C.; Mardon, J. Functional changes in Bleu d’Auvergne cheese during ripening. Food Chem. 2022, 397, 133850. [Google Scholar] [CrossRef]
- Núñez, M. Microflora of Cabrales cheese: Changes during maturation. J. Dairy Res. 1978, 45, 501–508. [Google Scholar] [CrossRef]
- Álvarez-Martín, P.; Flórez, A.B.; López-Díaz, T.M.; Mayo, B. Phenotypic and molecular identification of yeast species associated with Spanish blue-veined Cabrales cheese. Int. Dairy J. 2007, 17, 961–967. [Google Scholar] [CrossRef]
- Flórez, A.B.; Álvarez-Martín, P.; López-Díaz, T.M.; Mayo, B. Morphotypic and molecular identification of filamentous fungi from Spanish blue-veined Cabrales cheese, and typing of Penicillium roqueforti and Geotrichum candidum isolates. Int. Dairy J. 2007, 17, 350–357. [Google Scholar] [CrossRef]
- Rodríguez, J.; González-Guerra, A.; Vázquez, L.; Fernández-López, R.; Flórez, A.B.; de la Cruz, F.; Mayo, B. Isolation and phenotypic and genomic characterization of Tetragenococcus spp. from two Spanish traditional blue-veined cheeses made of raw milk. Int. J. Food Microbiol. 2022, 371, 109670. [Google Scholar] [CrossRef]
- Flórez, A.B.; López-Díaz, T.M.; Álvarez-Martín, P.; Mayo, B. Microbial characterisation of the traditional Spanish blue-veined Cabrales cheese: Identification of dominant lactic acid bacteria. Eur. Food Res. Technol. 2006, 223, 503–508. [Google Scholar] [CrossRef]
- Flórez, A.B.; Mayo, B. Microbial diversity and succession during the manufacture and ripening of traditional, Spanish, blue-veined Cabrales cheese, as determined by PCR-DGGE. Int. J. Food Microbiol. 2006, 110, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Tempel, T.V.D.; Jakobsen, M. Yeasts associated with Danablu. Int. Dairy J. 1998, 8, 25–31. [Google Scholar] [CrossRef]
- González de Llano, D.; Ramos, M.; Rodriguez, A.; Montilla, A.; Juarez, M. Microbiological and physicochemical characteristics of Gamonedo blue cheese during ripening. Int. Dairy J. 1992, 2, 121–135. [Google Scholar] [CrossRef]
- Irlinger, F.; Layec, S.; Hélinck, S.; Dugat-Bony, E. Cheese rind microbial communities: Diversity, composition and origin. FEMS Microbiol. Lett. 2015, 362, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontana, C.; Cappa, F.; Rebecchi, A.; Cocconcelli, P.S. Surface microbiota analysis of Taleggio, Gorgonzola, Casera, Scimudin and Formaggio di Fossa Italian cheeses. Int. J. Food Microbiol. 2010, 138, 205–211. [Google Scholar] [CrossRef]
- Besançon, X.; Smet, C.; Chabalier, C.; Rivemale, M.; Reverbel, J.P.; Ratomahenina, R.; Galzy, P. Study of surface yeast flora of Roquefort cheese. Int. J. Food Microbiol. 1992, 17, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Gkatzionis, K.; Yunita, D.; Linforth, R.S.; Dickinson, M.; Dodd, C.E.R. Diversity and activities of yeasts from different parts of a Stilton cheese. Int. J. Food Microbiol. 2014, 177, 109–116. [Google Scholar] [CrossRef]
- Mugampoza, D.; Gkatzionis, K.; Swift, B.M.C.; Rees, C.E.D.; Dodd, C.E.R. Diversity of Lactobacillus species of Stilton cheese relates to site of isolation. Front. Microbiol. 2020, 11, 904. [Google Scholar] [CrossRef]
- Ercolini, D.; Hill, P.J.; Dodd, C.E.R. Bacterial community structure and location in Stilton cheese. Appl. Environ. Microbiol. 2003, 69, 3540–3548. [Google Scholar] [CrossRef] [Green Version]
- López-Díaz, T.M.; Alonso, C.; Román, C.; García-López, M.L.; Moreno, B. Lactic acid bacteria isolated from a hand-made blue cheese. Food Microbiol. 2000, 17, 23–32. [Google Scholar] [CrossRef]
