Fatty Acid Composition of Dairy Milk: A Case Study Comparing Once- and Twice-a-Day Milking of Pasture-Fed Cows at Different Stages of Lactation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Farm Data
2.2. Sample Collection
2.3. Milk Composition and Fatty Acid Analysis
2.4. Body Condition Score
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. The Effect of OAD and TAD Milking on Milk Production and Gross Milk Composition
4.2. The Effect of OAD and TAD Milking on Fatty Acid Composition
4.3. The Effect of Stage of Lactation on Milk Production and Gross Milk Composition
4.4. The Effect of Stage of Lactation on Fatty Acid Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalgleish, D.G. Bovine milk protein properties and the manufacturing quality of milk. Livest. Prod. Sci. 1993, 35, 75–93. [Google Scholar] [CrossRef]
- Auldist, M.J.; Johnston, K.A.; White, N.J.; Fitzsimons, W.P.; Boland, M.J. A comparison of the composition, coagulation characteristics and cheesemaking capacity of milk from Friesian and Jersey dairy cows. J. Dairy Sci. 2004, 71, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Amenu, B.; Deeth, H.C. The impact of milk composition on cheddar cheese manufacture. Aust. J. Dairy Technol. 2007, 62, 171–184. [Google Scholar]
- MacGibbon, A.K.H.; Taylor, M.M. Composition and structure of bovine milk lipids. In Advanced Dairy Chemistry, 3rd ed.; Fox, P.F., McSweeney, P.L.H., Eds.; Springer: New York, NY, USA, 2006; Volume 2, pp. 1–42. [Google Scholar]
- Grummer, R.R. Effect of feed on the composition of milk fat. J. Dairy Sci. 1991, 74, 3244–3257. [Google Scholar] [CrossRef]
- Bauman, D.E.; Griinari, J.M. Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 2003, 23, 203–227. [Google Scholar] [CrossRef] [Green Version]
- Palladino, R.A.; Buckley, F.; Prendiville, R.; Murphy, J.J.; Callan, J.; Kenny, D.A. A comparison between Holstein-Friesian and Jersey dairy cows and their F1 hybrid on milk fatty acid composition under grazing conditions. J. Dairy Sci. 2010, 93, 2176–2184. [Google Scholar] [CrossRef] [Green Version]
- Back, P.J.; Thomson, N.A. Exploiting cow genotype to increase milk value through production of minor milk components. Proc. N. Z. Soc. Anim. Prod. 2005, 65, 53–58. [Google Scholar]
- Stoop, W.M.; Bovenhuis, H.; Heck, J.M.L.; van Arendonk, J.A.M. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 2009, 92, 1469–1478. [Google Scholar] [CrossRef]
- Arnould, V.M.R.; Hammami, H.; Soyeurt, H.; Gengler, N. Short communication: Genetic variation of saturated fatty acids in Holsteins in the Walloon region of Belgium. J. Dairy Sci. 2010, 93, 4391–4397. [Google Scholar] [CrossRef] [Green Version]
- Lucey, J. Cheesemaking from grass based seasonal milk and problems associated with late-lactation milk. Int. J. Dairy Technol. 1996, 49, 59–64. [Google Scholar] [CrossRef]
- Tong, M.J.; Clark, D.A.; Cooper, C.V. Once-a-day milking: Possible and profitable? Proc. N. Z. Grassl. Assoc. 2002, 64, 33–37. [Google Scholar] [CrossRef]
