An Evaluation of Nutritional and Therapeutic Factors Affecting Pre-Weaned Calf Health and Welfare, and Direct-Fed Microbials as a Potential Alternative for Promoting Performance—A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Implications of Calf Nutritional Management on Welfare
2.1. Colostrum
2.2. Waste Milk
2.3. Post-Colostral Milk Feeding Strategies
3. Antibiotics
4. Direct-Fed Microbials (Probiotics)
Direct-Fed Microbial | Source | CFU/g or mL | Per Calf per Day | Calves/Group | Calf Starter Consumption | Weight Gain | Health | |
---|---|---|---|---|---|---|---|---|
Multistrain: L. acidophilus, L. lactis, and B. subtilis | ND | 2.2 × 109, 2.2 × 106, 1.1 × 109 | 10 g | 28 | NS | NS | NS | [101] |
B. subtilis | ND | 1.24 × 1010 | 10 g | 28 | NS | NS | NS | [101] |
Multistrain: L. acidophilus and Streptococcus faecium | ND | 1 × 109 | 1 g | T1: 53 T2: 25 | NS | NS | NS | [102] |
L. acidophilus | ND | 5 × 107 | 1 mL | 20 | NS | ↑ Average daily gain ** | NS | [103] |
Multistrain: L. acidolphilus, B. subtilis, B. licheniformis, and L. lactis | ND | 3.3 × 108 | 10 g (7 days) 5 g (18 days) | 14 | NS | NS | NS | [104] |
L. acidolphilus | ND | 2 × 1010 | 10 g | 14 | NS | NS | NS | [104] |
Multistrain: L. acidophilus W55, L. salivarius W57, L. paracasei spp. Paracasei W56, L. plantarum W59, Lactococcus lactis W58, and Enterococcus faecium W54. | NCS | 1 × 109 cfu/kg of BW | T1 & T2: 45 mL T3 & T4: 45, 50, 60 and 80 mL | T1: 72 T2: 31 T3: 24 T4: 24 | ↑ Feed efficiency * | ↑ Weight gain * | NS | [105] |
Multistrain: L. sanfranciscensis, L. bifermentans, L. viridescens, L. confuses, L. kefiri or L. reuteri, L. fermentum | CS | 1 × 109 | 45, 50, 60 and 80 mL | T3: 24 T4: 24 | ↑ Feed efficiency * | ↑ Weight gain * | ↓ Incidence and duration of diarrhea ** | [105] |
Saccharomyces cerevisiae CNCM I-1077 | NCS | 10 × 109 | 0.5 g | 13 | ↑ Starter DM intake and feed efficiency ** | ↑Weight gain ** | ↓ Days with diarrhea | [106] |
S. boulardii CNCM I-1079 | NCS | 10 × 109 | 0.5 g | 13 | NS | NS | ↓ Days with diarrhea | [106] |
S. cerevisiae CNCM I-1077 | NCS | 2 × 1010 | 1 g | 8 | ↑ Starter DM intake ** | NS | NS | [107] |
S. boulardii CNCM I-1079 | NCS | 2 × 1010 | 1 g | 8 | NS | NS | NS | [107] |
Bacillus licheniformis and Bacillus subtilis | NCS | 1.28 × 109/kg | In the milk replacer powder: 400 g/t | 32 | ↑ Starter DM intake ** | ↑ Weight gain ** | NS | [100] |
Multistrain: L. casei DSPV 318T, L. salivarius DSPV 315T, and Pediococcus acidilactici DSPV 006T | CS | 1 × 109 kg/calf/day | 40 mL | 18 | NS | NS | NS | [99] |
Multistrain: L. casei DSPV 318T, L. salivarius DSPV 315T, and Pediococcus acidilactici DSPV 006T | CS | 1 × 109 kg BW/calf/day | 40 mL | 8 | ↑ Starter DM intake ** | ↑ Average daily gain ** | ↓ Fecal consistency index ** | [108] |
B. subtilis natto | NCS | 1 × 1010 | 10 mL | 6 | ↑ Feed efficiency ** | ↑ Average daily gain ** | [109] | |
B. lichenformis and B. subtilis | NCS | 1 × 109 | 20 | NS | NS | NS | [98] | |
Multistrain: L. acidophilus, L. casei, Bifidobacterium bifidium, and Enterococcus faecium | ND | 2 × 108 | 2 g | 8 | NS | ↑ Final body weight ** ↑ Final wither height and hip height ** ↑ Final body weight ** | [110] | |
Multistrain: L. acidophilus PTCC 1643, L. rhamnosus PTCC 1637, L. casei PTCC 1608, and L. delbrueckii PTCC 1333 | NCS | 2 × 108 | 2 g | 8 | NS | ↑ Final wither height and hip height ** | [110] | |
Multistrain: L. johnsonii CRL1693, L. murinus CRL1695, L. mucosae CRL1696, and L. salivarius CRL1702 | CS | 1 × 109 | 10 mL | 26 | ↓ Mortalities ** ↓Antibiotic treatments ** ↑Health index** | [111] | ||
Multistrain: Pediococcus acidilactici, Enterococcus faecium, L. acidophilus, L. casei, Bifidobacterium bifidum | ND | 43.4 × 109 | 4 g | 100 | NS | ↓ Duration of diarrhea ** | [112] | |
S. boulardii CNCM I-1079 | NCS | 1 × 109 | 5 g | 42 | NS | NS | ↓ Severity of diarrhea ** ↓ Antibiotic treatments ** | [30] |
S. boulardii CNCM I-1079 | NCS | 2 × 1010 | Low: 0.5 g Medium: 1 g High: 2 g | 4 | ↑ Starter DM intake ** | NS | ↓ Fecal scores ** | [113] |
S. boulardii CNCM I-1079 | 10 × 1010 | 5 g | 80 | NS | NS | NS | [114] | |
20 × 1010 | 10 g | 80 | NS | ↑ Weight gain ** | NS | |||
Multistrain: B. subtilis (DSMZ 5750), B. licheniformis (DSMZ 5749), and Enterococcus faecium. | NCS | 3.2 × 1010, 3.2 × 1010 and 5 × 1010 Per kg | 20 g | 8 | NS | NS | NS | [115] |