- Diezhandino, I.; Fernández, D.; González, L.; McSweeney, P.L.; Fresno, J.M. Microbiological, physico-chemical and proteolytic changes in a Spanish blue cheese during ripening (Valdeón cheese). Food Chem. 2015, 168, 134–141. [Google Scholar] [CrossRef]
- Wolfe, B.E.; Button, J.E.; Santarelli, M.; Dutton, R.J. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 2014, 158, 422–433. [Google Scholar] [CrossRef] [Green Version]
- Yeluri Jonnala, B.R.; McSweeney, P.L.H.; Sheehan, J.J.; Cotter, P.D. Sequencing of the cheese microbiome and its relevance to industry. Front. Microbiol. 2018, 9, 1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alegría, A.; González, R.; Díaz, M.; Mayo, B. Assessment of microbial populations dynamics in a blue cheese by culturing and denaturing gradient gel electrophoresis. Curr. Microbiol. 2011, 62, 888–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yunita, D.; Dodd, C.E.R. Microbial community dynamics of a blue-veined raw milk cheese from the United Kingdom. J. Dairy Sci. 2018, 101, 4923–4935. [Google Scholar] [CrossRef] [PubMed]
- Caron, T.; Piver, M.L.; Péron, A.C.; Lieben, P.; Lavigne, R.; Brunel, S.; Roueyre, D.; Place, M.; Bonnarme, P.; Giraud, T.; et al. Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds responsible for aromas, flavor and texture in blue cheeses. Int. J. Food Microbiol. 2021, 354, 109174. [Google Scholar] [CrossRef] [PubMed]
- Roostita, R.; Fleet, G.H. The occurrence and growth of yeasts in Camembert and blue-veined cheeses. Int. J. Food Microbiol. 1996, 28, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Boutrou, R.; Guéguen, M. Interests in Geotrichum candidum for cheese technology. Int. J. Food Microbiol. 2005, 102, 1–20. [Google Scholar] [CrossRef]
- Flórez, A.B.; Belloch, C.; Álvarez-Martín, P.; Querol, A.; Mayo, B. Candida cabralensis sp. nov., a yeast species isolated from traditional Spanish blue-veined Cabrales cheese. Int. J. Syst. Evol. Microbiol. 2010, 60, 2671–2674. [Google Scholar] [CrossRef] [Green Version]
- Broome, M.C.; Powell, I.B.; Limsowtin, G.K.Y. Cheese Starter Cultures: Specific Properties. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 559–566. [Google Scholar] [CrossRef]
- Alegría, Á.; Delgado, S.; Flórez, A.B.; Mayo, B. Identification, typing, and functional characterization of Leuconostoc spp. strains from traditional, starter-free cheeses. Dairy Sci. Technol. 2013, 93, 657–673. [Google Scholar] [CrossRef] [Green Version]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 4th ed.; Springer: New York, NY, USA, 2022. [Google Scholar]
- Frisvad, J.C.; Filtenborg, O. Terverticillate Penicillia: Chemotaxonomy and mycotoxin production. Mycologia 1989, 81, 837–861. [Google Scholar] [CrossRef]
- Boysen, M.; Skouboe, P.; Frisvad, J.; Rossen, L. Reclassification of the Penicillium roqueforti group into three species on the basis of molecular genetic and biochemical profiles. Microbiology 1996, 142, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Karlshoj, K.; Larsen, T.O. Differentiation of species from the Penicillium roqueforti group by volatile metabolite profiling. J. Agric. Food Chem. 2005, 53, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Godinho, M.; Fox, P.F. Effect of NaCl on the germination and growth of P. roqueforti. Milchwissenschaft 1981, 36, 205–208. [Google Scholar]
- López-Díaz, T.M.; Santos, J.A.; Otero, A.; García, M.L.; Moreno, B. Some technological properties of Penicillium roqueforti strains isolated from a home-made blue cheese. Lett. Appl. Microbiol. 1996, 23, 5–8. [Google Scholar] [CrossRef]