- Davis, S.R.; Farr, V.C.; Stelwagen, K. Regulation of yield loss and milk composition during once-daily milking: A review. Livest. Prod. Sci. 1999, 59, 77–94. [Google Scholar] [CrossRef]
- Stelwagen, K.; Phyn, C.V.V.; Davis, S.R.; Guinard-Flament, J.; Pomiès, D.; Roche, J.R.; Kay, J.K. Invited review: Reduced milking frequency. Milk production and management implications. J. Dairy Sci. 2013, 96, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rémond, B.; Pomiès, D.; Dupont, D.; Chilliard, Y. Once-a-day milking of multiparous Holstein cows throughout the entire lactation: Milk yield and composition, and nutritional status. Anim. Res. 2004, 53, 201–212. [Google Scholar] [CrossRef]
- Clark, D.A.; Phyn, C.V.C.; Tong, M.J.; Collis, S.J.; Dalley, D.E. A systems comparison of once-versus twice daily milking of pastured dairy cows. J. Dairy Sci. 2006, 89, 1854–1862. [Google Scholar] [CrossRef]
- Davis, S.R.; Turner, S.A.; Obolonkin, V.; Tiplady, K.; Spelman, R.J.; Phyn, C.V. Lactation traits associated with short-and long-term once-daily milking performance in New Zealand crossbred dairy cattle. J. Dairy Sci. 2015, 98, 6094–6107. [Google Scholar] [CrossRef]
- Martin, B.; Pomies, D.; Pradel, P.; Verdier-Metz, I.; Rémond, B. Yield and sensory properties of cheese made with milk from Holstein or Montbéliarde cows milked twice or once daily. J. Dairy Sci. 2009, 92, 4730–4737. [Google Scholar] [CrossRef] [Green Version]
- Pomies, D.; Martin, B.; Chilliard, Y.; Pradel, P.; Rémond, B. Once-a-day milking of Holstein and Montbéliarde cows for 7 weeks in mid-lactation. Animal 2007, 1, 1497–1505. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, B.; Ryan, G.; Meaney, W.J.; McDonagh, D.; Kelly, A. Effect of frequency of milking on yield, composition, and processing quality of milk. J. Dairy Res. 2002, 69, 367–374. [Google Scholar] [CrossRef]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Dairy, N.Z. Body Condition Scoring Made Easy. 2004. Available online: https://www.dairynz.co.nz/media/5790783/body-condition-scoring-made-easy-booklet.pdf (accessed on 16 September 2021).
- Dairy, N.Z. Milking Is the Largest Labour Requirement on a Dairy Farm and the Timing of Milking Defines the Whole Structure of the Day. 2021. Available online: https://www.dairynz.co.nz/milking/milking-intervals/#:~:text=The%20three%20main%20examples%20of,(1%20milking%20per%20day) (accessed on 7 October 2021).
- Delamaire, E.; Guinard-Flament, J. Increasing milking intervals decreases the mammary blood flow and mammary uptake of nutrients in dairy cows. J. Dairy Sci. 2006, 89, 3439–3446. [Google Scholar] [CrossRef] [Green Version]
- Pulido, E.; Fernández, M.; Prieto, N.; Baldwin, R.L.; Andrés, S.; López, S.; Giráldez, F.J. Effect of milking frequency and α-tocopherol plus selenium supplementation on sheep milk lipid composition and oxidative stability. J. Dairy Sci. 2019, 102, 3097–3109. [Google Scholar] [CrossRef] [Green Version]