Multistrain: L. sporogenes, Enterococcus faecalis, and Bifidobacterium bifidum | ND | 4.1 × 107 | 3 g | 40 | ↑ Average daily gain ** | NS | [116] | |
Multistrain: L. casei PKM B/00103, L. salivarius PKM B/00102, L. sakei PKM B/00101. | CS | 1 × 1011 | 250 mg | 11 | NS | NS | ↓ Severity of diarrhea *** | [117] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cangiano, L.R.; Yohe, T.T.; Steele, M.A.; Renaud, D.L. Invited Review: Strategic use of microbial-based probiotics and prebiotics in dairy calf rearing. Appl. Anim. Sci. 2020, 36, 630–651. [Google Scholar] [CrossRef]
- Lorenz, I.; Mee, J.F.; Earley, B.; More, S.J. Calf health from birth to weaning. I. General aspects of disease prevention. Ir. Vet. J. 2011, 64, 9. [Google Scholar] [CrossRef] [PubMed]
- Urie, N.; Lombard, J.; Shivley, C.; Kopral, C.; Adams, A.; Earleywine, T.; Olson, J.; Garry, F. Preweaned heifer management on US dairy operations: Part V. Factors associated with morbidity and mortality in preweaned dairy heifer calves. J. Dairy Sci. 2018, 101, 9229–9244. [Google Scholar] [CrossRef] [PubMed]
- Hulbert, L.E.; Moisá, S.J. Stress, immunity, and the management of calves. J. Dairy Sci. 2016, 99, 3199–3216. [Google Scholar] [CrossRef] [PubMed]
- Raeth-Knight, M.; Chester-Jones, H.; Hayes, S.; Linn, J.; Larson, R.; Ziegler, D.; Ziegler, B.; Broadwater, N. Impact of conventional or intensive milk replacer programs on Holstein heifer performance through six months of age and during first lactation. J. Dairy Sci. 2009, 92, 799–809. [Google Scholar] [CrossRef]
- Soberon, F.; Raffrenato, E.; Everett, R.W.; Van Amburgh, M.E. Preweaning milk replacer intake and effects on long-term productivity of dairy calves. J. Dairy Sci. 2012, 95, 783–793. [Google Scholar] [CrossRef]
- Alimirzaei, M.; Alijoo, Y.A.; Banadaky, M.D.; Eslamizad, M. Effects of intensified or conventional milk feeding on pre-weaning health and feeding behavior of holstein female calves around weaning. Vet. Res. Forum 2020, 11, 311–318. [Google Scholar] [CrossRef]
- Cortese, V.S. Neonatal Immunology. Vet. Clin. N. Am. Food Anim. Pract. 2009, 25, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Diao, Q.; Zhang, R.; Fu, T. Review of strategies to promote rumen development in calves. Animals 2019, 9, 490. [Google Scholar] [CrossRef]
- van Niekerk, J.K.; Fischer-Tlustos, A.J.; Wilms, J.N.; Hare, K.S.; Welboren, A.C.; Lopez, A.J.; Yohe, T.T.; Cangiano, L.R.; Leal, L.N.; Steele, M.A. ADSA Foundation Scholar Award: New frontiers in calf and heifer nutrition—From conception to puberty. J. Dairy Sci. 2021, 104, 8341–8362. [Google Scholar] [CrossRef]
- Santman-Berends, I.M.G.A.; Buddiger, M.; Smolenaars, A.J.G.; Steuten, C.D.M.; Roos, C.A.J.; Van Erp, A.J.M.; Van Schaik, G. A multidisciplinary approach to determine factors associated with calf rearing practices and calf mortality in dairy herds. Prev. Vet. Med. 2014, 117, 375–387. [Google Scholar] [CrossRef] [PubMed]
- DCHA. Gold Standards, 2nd ed.; Dairy Calf and Heifer Association: Madison, WI, USA, 2014. [Google Scholar]
- USDA. Dairy 2014 Health and Management Practices on U.S. Dairy Operations; United States Department of Agriculture: Washington, DC, USA, 2014. [Google Scholar]
- Hammon, H.M.; Liermann, W.; Frieten, D.; Koch, C. Review: Importance of colostrum supply and milk feeding intensity on gastrointestinal and systemic development in calves. Animal 2020, 14, S133–S143. [Google Scholar] [CrossRef] [PubMed]
- USDA. Transfer of Maternal Immunity to Calves: National Dairy Heifer Evaluation Project; United States Department of Agriculture: Washington, DC, USA, 1993. [Google Scholar]
- USDA. Dairy 2007 Heifer Calf Health and Management Practices on U.S. Dairy Operations; United States Department of Agriculture: Washington, DC, USA, 2007. [Google Scholar]
- Ma, T.; Suzuki, Y.; Guan, L.L. Dissect the mode of action of probiotics in affecting host-microbial interactions and immunity in food producing animals. Vet. Immunol. Immunopathol. 2018, 205, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Uyeno, Y.; Shigemori, S.; Shimosato, T. Effect of Probiotics/Prebiotics on Cattle Health and Productivity. Microbes Environ. 2015, 30, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Shurson, G.C. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Anim. Feed Sci. Technol. 2018, 235, 60–76. [Google Scholar] [CrossRef]