- Moreau, C. Le Penicillium roqueforti, morphologie, physiologie, interêt en industrie fromagère, mycotoxines. Le Lait 1980, 60, 254–271. [Google Scholar] [CrossRef] [Green Version]
- Coghill, D. The ripening of blue vein cheese: A review. Aust. J. Dairy Technol. 1979, 34, 72–75. [Google Scholar]
- Lenoir, J.; Lamberet, G.; Schmidt, J.L.; Tourneur, C. La main-dóuvre microbienne domine l’affinage del fromages. Rev. Laitiire Franfaise 1985, 444, 50–64. [Google Scholar]
- López-Díaz, T.M.; Santos, J.; Prieto, M.; García-López, M.L.; Otero, A. Mycoflora of a traditional Spanish blue cheese. Neth. Milk Dairy J. 1995, 49, 191–199. [Google Scholar]
- Samson, R.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi, 2nd ed.; Westerdijk Fungal Biodiversity Institute: Utrecht, The Netherlands, 2019. [Google Scholar]
- Scott, P.M. Toxins of Penicillium species used in cheese manufacture. J. Food Prot. 1981, 44, 702–710. [Google Scholar] [CrossRef]
- Gripon, J.C. Mould-ripened cheeses. In Cheese: Chemistry, Physics and Microbiology; Major Cheese Groups; Fox, P.F., Ed.; Elsevier: London, UK, 1987; Volume 2, pp. 121–149. [Google Scholar]
- Engel, B.; Teuber, M. Toxic metabolites from fungal cheese starter cultures (Penicillium camemberti and Penicillium roqueforti). In Mycotoxins in Dairy Products; Van Egmond, H.P., Ed.; Elsevier Applied Science: Amsterdam, The Netherlands, 1989; pp. 163–192. [Google Scholar]
- European Commission. Regulation (EC) No 2073/2005 of the Commission of 15 November 2005 laying down microbiological criteria on food products. Off. J. Eur. Union 2005, 338, 1–26. Available online: http://data.europa.eu/eli/reg/2005/2073/oj (accessed on 25 April 2023).
- Maguire, H.C.F.; Boyle, M.; Lewis, M.J.; Pankhurst, J.; Wieneke, A.A.; Jacob, M. A large outbreak of food poisoning of unknown aetiology associated with Stilton cheese. Epidemiol. Infect. 1991, 106, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Osaili, T.M.; Hasan, F.; Al-Nabulsi, A.A.; Olaimat, A.N.; Ayyash, M.; Obaid, R.S.; Holley, R. A worldwide review of illness outbreaks involving mixed salads/dressings and factors influencing product safety and shelf life. Food Microbiol. 2023, 112, 104238. [Google Scholar] [CrossRef] [PubMed]
- Gould, L.H.; Mungai, E.; Behravesh, C.B. Outbreaks attributed to cheese: Differences between outbreaks caused by unpasteurized and pasteurized dairy products, United States, 1998–2011. Foodborne Pathog. Dis. 2014, 11, 545–551. [Google Scholar] [CrossRef] [PubMed]
- ICMSF. Microorganisms in Foods 6; Microbial Ecology of Food Commodities; Kluwer Academic & Plenum Publishers: New York, NY, USA, 2005; Volume 2. [Google Scholar]
- Bernini, V.; Bottari, B.; Dalzini, E.; Sgarbi, E.; Lazzi, C.; Neviani, E.; Gatti, M. The presence, genetic diversity and behaviour of Listeria monocytogenes in blue-veined cheese rinds during the shelf life. Food Control 2013, 34, 323–330. [Google Scholar] [CrossRef]
- Cocolin, L.; Nucera, D.; Alessandria, V.; Rantsiou, K.; Dolci, P.; Grassi, M.A.; Lomonaco, S.; Civera, T. Microbial ecology of Gorgonzola rinds and occurrence of different biotypes of Listeria monocytogenes. Int. J. Food Microbiol. 2009, 133, 200–205. [Google Scholar] [CrossRef]
- Gianfranceschi, M.; D’Ottavio, M.C.; Gattuso, A.; Pourshaban, M.; Bertoletti, I.; Bignazzi, R.; Manzoni, P.; Marchetti, M.; Aureli, P. Listeriosis associated with gorgonzola (Italian blue-veined cheese). Foodborne Pathog. Dis. 2006, 3, 190–195. [Google Scholar] [CrossRef]
- Health Protection Scotland. Incident Management Team Report: Outbreak of E. coli. 2017. Available online: http://www.hps.scot.nhs.uk (accessed on 25 April 2023).