- Carruthers, V.R.; Davis, S.R.; Bryant, A.M.; Henderson, H.V.; Morris, C.A.; Copeman, P.J. Response of Jersey and Friesian cows to once a day milking and prediction of response based on udder characteristics and milk composition. J. Dairy Sci. 1993, 60, 1–11. [Google Scholar] [CrossRef]
- Grala, T.M.; Phyn, C.V.; Kay, J.K.; Rius, A.G.; Littlejohn, M.D.; Snell, R.G.; Roche, J.R. Temporary alterations to milking frequency, immediately post-calving, modified the expression of genes regulating milk synthesis and apoptosis in the bovine mammary gland. Proc. N. Z. Soc. Anim. Prod. 2011, 71, 3–8. [Google Scholar]
- Littlejohn, M.D.; Walker, C.G.; Ward, H.E.; Lehnert, K.B.; Snell, R.G.; Verkerk, G.A.; Spelman, R.J.; Clark, D.A.; Davis, S.R. Effects of reduced frequency of milk removal on gene expression in the bovine mammary gland. Physiol. Genom. 2010, 41, 21–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelwagen, K.; Knight, C.H. Effect of unilateral once or twice daily milking of cows on milk yield and udder characteristics in early and late lactation. J. Dairy Sci. 1997, 64, 487–494. [Google Scholar] [CrossRef]
- Farr, V.C.; Stelwagen, K.; Kerr, M.A.; Davis, S.R. Effect of once daily milking (ODM) on enzyme activities in the bovine mammary gland. Proc. N. Z. Soc. Anim. Prod. 1995, 55, 12–13. [Google Scholar]
- Dutreuil, M.; Guinard-Flament, J.; Boutinaud, M.; Hurtaud, C. Effect of duration of milk accumulation in the udder on milk composition, especially on milk fat globule. J. Dairy Sci. 2016, 99, 3934–3944. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, A.; Martin, B.; Lerch, S.; Gobert, M.; Pradel, P.; Chilliard, Y. Effects of supplementation of maize silage diets with extruded linseed, vitamin E and plant extracts rich in polyphenols, and morning vs evening milking on milk fatty acid profiles in Holstein and Montbéliarde cows. Animal 2010, 4, 627–640. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.; van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Milk fatty acid profile related to energy balance in dairy cows. J. Dairy Sci. 2011, 78, 479–488. [Google Scholar] [CrossRef] [Green Version]
- Rémond, B.; Pomiès, D. Once-daily milking of dairy cows: A review of recent French experiments. Anim. Res. 2005, 54, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Patton, J.; Kenny, D.A.; Mee, J.F.; O’mara, F.P.; Wathes, D.C.; Cook, M.; Murphy, J.J. Effect of milking frequency and diet on milk production, energy balance, and reproduction in dairy cows. J. Dairy Sci. 2006, 89, 1478–1487. [Google Scholar] [CrossRef]
- McNamara, S.; Murphy, J.J.; O’mara, F.P.; Rath, M.; Mee, J.F. Effect of milking frequency in early lactation on energy metabolism, milk production and reproductive performance of dairy cows. Livest. Sci. 2008, 117, 70–78. [Google Scholar] [CrossRef]
- Bastin, C.; Gengler, N.; Soyeurt, H. Phenotypic and genetic variability of production traits and milk fatty acid contents across days in milk for Walloon Holstein first-parity cows. J. Dairy Sci. 2011, 94, 4152–4163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacGibbon, A.K.H. Composition and Structure of Bovine Milk Lipids. In Advanced Dairy Chemistry, 4th ed.; McSweeney, P.L.H., Fox, P.F., O’Mahony, J.A., Eds.; Springer: New York, NY, USA, 2020; Volume 2, pp. 1–32. [Google Scholar]