- Garcia-Mazcorro, J.F.; Ishaq, S.L.; Rodriguez-Herrera, M.V.; Garcia-Hernandez, C.A.; Kawas, J.R.; Nagaraja, T.G. Review: Are there indigenous Saccharomyces in the digestive tract of livestock animal species? Implications for health, nutrition and productivity traits. Animal 2019, 14, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Chaucheyras-Durand, F.; Walker, N.D.; Bach, A.; Wallace, R.J.; Colombatto, D.; Robinson, P.H. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Technol. 2008, 145, 5–26. [Google Scholar] [CrossRef]
- Alawneh, J.I.; Barreto, M.O.; Moore, R.J.; Soust, M.; Al-harbi, H.; James, A.S.; Krishnan, D.; Olchowy, T.W.J. Systematic review of an intervention: The use of probiotics to improve health and productivity of calves. Prev. Vet. Med. 2020, 183, 105147. [Google Scholar] [CrossRef]
- Klein-Jöbstl, D.; Iwersen, M.; Drillich, M. Farm characteristics and calf management practices on dairy farms with and without diarrhea: A case-control study to investigate risk factors for calf diarrhea. J. Dairy Sci. 2014, 97, 5110–5119. [Google Scholar] [CrossRef]
- Zhao, W.; Choi, C.Y.; Li, G.; Li, H.; Shi, Z. Pre-weaned dairy calf management practices, morbidity and mortality of bovine respiratory disease and diarrhea in China. Livest. Sci. 2021, 251, 104608. [Google Scholar] [CrossRef]
- Von Keyserlingk, M.A.G.; Rushen, J.; De Passillé, A.M.; Weary, D.M. Invited review: The welfare of dairy cattle-Key concepts and the role of science. J. Dairy Sci. 2009, 92, 4101–4111. [Google Scholar] [CrossRef] [PubMed]
- Introduction to the Recommendations for Animal Welfare. In Terrestrial Animal Health Code; 2021; p. 4.
- Welfare Quality. Welfare Quality Assessment Protocol for Cattle; Lelystad, The Netherlands, 2009. [Google Scholar]
- Barrington, G.M.; Parish, S.M. Bovine neonatal immunology. Vet. Clin. N. Am. Food Anim. Pract. 2001, 17, 463–476. [Google Scholar] [CrossRef]
- Fischer, A.J.; Villot, C.; van Niekerk, J.K.; Yohe, T.T.; Renaud, D.L.; Steele, M.A. INVITED REVIEW: Nutritional regulation of gut function in dairy calves: From colostrum to weaning. Appl. Anim. Sci. 2019, 35, 498–510. [Google Scholar] [CrossRef]
- Villot, C.; Ma, T.; Renaud, D.L.; Ghaffari, M.H.; Gibson, D.J.; Skidmore, A.; Chevaux, E.; Guan, L.L.; Steele, M.A. Saccharomyces cerevisiae boulardii CNCM I-1079 affects health, growth, and fecal microbiota in milk-fed veal calves. J. Dairy Sci. 2019, 102, 7011–7025. [Google Scholar] [CrossRef] [PubMed]
- Vasseur, E.; Borderas, F.; Cue, R.I.; Lefebvre, D.; Pellerin, D.; Rushen, J.; Wade, K.M.; De Passillé, A.M. A survey of dairy calf management practices in Canada that affect animal welfare. J. Dairy Sci. 2010, 93, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Berge, A.C.B.; Lindeque, P.; Moore, D.A.; Sischo, W.M. A clinical trial evaluating prophylactic and therapeutic antibiotic use on health and performance of preweaned calves. J. Dairy Sci. 2005, 88, 2166–2177. [Google Scholar] [CrossRef]
- Lorenz, I. Calf health from birth to weaning—An update. Ir. Vet. J. 2021, 74, 5. [Google Scholar] [CrossRef]
- Lora, I.; Gottardo, F.; Contiero, B.; Dall Ava, B.; Bonfanti, L.; Stefani, A.; Barberio, A. Association between passive immunity and health status of dairy calves under 30 days of age. Prev. Vet. Med. 2018, 152, 12–15. [Google Scholar] [CrossRef]
- Shivley, C.; Lombard, J.; Urie, N.; Weary, D.; von Keyserlingk, M. Management of preweaned bull calves on dairy operations in the United States. J. Dairy Sci. 2019, 102, 4489–4497. [Google Scholar] [CrossRef]
- Beam, A.L.; Lombard, J.E.; Kopral, C.A.; Garber, L.P.; Winter, A.L.; Hicks, J.A.; Schlater, J.L. Prevalence of failure of passive transfer of immunity in newborn heifer calves and associated management practices on US dairy operations. J. Dairy Sci. 2009, 92, 3973–3980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godden, S.M.; Lombard, J.E.; Woolums, A.R. Colostrum Management for Dairy Calves. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 535–556. [Google Scholar] [CrossRef] [PubMed]
- Weaver, D.M.; Tyler, J.W.; VanMetre, D.C.; Hostetler, D.E.; Barrington, G.M. Passive transfer of colostral immunoglobulins in calves. J. Vet. Intern. Med. 2000, 14, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.J.; Heinrichs, A.J. Invited review: The importance of colostrum in the newborn dairy calf. J. Dairy Sci. 2022, 105, 2733–2749. [Google Scholar] [CrossRef] [PubMed]