- Schirone, M.; Visciano, P.; Conte, F.; Paparella, A. Formation of biogenic amines in the cheese production chain: Favouring and hindering factors. Int. Dairy J. 2022, 133, 105420. [Google Scholar] [CrossRef]
- Fröhlich-Wyder, M.T.; Arias-Roth, E.; Jakob, E. Cheese yeasts. Yeast 2019, 36, 129–141. [Google Scholar] [CrossRef]
- EFSA Euiropean Food Safety Authority. Panel on Biological Hazards (BIOHAZ) Scientific Opinion on risk-based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 2393, 1–93. [Google Scholar] [CrossRef] [Green Version]
- Lund, F.; Filtenborg, O.; Frisvad, J.C. Penicillium caseifulvum, a new species found on fermented Blue cheese. J. Food Mycol. 1998, 1, 95–101. [Google Scholar]
- Marcellino, N.; Benson, D.R. The good, the bad, and the ugly: Tales of mold-ripened cheese. Microbiol. Spectr. 2013, 1, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Seratlic, S.V.; Miloradovic, Z.N.; Radulovic, Z.T.; Macej, O.D. The effect of two types of mould inoculants on the microbiological composition, physicochemical properties and protein hydrolysis in two Gorgonzola-type cheese varieties during ripening. Int. J. Dairy Technol. 2011, 64, 408–416. [Google Scholar] [CrossRef]
- McSweeney, P.L.H. Biochemistry of cheese ripening. Int. J. Dairy Technol. 2004, 57, 127–144. [Google Scholar] [CrossRef]
- Zarmpoutis, I.V.; McSweeney, P.L.H.; Beechinor, J.; Fox, P.F. Proteolysis in the Irish farmhouse blue cheese, Chetwynd. Irish J. Agric. Food Res. 1996, 35, 25–36. [Google Scholar]
- Sousa, M.J.; Ardö, Y.; McSweeney, P.L.H. Advances in the study of proteolysis during cheese ripening. Int. Dairy J. 2001, 11, 327–345. [Google Scholar] [CrossRef]
- Eigel, W.; Butler, J.; Ernstrom, C.; Farrell, H.; Harwalkar, V.; Jenness, R.; Whitney, R.M. Nomenclature of proteins of cow’s milk: Fifth revision. J. Dairy Sci. 1984, 67, 1599–1631. [Google Scholar] [CrossRef]
- Gillot, G.; Jany, J.-L.; Poirier, E.; Maillard, M.; Debaets, S.; Thierry, A.; Coton, E.; Coton, M. Functional diversity within the Penicillium roqueforti species. Int. J. Food Microbiol. 2017, 241, 141–150. [Google Scholar] [CrossRef]
- Cakmakci, S.; Hayaloglu, A.A.; Dagdemir, E.; Gurses, M.; Cetin, B.; Tahmas-Kahyaoglu, D. Effects of Penicillium roqueforti and whey cheese on gross composition, microbiology and proteolysis of mould-ripened Civil cheese during ripening. Int. J. Dairy Technol. 2014, 66, 512–526. [Google Scholar] [CrossRef]
- Diezhandino, I.; Fernandez, D.; Combarros-Fuertes, P.; Renes, E.; Fresno, J.M.; Tornadijo, M.E. Characteristics and proteolysis of a Spanish blue cheese made with raw or pasteurised milk. Int. J. Dairy Technol. 2022, 75, 630–642. [Google Scholar] [CrossRef]
- Masotti, F.; Cattaneo, S.; Stuknytė, M.; Battelli, G.; Vallone, L.; De Noni, I. Composition, proteolysis, and volatile profile of Strachitunt cheese. J. Dairy Sci. 2017, 100, 1679–1687. [Google Scholar] [CrossRef] [Green Version]
- Mane, A.; Ciocia, F.; Beck, T.K.; Lillevang, S.K.; McSweeney, P.H.L. Proteolysis in Danish blue cheese during ripening. Int. Dairy J. 2019, 97, 191–200. [Google Scholar] [CrossRef]