- Palmquist, D.L.; Harvatine, K.J. Origin of fatty acids and influence of nutritional factors on milk fat. In Advanced Dairy Chemistry, 4th ed.; McSweeney, P.L.H., Fox, P.F., O’Mahony, J.A., Eds.; Springer: New York, NY, USA, 2020; Volume 2, pp. 33–66. [Google Scholar]
- Vranković, L.; Aladrović, J.; Octenjak, D.; Bijelić, D.; Cvetnić, L.; Stojević, Z. Milk fatty acid composition as an indicator of energy status in Holstein dairy cows. Arch. Anim. Breed. 2017, 60, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Rukkwamsuk, T.; Geelen, M.J.H.; Kruip, T.A.M.; Wensing, T. Interrelation of fatty acid composition in adipose tissue, serum, and liver of dairy cows during the development of fatty liver postpartum. J. Dairy Sci. 2000, 83, 52–59. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Beaulieu, A.D.; Barbano, D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Chilliard, Y.; Pomies, D.; Pradel, P.; Rémond, B. Once daily milking does not change milk fatty acid profile in cows in equilibrated energy balance. In Proceedings of the 57th Annual Meeting of the European Association for Animal Production (EAAP), Antalya, Turkey, 17–20 September 2006; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006. [Google Scholar]
- Auldist, M.J.; Walsh, B.J.; Thomson, N.A. Seasonal and lactational influences on bovine milk composition in New Zealand. J. Dairy Res. 1998, 65, 401–411. [Google Scholar] [CrossRef]
- Rémond, B.; Coulon, J.B.; Nicloux, M.; Levieux, D. Effect of temporary once-daily milking in early lactation on milk production and nutritional status of dairy cows. Ann. Zootech. 1999, 48, 341–352. Available online: https://hal.archives-ouvertes.fr/hal-00889807 (accessed on 1 November 2021). [CrossRef] [Green Version]
- Davis, S.R.; Farr, V.C.; Stelwagen, K. Once daily milking of dairy cows: An appraisal. Proc. N. Z. Soc. Anim. Prod. 1998, 58, 36–40. [Google Scholar]
- Davis, S.; McNaughton, L.; Bracefield, G.; Sanders, K.; Spelman., R. Variation in milk yield response to once-daily milking in Friesian-Jersey crossbred cattle. J. Dairy Sci. 2006, 89, 146–147. [Google Scholar]
- Lacy-Hulbert, S.J.; Woolford, M.W.; Nicholas, G.D.; Prosser, C.G.; Stelwagen, K. Effect of milking frequency and pasture intake on milk yield and composition of late lactation cows. J. Dairy Sci. 1999, 82, 1232–1239. [Google Scholar] [CrossRef]
- Ferris, C.P.; Frost, J.P.; Mayne, C.S.; McCoy, M.A.; Kilpatrick, D.J. A comparison of the direct and residual response of dairy cows to once or twice-daily milking, in late lactation. Livest. Sci. 2008, 114, 305–314. [Google Scholar] [CrossRef]