- Franklin, S.T.; Amaral-Phillips, D.M.; Jackson, J.A.; Campbell, A.A. Health and Performance of Holstein Calves that Suckled or Were Hand-Fed Colostrum and Were Fed One of Three Physical Forms of Starter 1. J. Dairy Sci. 2003, 86, 2145–2153. [Google Scholar] [CrossRef]
- Stott, G.H.; Marx, D.B.; Menefee, B.E.; Nightengale, G.T. Colostral Immunoglobulin Transfer in Calves I. Period of Absorption. J. Dairy Sci. 1979, 62, 1632–1638. [Google Scholar] [CrossRef]
- Fischer, A.J.; Song, Y.; He, Z.; Haines, D.M.; Guan, L.L.; Steele, M.A. Effect of delaying colostrum feeding on passive transfer and intestinal bacterial colonization in neonatal male Holstein calves. J. Dairy Sci. 2018, 101, 3099–3109. [Google Scholar] [CrossRef] [PubMed]
- Godden, S.M.; Haines, D.M.; Konkol, K.; Peterson, J. Improving passive transfer of immunoglobulins in calves. II: Interaction between feeding method and volume of colostrum fed. J. Dairy Sci. 2009, 92, 1758–1764. [Google Scholar] [CrossRef]
- Cardoso, C.L.; King, A.; Chapwanya, A.; Esposito, G. Growth and Puberty of Calves—A Review. Animals 2021, 11, 1212–1224. [Google Scholar] [CrossRef]
- Gelsinger, S.L.; Gray, S.M.; Jones, C.M.; Heinrichs, A.J. Heat treatment of colostrum increases immunoglobulin G absorption efficiency in high-, medium-, and low-quality colostrum. J. Dairy Sci. 2014, 97, 2355–2360. [Google Scholar] [CrossRef]
- Conneely, M.; Berry, D.P.; Murphy, J.P.; Lorenz, I.; Doherty, M.L.; Kennedy, E. Effect of feeding colostrum at different volumes and subsequent number of transition milk feeds on the serum immunoglobulin G concentration and health status of dairy calves. J. Dairy Sci. 2014, 97, 6991–7000. [Google Scholar] [CrossRef] [Green Version]
- Malmuthuge, N.; Griebel, P.J.; Guan, L.L. The gut microbiome and its potential role in the development and function of newborn calf gastrointestinal tract. Front. Vet. Sci. 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Oikonomou, G.; Teixeira, A.G.V.; Foditsch, C.; Bicalho, M.L.; Machado, V.S.; Bicalho, R.C. Fecal Microbial Diversity in Pre-Weaned Dairy Calves as Described by Pyrosequencing of Metagenomic 16S rDNA. Associations of Faecalibacterium Species with Health and Growth. PLoS ONE 2013, 8, e63157. [Google Scholar] [CrossRef] [PubMed]
- Penati, M.; Sala, G.; Biscarini, F.; Boccardo, A.; Bronzo, V.; Castiglioni, B.; Cremonesi, P.; Moroni, P.; Pravettoni, D.; Addis, M.F. Feeding Pre-weaned Calves with Waste Milk Containing Antibiotic Residues Is Related to a Higher Incidence of Diarrhea and Alterations in the Fecal Microbiota. Front. Vet. Sci. 2021, 8, 650150. [Google Scholar] [CrossRef]
- Butler, J.A.; Sickles, S.A.; Johanns, C.J.; Rosenbusch, R.F. Pasteurization of discard mycoplasma mastitic milk used to feed calves: Thermal effects on various mycoplasma. J. Dairy Sci. 2000, 83, 2285–2288. [Google Scholar] [CrossRef]
- Stabel, J.R. On-farm batch pasteurization destroys Mycobacterium paratuberculosis in waste milk. J. Dairy Sci. 2001, 84, 524–527. [Google Scholar] [CrossRef]
- Godden, S.M.; Smith, S.; Feirtag, J.M.; Green, L.R.; Wells, S.J.; Fetrow, J.P. Effect of on-farm commercial batch pasteurization of colostrum on colostrum and serum immunoglobulin concentrations in dairy calves. J. Dairy Sci. 2003, 86, 1503–1512. [Google Scholar] [CrossRef]
- Kertz, A.F.; Hill, T.M.; Quigley, J.D.; Heinrichs, A.J.; Linn, J.G.; Drackley, J.K. A 100-Year Review: Calf nutrition and management. J. Dairy Sci. 2017, 100, 10151–10172. [Google Scholar] [CrossRef]
- Urie, N.J.; Lombard, J.E.; Shivley, C.B.; Kopral, C.A.; Adams, A.E.; Earleywine, T.J.; Olson, J.D.; Garry, F.B. Preweaned heifer management on US dairy operations: Part I. Descriptive characteristics of preweaned heifer raising practices. J. Dairy Sci. 2018, 101, 9168–9184. [Google Scholar] [CrossRef]
- Calderón-amor, J.; Gallo, C. Dairy calf welfare and factors associated with diarrhea and respiratory disease among chilean dairy farms. Animals 2020, 10, 1115. [Google Scholar] [CrossRef]
- Fischer-Tlustos, A.J.; Hertogs, K.; van Niekerk, J.K.; Nagorske, M.; Haines, D.M.; Steele, M.A. Oligosaccharide concentrations in colostrum, transition milk, and mature milk of primi- and multiparous Holstein cows during the first week of lactation. J. Dairy Sci. 2020, 103, 3683–3695. [Google Scholar] [CrossRef]
- Blum, J.W.; Hammon, H. Colostrum effects on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Livest. Prod. Sci. 2000, 66, 151–159. [Google Scholar] [CrossRef]