- Rafiq, S.; Gulzar, N.; Sameen, A.; Huma, N.; Hayati, I.; Ijaz, R. Functional role of bioactive peptides with special reference to cheeses. Int. J. Dairy Technol. 2021, 74, 1–257. [Google Scholar] [CrossRef]
- Sánchez-Rivera, L.; Diezhandino, I.; Gómez-Ruiz, J.A.; Fresno, J.M.; Miralles, B.; Recio, I. Peptidomic study of Spanish blue cheese (Valdeón) and changes after simulated gastrointestinal digestion. Electrophoresis 2014, 35, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Flórez, A.B.; Ruas-Madiedo, P.; Alonso, L.; Mayo, B. Microbial, chemical and sensorial variables of the Spanish traditional blue-veined Cabrales cheese, as affected by inoculation with commercial Penicillium roqueforti spores. Eur. Food Res. Technol. 2006, 222, 250–257. [Google Scholar] [CrossRef]
- Prieto, B.; Franco, I.; Fresno, J.M.; Bernardo, A.; Carballo, J. Picón Bejes-Tresviso blue cheese: An overall biochemical survey throughout the ripening process. Int. Dairy J. 2000, 10, 159–167. [Google Scholar] [CrossRef]
- Redruello, B.; Szwengiel, A.; Ladero, V.; del Rio, B.; Alvarez, M.A. Identification of technological/metabolic/environmental profiles of cheeses with high GABA contents. LWT—Food Sci. Technol. 2020, 130, 109603. [Google Scholar] [CrossRef]
- Santiago-López, L.; Aguilar-Toalá, J.E.; Hernández-Mendoza, A.; Vallejo-Cordoba, B.; Liceaga, A.M.; González-Córdova, A.F. Invited review: Bioactive compounds produced during cheese ripening and health effects associated with aged cheese consumption. J. Dairy Sci. 2018, 101, 3742–3757. [Google Scholar] [CrossRef] [Green Version]
- Reinholds, I.; Rusko, J.; Pugajeva, I.; Berzina, Z.; Jansons, M.; Kirilina-Gutmane, O.; Tihomirova, K.; Bartkevics, V. The occurrence and dietary exposure assessment of mycotoxins, biogenic amines, and heavy metals in mould-ripened blue cheeses. Foods 2020, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Duval, P.; Chatelard-Chauvin, C.; Gayard, G.; Rifa, E.; Bouchard, P.; Hulin, S.; Delile, A.; Pollet, B.; Montel, M.C.; Picque, D. Changes in biochemical and sensory parameters in industrial blue-veined cheeses in different packaging. Int. Dairy J. 2018, 77, 87–99. [Google Scholar] [CrossRef]
- Diezhandino, I.; Fernández, D.; Abarquero, D.; Prieto, B.; Renes, E.; Fresno, J.M.; Tornadijo, M.E. Changes in the Concentration and Profile of Free Fatty Acids during the Ripening of a Spanish Blue-Veined Cheese Made from Raw and Pasteurized Cow and Goat Milk. Dairy 2023, 4, 222–234. [Google Scholar] [CrossRef]
- Collins, Y.F.; McSweeney, P.L.H.; Wilkinson, M.G. Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. Int. Dairy J. 2003, 13, 841–866. [Google Scholar] [CrossRef]
- Gallois, A.; Langlois, D. New results in the volatile odorous compounds of French cheeses. Lait 1990, 70, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Moio, L.; Piombino, P.; Addeo, F. Odour-impact compounds of Gorgonzola cheese. J. Dairy Res. 2000, 67, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Gkatzionis, K.; Linforth, R.S.; Dodd, C.E. Volatile profile of Stilton cheeses: Differences between zones within a cheese and dairies. Food Chem. 2009, 113, 506–512. [Google Scholar] [CrossRef]