- Kgwatalala, P.M.; Ibeagha-Awemu, E.M.; Mustafa, A.F.; Zhao, X. Stearoyl-CoA desaturase 1 genotype and stage of lactation influences milk fatty acid composition of Canadian Holstein cows. Anim. Genet. 2009, 40, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Schwendel, B.H.; Morel, P.C.; Wester, T.J.; Tavendale, M.H.; Deadman, C.; Fong, B.; Shadbolt, N.M.; Thatcher, A.; Otter, D.E. Fatty acid profile differs between organic and conventionally produced cow milk independent of season or milking time. J. Dairy Sci. 2015, 98, 1411–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacGibbon, A.K. Herd-to-herd variations in the properties of milkfat. Proc. N. Z. Soc. Anim. Prod. 1996, 56, 224–227. [Google Scholar]
- Mackle, T.R.; Petch, S.F.; Bryant, A.M.; Auldist, M.J.; Henderson, H.V.; MacGibbon, A.K.H. Variation in the characteristics of milkfat from pasture-fed dairy cows during late spring and the effects of grain supplementation. N. Z. J. Agric. Res. 1997, 40, 349–359. [Google Scholar] [CrossRef]
Farm | No. 1 Dairy Farm (OAD 11) | No. 4 Dairy Farm (TAD 12) | ||||
---|---|---|---|---|---|---|
Lactation Stage | Early (September) | Mid (December) | Late (March) | Early (September) | Mid (December) | Late (March) |
Diet composition (kg DM/cow/day) | ||||||
Pasture | 8.0 | 12.0 | 4.5 | 17.0 | 17.0 | 10.0 |
Herb mix crop 1 | 4.0 | 4.0 | 3.0 | - | - | - |
Maize silage | 1.0 | - | - | 5.0 | 5.0 | 2.0 |
DDG 2 | 1.5 | - | - | - | 1.0 | - |
Tapioca pellets | 1.5 | - | 1.5 | - | - | - |
Concentrate 3 | - | - | 2.0 | 4.0 | - | 1.0 |
Dry roughage 4 | - | - | - | 0.2 | - | 1.0 |
Baleage 5 | - | - | 4.0 | - | 1.0 | 10 |
Diet chemical composition | ||||||
ME 6 MJ/kg DM | 11.89 | 12.12 | 9.98 | 11.36 | 10.58 | 11.28 |
CP 7 g/100 g DM | 20.08 | 19.48 | 21.91 | 19.49 | 19.08 | 21.27 |
NDF 8 g/100 g DM | 38.18 | 38.66 | 39.88 | 44.13 | 43.48 | 45.69 |
ADF 9 g/100 g DM | 20.94 | 20.38 | 26.00 | 20.71 | 23.60 | 25.40 |
SSS 10 g/100 g DM | 16.77 | 14.11 | 8.79 | 19.13 | 17.55 | 8.59 |
Lipid g/100 g DM | 4.08 | 4.69 | 4.54 | 4.40 | 4.09 | 4.77 |
Variable | N | Mean | SD | CV% | Min | Max |
---|---|---|---|---|---|---|
Milk yield (L/cow/day) | 755 | 18.15 | 5.73 | 31.6 | 4.60 | 39.50 |
Fat yield (kg/cow/day) | 755 | 0.85 | 0.28 | 32.4 | 0.26 | 5.22 |
Protein yield (kg/cow/day) | 755 | 0.68 | 0.17 | 25.4 | 0.21 | 1.54 |
Lactose yield (kg/cow/day) | 755 | 0.91 | 0.31 | 34.3 | 0.19 | 2.08 |
Fat% | 759 | 4.27 | 0.96 | 22.6 | 1.27 | 8.53 |
Protein% | 759 | 3.87 | 0.41 | 10.7 | 2.74 | 5.67 |
Lactose% | 759 | 4.97 | 0.26 | 5.2 | 4.07 | 5.51 |
Fatty Acid (% of the total FA) | ||||||
SFA 1 | 759 | 69.94 | 3.04 | 4.3 | 57.10 | 77.94 |
UFA 2 | 759 | 30.23 | 2.60 | 8.6 | 23.70 | 41.44 |
PUFA 3 | 759 | 2.94 | 0.45 | 15.2 | 1.49 | 4.40 |
C4:0 | 759 | 4.03 | 0.30 | 7.5 | 2.50 | 4.65 |
C6:0 | 759 | 2.81 | 0.22 | 7.8 | 1.37 | 3.31 |
C8:0 | 759 | 1.51 | 0.15 | 9.7 | 0.56 | 1.91 |
C10:0 | 759 | 3.40 | 0.42 | 12.2 | 0.93 | 4.83 |
C12:0 | 759 | 3.80 | 0.35 | 9.3 | 2.17 | 5.06 |
C14:0 | 759 | 12.68 | 1.24 | 9.8 | 7.14 | 15.33 |
C16:0 | 759 | 31.89 | 2.46 | 7.7 | 24.40 | 39.81 |
C18:0 | 759 | 13.04 | 1.42 | 10.9 | 7.87 | 22.23 |
C18:0 cis-9 | 759 | 20.31 | 2.70 | 13.3 | 14.75 | 32.52 |
Omega6 | 759 | 1.59 | 0.36 | 22.8 | 0.37 | 2.77 |