- Drackley, J.K. Calf Nutrition from Birth to Breeding. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 55–86. [Google Scholar] [CrossRef]
- Khan, M.A.; Bach, A.; Weary, D.M.; von Keyserlingk, M.A.G. Invited review: Transitioning from milk to solid feed in dairy heifers. J. Dairy Sci. 2016, 99, 885–902. [Google Scholar] [CrossRef]
- Khan, M.A.; Weary, D.M.; von Keyserlingk, M.A.G. Invited review: Effects of milk ration on solid feed intake, weaning, and performance in dairy heifers. J. Dairy Sci. 2011, 94, 1071–1081. [Google Scholar] [CrossRef]
- Stull, C.; Reynolds, J. Calf Welfare. Vet. Clin. N. Am. Food Anim. Pract. 2008, 24, 191–203. [Google Scholar] [CrossRef]
- von Keyserlingk, M.A.G.; Weary, D.M. A 100-Year Review: Animal welfare in the Journal of Dairy Science—The first 100 years. J. Dairy Sci. 2017, 100, 10432–10444. [Google Scholar] [CrossRef]
- Carroll, J.A.; Forsberg, N.E. Influence of Stress and Nutrition on Cattle Immunity. Vet. Clin. Food Anim. Pract. 2007, 23, 105–149. [Google Scholar] [CrossRef]
- Ballou, M.A.; Hanson, D.L.; Cobb, C.J.; Obeidat, B.S.; Sellers, M.D.; Pepper-Yowell, A.R.; Carroll, J.A.; Earleywine, T.J.; Lawhon, S.D. Plane of nutrition influences the performance, innate leukocyte responses, and resistance to an oral Salmonella enterica serotype Typhimurium challenge in Jersey calves. J. Dairy Sci. 2015, 98, 1972–1982. [Google Scholar] [CrossRef]
- Rosenberger, K.; Costa, J.H.C.; Neave, H.W.; von Keyserlingk, M.A.G.; Weary, D.M. The effect of milk allowance on behavior and weight gains in dairy calves. J. Dairy Sci. 2017, 100, 504–512. [Google Scholar] [CrossRef]
- Quigley, J.D.; Hill, T.M.; Dennis, T.S.; Suarez-Mena, F.X.; Schlotterbeck, R.L. Effects of feeding milk replacer at 2 rates with pelleted, low-starch or texturized, high-starch starters on calf performance and digestion. J. Dairy Sci. 2018, 101, 5937–5948. [Google Scholar] [CrossRef]
- Liang, Y.; Carroll, J.A.; Ballou, M.A. The digestive system of 1-week-old Jersey calves is well suited to digest, absorb, and incorporate protein and energy into tissue growth even when calves are fed a high plane of milk replacer. J. Dairy Sci. 2016, 99, 1929–1937. [Google Scholar] [CrossRef]
- Nonnecke, B.J.; Foote, M.R.; Smith, J.M.; Pesch, B.A.; Van Amburgh, M.E. Composition and functional capacity of blood mononuclear leukocyte populations from neonatal calves on standard and intensified milk replacer diets. J. Dairy Sci. 2003, 86, 3592–3604. [Google Scholar] [CrossRef]
- Morrill, J.L.; Dayton, A.D.; Mickelsen, R. Cultured Milk and Antibiotics for Young Calves. J. Dairy Sci. 1977, 60, 1105–1109. [Google Scholar] [CrossRef]
- Quigley, J.D.; Drewry, J.J.; Murray, L.M.; Ivey, S.J. Body Weight Gain, Feed Efficiency, and Fecal Scores of Dairy Calves in Response to Galactosyl-Lactose or Antibiotics in Milk Replacers. J. Dairy Sci. 1997, 80, 1751–1754. [Google Scholar] [CrossRef]
- Langford, F.M.; Weary, D.M.; Fisher, L. Antibiotic resistance in gut bacteria from dairy calves: A dose response to the level of antibiotics fed in milk. J. Dairy Sci. 2003, 86, 3963–3966. [Google Scholar] [CrossRef]
- Berge, A.C.B.; Moore, D.A.; Besser, T.E.; Sischo, W.M. Targeting therapy to minimize antimicrobial use in preweaned calves: Effects on health, growth, and treatment costs. J. Dairy Sci. 2009, 92, 4707–4714. [Google Scholar] [CrossRef]
- O’Keefe, O.C.; Moore, D.A.; McConnel, C.S.; Sischo, W.M. Parenteral Antimicrobial Treatment Diminishes Fecal Bifidobacterium Quantity but Has No Impact on Health in Neonatal Dairy Calves: Data from a Field Trial. Front. Vet. Sci. 2021, 8, 1–15. [Google Scholar] [CrossRef]
- Foditsch, C.; Pereira, R.V.V.; Siler, J.D.; Altier, C.; Warnick, L.D. Effects of treatment with enrofloxacin or tulathromycin on fecal microbiota composition and genetic function of dairy calves. PLoS ONE 2019, 14, e0219635. [Google Scholar] [CrossRef]
- Gomez, D.E.; Arroyo, L.G.; Renaud, D.L.; Viel, L.; Weese, J.S. A multidisciplinary approach to reduce and refine antimicrobial drugs use for diarrhoea in dairy calves. Vet. J. 2021, 274, 105713. [Google Scholar] [CrossRef]
- Keijser, B.J.F.; Agamennone, V.; Van Den Broek, T.J.; Caspers, M.; Van De Braak, A.; Bomers, R.; Havekes, M.; Schoen, E.; Van Baak, M.; Mioch, D.; et al. Dose-dependent impact of oxytetracycline on the veal calf microbiome and resistome. BMC Genom. 2019, 20, 65. [Google Scholar] [CrossRef] [Green Version]