- Torri, L.; Aprea, E.; Piochi, M.; Cabrino, G.; Endrizzi, I.; Colaianni, A.; Gasperi, F. Relationship between Sensory Attributes, (Dis) Liking and Volatile Organic Composition of Gorgonzola PDO Cheese. Foods 2021, 10, 2791. [Google Scholar] [CrossRef] [PubMed]
- Hayaloglu, A.A.; Brechany, E.Y.; Deegan, K.C.; McSweeney, P.L.H. Characterization of the chemistry, biochemistry and volatile profile of Kuflu cheese, a mould-ripened variety. LWT—Food Sci. Technol. 2008, 41, 1323–1334. [Google Scholar] [CrossRef]
Cheese Type, Origin, Quality Label | Milk Type | Technological Characteristics | Microbial Approach | Dominant Bacterial and Fungal Taxa | References |
---|---|---|---|---|---|
Bleu d’Auvergne, Auvergne-France, PDO | Cow | LAB, P. roqueforti spores Raw/pasteurised milk/dry salt-brined | Culture-dependent | LAB, Lactobacillus, Lactococcus, Leuconostoc | [7,8] |
Culture-independent (metabarcoding) | Lactococcus, Streptococcus, Leuc. mesenteroides, Brachybacterium, Brevibacterium, Lactobacillus, Enterobacteriaceae, Romboutsia, Acinetobacter (low proportion) | [8] | |||
Cabrales, Asturias-Spain, PDO | Cow or mixtures of cow, sheep, and goat | Autochthonous LAB, P. roqueforti spores Raw milk/dry salt | Culture-dependent | Lc. lactis, Lb. plantarum, Leuc. mesenteroides, Leuc. citreum, Lb. paracasei, Leuc. pseudomesenteroides, Enterococcus durans, E. faecium, T. koreensis, T. halophilus, S. equorum, Brevibacterium, Corynebacterium P. roqueforti, P. commune, P. chrysogenum, D. hansenii, K. lactis, Pich. fermentans, Pich. membranaefaciens, R. mucilaginosa, G. candidum | [9,10,11,12] |
Culture-independent (PCR-DGGE) | Lc. lactis, Lc. raffinolactis, Lc. garvieae, Lb. plantarum, Lb. casei, Lb. kefiri, Lb. buchneri P. roqueforti, P. chrysogenum, P. griseofulvum, D. hansenii, K. lactis, C. zeylanoides, C. sylvae, G. candidum | [13,14] | |||
Danablu, Denmark, PGI | Cow | LAB, P. roqueforti spores Pasteurised milk/brined | Culture-dependent | C. famata, C. catenulata, C. lipolytica, Zygosaccharomyces spp., Trichosporon cutaneum | [15] |
Gamonedo, Asturias-Spain, PDO | Cow or mixtures of cow, sheep, and goat | No-starters, no-mould spores Raw milk/dry salt/smoked | Culture-dependent | Lb. plantarum, Lb. casei, Lb. brevis, Lc. lactis, Leuc. mesenteroides, Leuc. paramesenteroides, E. faecalis, E. faecium, E. durans, S. aureus, S. epidermidis, M. lactis, M. varians, M. saprophyticus, P. roqueforti, D. hansenii, Cryptococcus laurentii | [16] |
Gorgonzola, Lombardy-Piedmont-Italy, PDO | Cow | LAB (St. thermophilus, Lb. delbrueckii, Lactococcus sp.), P. glaucum, P. roqueforti Raw or pasteurized/dry salt | Culture-dependent | Thermophilic lactobacilli, streptococci, mesophilic lactobacilli, lactococci, micrococci, enterococci, LAB, Actinomycetota, Bacillota, Pseudomonadota, yeasts, moulds (surface) P. roqueforti, yeasts | [6,17] |
Culture-independent (PCR-DGGE) | S. equorum, Brevibacterium linens, Corynebacterium flavescens, E. faecium, Carnobacterium, S. saprophyticus (surface) | [18] | |||