- Donovan, D.C.; Franklin, S.T.; Chase, C.C.L.; Hippen, A.R. Growth and health of Holstein calves fed milk replacers supplemented with antibiotics or enteroguard. J. Dairy Sci. 2002, 85, 947–950. [Google Scholar] [CrossRef]
- Thames, C.H.; Pruden, A.; James, R.E.; Ray, P.P.; Knowlton, K.F.; Lin, J.; Zurek, L.; Pristas, P.; Liu, J. Excretion of antibiotic resistance genes by dairy calves fed milk replacers with varying doses of antibiotics. Front. Microbiol. 2012, 3, 139. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.-I.; Yoon, K.-J. An overview of calf diarrhea—Infectious etiology, diagnosis, and intervention. J. Vet. Sci. 2014, 15, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Van Vleck Pereira, R.; Lima, S.; Siler, J.D.; Foditsch, C.; Warnick, L.D.; Carvalho Bicalho, R. Ingestion of Milk Containing Very Low Concentration of Antimicrobials: Longitudinal Effect on Fecal Microbiota Composition in Preweaned Calves. PLoS ONE 2016, 11, e147525. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Yousif, M.H.; Li, Z.Q.; Wu, Z.H.; Li, S.L.; Yang, H.J.; Wang, Y.J.; Cao, Z.J. Effects of antibiotic residues in milk on growth, ruminal fermentation, and microbial community of preweaning dairy calves. J. Dairy Sci. 2019, 102, 2298–2307. [Google Scholar] [CrossRef]
- Alugongo, G.M.; Xiao, J.; Wu, Z.; Li, S.; Wang, Y.; Cao, Z. Review: Utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves. J. Anim. Sci. Biotechnol. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Gaskins, H.R.; Collier, C.T.; Anderson, D.B. Antibiotics as growth promotants: Mode of action. Anim. Biotechnol. 2002, 13, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Malmuthuge, N.; Guan, L.L. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health 1. J. Dairy Sci. 2017, 100, 5996–6005. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, F.; Huang, Z.; Liu, H.; Xie, C.; Zhang, J.; Thacker, P.A.; Qiao, S. Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides 2012, 35, 225–230. [Google Scholar] [CrossRef]
- Berge, A.C.B.; Moore, D.A.; Sischo, W.M. Field trial evaluating the influence of prophylactic and therapeutic antimicrobial administration on antimicrobial resistance of fecal Escherichia coli in dairy calves. Appl. Environ. Microbiol. 2006, 72, 3872–3878. [Google Scholar] [CrossRef] [Green Version]
- Bischoff, S.C. Gut health: A new objective in medicine? BMC Med. 2011, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Celi, P.; Cowieson, A.J.; Fru-Nji, F.; Steinert, R.E.; Kluenter, A.M.; Verlhac, V. Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Anim. Feed Sci. Technol. 2017, 234, 88–100. [Google Scholar] [CrossRef]
- Altomare, R.; Damiano, G.; Gioviale, M.C.; Palumbo, V.D.; Maione, C.; Spinelli, G.; Sinagra, E.; Abruzzo, A.; Monte, G.L.; Tomasello, G.; et al. The intestinal ecosystem and probiotics. Prog. Nutr. 2016, 18, 8–15. [Google Scholar]
- O’Callaghan, T.F.; Ross, R.P.; Stanton, C.; Clarke, G. The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domest. Anim. Endocrinol. 2016, 56, S44–S55. [Google Scholar] [CrossRef]
- Kogut, M.H.; Arsenault, R.J. Editorial: Gut health: The new paradigm in food animal production. Front. Vet. Sci. 2016, 3, 10–13. [Google Scholar] [CrossRef]
- Gomez, D.E.; Galvão, K.N.; Rodriguez-Lecompte, J.C.; Costa, M.C. The Cattle Microbiota and the Immune System: An Evolving Field. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 485–505. [Google Scholar] [CrossRef]
- Freestone, P.P.E.; Sandrini, S.M.; Haigh, R.D.; Lyte, M. Microbial endocrinology: How stress influences susceptibility to infection. Trends Microbiol. 2008, 16, 55–64. [Google Scholar] [CrossRef]
- Oanh, T.L.; Dart, P.J.; Harper, K.; Zhang, D.; Schofield, B.; Callaghan, M.J.; Lisle, A.T.; Klieve, A.; Mcneill, D.M. Effect of probiotic Bacillus amyloliquefaciens strain H57 on productivity and the incidence of diarrhoea in dairy calves. Anim. Prod. Sci. 2017, 57, 912–919. [Google Scholar] [CrossRef]
- Fioramonti, J.; Theodorou, V.; Bueno, L. Probiotics: What are they? What are their effects on gut physiology? Best Pract. Res. Clin. Gastroenterol. 2003, 17, 711–724. [Google Scholar] [CrossRef]
- Czeruka, D.; Piche, T.; Rampal, P. Review article: Yeast as probiotics -Saccharomyces boulardii. Aliment. Pharmacol. Ther. 2007, 26, 767–778. [Google Scholar] [CrossRef]
- de Araújo Etchepare, M.; Nunes, G.L.; Nicoloso, B.R.; Barin, J.S.; Moraes Flores, E.M.; de Oliveira Mello, R.; Ragagnin de Menezes, C. Improvement of the viability of encapsulated probiotics using whey proteins. LWT 2020, 117, 108601. [Google Scholar] [CrossRef]
- Riddell, J.B.; Mcleod, K.R.; de Cv, S.A. Addition of a Bacillus based probiotic to the diet of preruminant calves: Influence on growth, health, and blood parameters. Int. J. Appl. Res. Vet. Med. 2010, 8, 78–85. [Google Scholar]
- Frizzo, L.S.; Bertozzi, E.; Soto, L.P.; Sequeira, G.J.; Rodriguez Armesto, R.; Rosmini, M.R. Studies on translocation, acute oral toxicity and intestinal colonization of potentially probiotic lactic acid bacteria administered during calf rearing. Livest. Sci. 2010, 128, 28–35. [Google Scholar] [CrossRef]
- Kowalski, Z.M.; Górka, P.; Schlagheck, A.; Jagusiak, W.; Micek, P.; Strzetelski, J. Performance of Holstein calves fed milk-replacer and starter mixture supplemented with probiotic feed additive. J. Anim. Feed Sci. 2009, 18, 399–411. [Google Scholar] [CrossRef]
- Jenny, B.F.; Vandijk, H.J.; Collins, J.A. Performance and Fecal Flora of Calves Fed a Bacillus subtilis Concentrate. J. Dairy Sci. 1991, 74, 1968–1973. [Google Scholar] [CrossRef]
- Higginbotham, G.E.; Bath, D.L. Evaluation of Lactobacillus Fermentation Cultures in Calf Feeding Systems. J. Dairy Sci. 1993, 76, 615–620. [Google Scholar] [CrossRef]
- Cruywagen, C.; Jordaan, I.; Venter, L. Effect of Lactobacillus acidophilus Supplementation of Milk Replacer on Preweaning Performance of Calves. J. Dairy Sci. 1996, 79, 483–486. [Google Scholar] [CrossRef]
- Quintero-Gonzalez, C.I.; Comerford, J.W.; Varga, G.A. Effects of Direct-Fed Microbials on Growth, Health, and Blood Parameters of Young Holstein Calves. Prof. Anim. Sci. 2003, 19, 211–220. [Google Scholar] [CrossRef]
- Timmerman, H.M.; Mulder, L.; Everts, H.; Van Espen, D.C.; Van Der Wal, E.; Klaassen, G.; Rouwers, S.M.G.; Hartemink, R.; Rombouts, F.M.; Beynen, A.C. Health and growth of veal calves fed milk replacers with or without probiotics. J. Dairy Sci. 2005, 88, 2154–2165. [Google Scholar] [CrossRef]
- Galvão, K.N.; Santos, J.E.P.; Coscioni, A.; Villaseñor, M.; Sischo, W.M.; Catharina, A.; Berge, B. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reprod. Nutr. Dev. 2005, 45, 427–440. [Google Scholar] [CrossRef]
- Pinos-Rodríguez, J.; Robinson, P.H.; Ortega, M.E.; Berry, S.L.; Mendoza, G.; Bárcena, R. Performance and rumen fermentation of dairy calves supplemented with Saccharomyces cerevisiae1077 or Saccharomyces boulardii1079. Anim. Feed Sci. Technol. 2008, 140, 223–232. [Google Scholar] [CrossRef]
- Frizzo, L.S.; Soto, L.P.; Zbrun, M.V.; Bertozzi, E.; Sequeira, G.; Armesto, R.R.; Rosmini, M.R. Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder. Anim. Feed Sci. Technol. 2010, 157, 159–167. [Google Scholar] [CrossRef]
- Sun, P.; Wang, J.Q.; Zhang, H.T. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves. J. Dairy Sci. 2010, 93, 5851–5855. [Google Scholar] [CrossRef]
- Bayatkouhsar, J.; Tahmasebi, A.M.; Naserian, A.A.; Mokarram, R.R. Effects of supplementation of lactic acid bacteria on growth performance, blood metabolites and fecal coliform and lactobacilli of young dairy calves. Anim. Feed Sci. Technol. 2013, 186, 1–11. [Google Scholar] [CrossRef]
- Maldonado, N.C.; Chiaraviglio, J.; Bru, E.; De Chazal, L.; Santos, V.; Nader-Macías, M.E.F. Effect of milk fermented with lactic acid bacteria on diarrheal incidence, growth performance and microbiological and blood profiles of newborn dairy calves. Probiotics Antimicrob. Proteins 2018, 10, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Renaud, D.L.; Kelton, D.F.; Weese, J.S.; Noble, C.; Duffield, T.F. Evaluation of a multispecies probiotic as a supportive treatment for diarrhea in dairy calves: A randomized clinical trial. J. Dairy Sci. 2019, 102, 4498–4505. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Kacem, N.; Kim, W.-S.; Peng, D.Q.; Kim, Y.-J.; Joung, Y.-G.; Lee, C.; Lee, H.-G. Effect of Saccharomyces boulardii Supplementation on Performance and Physiological Traits of Holstein Calves under Heat Stress Conditions. Animals 2019, 9, 510. [Google Scholar] [CrossRef]
- Renaud, D.L.; Shock, D.A.; Roche, S.M.; Steele, M.A.; Chevaux, E.; Skidmore, A.L. Evaluation of Saccharomyces cerevisiae boulardii CNCM I-1079 fed before weaning on health and growth of male dairy calves. Appl. Anim. Sci. 2019, 35, 570–576. [Google Scholar] [CrossRef]