Roquefort, Aveyron-France, PDO | Sheep | LAB, P. roqueforti spores Raw milk | Culture-dependent | P. roqueforti, Candida, Debaryomyces, Galactomyces, Yarrowia, D. hansenii (C. famata), K. lactis (C. sphaerica), Candida spp. (Surface) | [19] |
Stilton, Nottinghamshire-Leicestershire-Derbyshire-UK, PDO | Cow | LAB (Lactococcus lactis), P. roqueforti spores Pasteurised milk/dry salt/pierced | Culture-dependent | Lb. plantarum, Lb. brevis D. hansenii, K. lactis, Y. lipolytica, Trichosporon ovoides | [20,21] |
Culture-independent (PCR-DGGE/TRFLP) | Lc. lactis, E. faecalis, Lb. plantarum, Lb. curvatus, Leuc. mesenteroides, S. equorum, Staphylococcus spp. P. roqueforti, D. hansenii, K. lactis, Y. lipolytica, C. catenulata, Trichosporon ovoides | [20,22] | |||
Valdeón, León-Spain, PGI | Mixtures of cow and goat | Commercial LAB, P. roqueforti spores Raw or pasteurised/dry salt/pierced | Culture-dependent | Lc. lactis, E. faecalis, Lb. plantarum, Leuc. mesenteroides, E. avium, E. faecium, Lb. casei, E. durans, Lc. raffinolactis LAB, Micrococcaceae, Enterobacteriaceae | [23,24] |
Agent | Food Vehicle | Year | Illnesses | Hospitalisations/Deaths | References |
---|---|---|---|---|---|
Unknown (suspected staphylococcal food poisoning | Stilton cheese (unpasteurised milk) | 1989 | 155 | 1/0 | [50] |
Norovirus genogroup II | Blue cheese dressing (pasteurised) | 2011 | 3 | 0/0 | [52] |
L. monocytogenes | Blue-veined cheese (unpasteurised milk) | 2011 | 15 | 1/1 | [52] |
E. coli O157:H7 | Dunsyre blue cheese (unpasteurised milk) | 2016 | 26 | 17/1 | [57] |
Agent | Effect | Cheese Defect | Control |
---|---|---|---|
Pseudomonas spp. | microbial multiplication | slime; off-flavours | general hygiene; temperature control; proper packaging |
Lactic acid bacteria | microbial multiplication/production of acid in excess | sourness | general hygiene; temperature control; |
Yeasts | microbial multiplication | off-flavours; changes in colour (brown) | general hygiene; temperature control; proper packaging |
Molds | microbial multiplication | changes in colour/flavour | general hygiene; temperature control; ripening control |
Mites | mites proliferation on the surface | poor appearance | general hygiene; proper clean/disinfection protocols |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Díaz, T.M.; Alegría, Á.; Rodríguez-Calleja, J.M.; Combarros-Fuertes, P.; Fresno, J.M.; Santos, J.A.; Flórez, A.B.; Mayo, B. Blue Cheeses: Microbiology and Its Role in the Sensory Characteristics. Dairy 2023, 4, 410-422. https://doi.org/10.3390/dairy4030027
López-Díaz TM, Alegría Á, Rodríguez-Calleja JM, Combarros-Fuertes P, Fresno JM, Santos JA, Flórez AB, Mayo B. Blue Cheeses: Microbiology and Its Role in the Sensory Characteristics. Dairy. 2023; 4(3):410-422. https://doi.org/10.3390/dairy4030027
Chicago/Turabian StyleLópez-Díaz, Teresa María, Ángel Alegría, Jose María Rodríguez-Calleja, Patricia Combarros-Fuertes, José María Fresno, Jesús A. Santos, Ana Belén Flórez, and Baltasar Mayo. 2023. "Blue Cheeses: Microbiology and Its Role in the Sensory Characteristics" Dairy 4, no. 3: 410-422. https://doi.org/10.3390/dairy4030027