- Mandouh, M.I.; Elbanna, R.A.; Abdellatif, H.A. Effect of Multi-species Probiotic Supplementation on Growth Performance, Antioxidant Status and Incidence of Diarrhea in Neonatal Holstein Dairy Calves. Int. J. Vet. Sci. 2020, 9, 249–253. [Google Scholar] [CrossRef]
- Zábranský, L.; Poborská, A.; Malá, G.; Gálik, B.; Petrášková, E.; Kernerová, N.; Hanušovský, O.; Kučera, J. Probiotic and prebiotic feed additives in Calf nutrition. J. Cent. Eur. Agric. 2021, 22, 14–18. [Google Scholar] [CrossRef]
- Stefańska, B.; Sroka, J.; Katzer, F.; Goliński, P.; Nowak, W. The effect of probiotics, phytobiotics and their combination as feed additives in the diet of dairy calves on performance, rumen fermentation and blood metabolites during the preweaning period. Anim. Feed Sci. Technol. 2021, 272, 114738. [Google Scholar] [CrossRef]
- Oultram, J.; Phipps, E.; Teixeira, A.G.V.; Foditsch, C.; Bicalho, M.L.; Machado, V.S.; Bicalho, R.C.; Oikonomou, G. Effects of antibiotics (oxytetracycline, florfenicol or tulathromycin) on neonatal calves’ faecal microbial diversity. Vet. Rec. 2015, 117, 598. [Google Scholar] [CrossRef] [PubMed]
- Signorini, M.L.; Soto, L.P.; Zbrun, M.V.; Sequeira, G.J.; Rosmini, M.R.; Frizzo, L.S. Research in Veterinary Science Impact of probiotic administration on the health and fecal microbiota of young calves: A meta-analysis of randomized controlled trials of lactic acid bacteria. Res. Vet. Sci. 2012, 93, 250–258. [Google Scholar] [CrossRef]
- Geng, C.-Y.; Ren, L.-P.; Zhou, Z.-M.; Chang, Y.; Meng, Q.-X. Comparison of active dry yeast (Saccharomyces cerevisiae) and yeast culture for growth performance, carcass traits, meat quality and blood indexes in finishing bulls. Anim. Sci. J. 2016, 87, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Desnoyers, M.; Giger-Reverdin, S.; Bertin, G.; Duvaux-Ponter, C.; Sauvant, D. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 2009, 92, 1620–1632. [Google Scholar] [CrossRef] [PubMed]
- Stier, H.; Bischoff, S.C. Influence of saccharomyces boulardii CNCM I-745 on the gut-associated immune system. Clin. Exp. Gastroenterol. 2016, 9, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Fomenky, B.E.; Chiquette, J.; Bissonnette, N.; Talbot, G.; Chouinard, P.Y.; Ibeagha-Awemu, E.M. Impact of Saccharomyces cerevisiae boulardii CNCMI-1079 and Lactobacillus acidophilus BT1386 on total lactobacilli population in the gastrointestinal tract and colon histomorphology of Holstein dairy calves. Anim. Feed Sci. Technol. 2017, 234, 151–161. [Google Scholar] [CrossRef]
- Fomenky, B.E.; Chiquette, J.; Lessard, M.; Bissonnette, N.; Talbot, G.; Chouinard, Y.P.; Ibeagha-Awemu, E.M. Saccharomyces cerevisiae var. boulardii CNCM I-1079 and Lactobacillus acidophilus BT1386 influence innate immune response and serum levels of acute-phase proteins during weaning in Holstein calves. Can. J. Anim. Sci. 2018, 98, 576–588. [Google Scholar] [CrossRef]
- Muya, M.C.; Nherera, F.V.; Miller, K.A.; Aperce, C.C.; Moshidi, P.M.; Erasmus, L.J. Effect of Megasphaera elsdenii NCIMB 41125 dosing on rumen development, volatile fatty acid production and blood β-hydroxybutyrate in neonatal dairy calves. J. Anim. Physiol. Anim. Nutr. 2015, 99, 913–918. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davies, S.J.; Esposito, G.; Villot, C.; Chevaux, E.; Raffrenato, E. An Evaluation of Nutritional and Therapeutic Factors Affecting Pre-Weaned Calf Health and Welfare, and Direct-Fed Microbials as a Potential Alternative for Promoting Performance—A Review. Dairy 2022, 3, 648-667. https://doi.org/10.3390/dairy3030045
Davies SJ, Esposito G, Villot C, Chevaux E, Raffrenato E. An Evaluation of Nutritional and Therapeutic Factors Affecting Pre-Weaned Calf Health and Welfare, and Direct-Fed Microbials as a Potential Alternative for Promoting Performance—A Review. Dairy. 2022; 3(3):648-667. https://doi.org/10.3390/dairy3030045
Chicago/Turabian StyleDavies, Sarah J., Giulia Esposito, Clothilde Villot, Eric Chevaux, and Emiliano Raffrenato. 2022. "An Evaluation of Nutritional and Therapeutic Factors Affecting Pre-Weaned Calf Health and Welfare, and Direct-Fed Microbials as a Potential Alternative for Promoting Performance—A Review" Dairy 3, no. 3: 648-667. https://doi.org/10.3390/dairy3030045