SCFA 4 | 759 | 8.35 | 0.61 | 7.4 | 4.43 | 9.71 |
MCFA 5 | 759 | 19.89 | 1.76 | 8.8 | 11.46 | 24.41 |
LCFA 6 | 759 | 66.83 | 2.57 | 3.9 | 59.12 | 82.02 |
Variable | Milking Frequency | p-Value | |
---|---|---|---|
OAD | TAD | ||
Milk yield (L/cow/day) | 14.98 ± 0.3 | 19.89 ± 0.19 | <0.001 |
Fat yield (kg/cow/day) | 0.78 ± 0.02 | 0.90 ± 0.01 | <0.001 |
Protein yield (kg/cow/day) | 0.61 ± 0.01 | 0.73 ± 0.01 | <0.001 |
Lactose yield (kg/cow/day) | 0.72 ± 0.02 | 1.00 ± 0.01 | <0.001 |
Fat % | 5.03 ± 0.08 | 3.99 ± 0.05 | <0.001 |
Protein % | 4.12 ± 0.03 | 3.76 ± 0.02 | <0.001 |
Lactose % | 4.80 ± 0.02 | 5.02 ± 0.01 | <0.001 |
Fatty Acid (% of the total FA) | |||
SFA 1 | 69.47 ± 0.21 | 70.47 ± 0.13 | <0.001 |
UFA 2 | 31.03 ± 0.17 | 29.59 ± 0.11 | <0.001 |
PUFA 3 | 3.11 ± 0.02 | 2.83 ± 0.02 | <0.001 |
C4:0 | 3.83 ± 0.02 | 4.12 ± 0.01 | <0.001 |
C6:0 | 2.76 ± 0.01 | 2.84 ± 0.01 | <0.001 |
C8:0 | 1.53 ± 0.01 | 1.51 ± 0.01 | 0.0190 |
C10:0 | 3.57 ± 0.03 | 3.36 ± 0.02 | <0.001 |
C12:0 | 4.00 ± 0.02 | 3.74 ± 0.02 | <0.001 |
C14:0 | 12.83 ± 0.08 | 12.72 ± 0.05 | 0.2493 |
C16:0 | 31.31 ± 0.18 | 32.39 ± 0.12 | <0.001 |
C18:0 | 12.62 ± 0.11 | 13.24 ± 0.07 | <0.001 |
C18:0 cis-9 | 19.9 ± 0.17 | 20.21 ± 0.11 | 0.1310 |
Omega6 | 1.67 ± 0.02 | 1.53 ± 0.01 | <0.001 |
SCFA 4 | 8.12 ± 0.04 | 8.46 ± 0.03 | <0.001 |
MCFA 5 | 20.4 ± 0.13 | 19.82 ± 0.08 | 0.0002 |
LCFA 6 | 65.5 ± 0.19 | 67.37 ± 0.12 | <0.001 |
Variable | Milking Frequency (MF) | p Value MF×SOL 7 | |||||
---|---|---|---|---|---|---|---|
OAD | TAD | ||||||
Early | Mid | Late | Early | Mid | Late | ||
Milk yield (L/cow/day) | 18.22 ± 0.38 c | 15.43 ± 0.38 d | 11.29 ± 0.40 f | 24.73 ± 0.24 a | 20.04 ± 0.25 bd | 14.89 ± 0.25 e | <0.001 |
Fat yield (kg/cow/day) | 0.95 ± 0.03 b | 0.77 ± 0.03 e | 0.62 ± 0.03 e | 1.09 ± 0.02 a | 0.88 ± 0.02 c | 0.74 ± 0.02 d | <0.001 |
Protein yield (kg/cow/day) | 0.70 ± 0.01 b | 0.63 ± 0.01 c | 0.51 ± 0.01 d | 0.87 ± 0.01 a | 0.71 ± 0.01 b | 0.60 ± 0.01 c | <0.001 |
Lactose yield (kg/cow/day) | 0.91 ± 0.02 c | 0.74 ± 0.02 d | 0.53 ± 0.02 f | 1.28 ± 0.01 a | 1.02 ± 0.01 b | 0.71 ± 0.01 de | <0.001 |
Fat % | 4.78 ± 0.10 b | 4.83 ± 0.10 b | 5.47 ± 0.10 a | 4.15 ± 0.06 c | 3.78 ± 0.06 d | 4.03 ± 0.06 c | <0.001 |
Protein % | 3.86 ± 0.03 d | 4.00 ± 0.03 c | 4.51 ± 0.03 a | 3.59 ± 0.02 e | 3.56 ± 0.02 e | 4.14 ± 0.02 b | <0.001 |
Lactose % | 4.97 ± 0.02 c | 4.79 ± 0.02 d | 4.62 ± 0.02 e | 5.17 ± 0.01 a | 5.11 ± 0.01 b | 4.77 ± 0.01 d | <0.001 |
Fatty Acid (% of the total FA) | |||||||
SFA 1 | 68.07 ± 0.28 e | 71.55 ± 0.28 b | 68.8 ± 0.29 d | 68.13 ± 0.18 de | 72.5 ± 0.18 a | 70.78 ± 0.18 c | <0.001 |
UFA 2 | 32.15 ± 0.23 a | 29.64 ± 0.23 c | 31.29 ± 0.25 b | 31.73 ± 0.15 ab | 28.08 ± 0.15 e | 28.97 ± 0.15 d | <0.001 |
PUFA 3 | 3.59 ± 0.03 a | 2.84 ± 0.03 c | 2.90 ± 0.03 c | 2.93 ± 0.02 c | 3.15 ± 0.02 b | 2.41 ± 0.02 d | <0.001 |
C4:0 | 4.05 ± 0.02 c | 3.94 ± 0.02 d | 3.49 ± 0.02 e | 4.12 ± 0.02 b | 4.31 ± 0.02 a | 3.92 ± 0.02 d | <0.001 |
C6:0 | 2.93 ± 0.02 b | 2.86 ± 0.02 c | 2.49 ± 0.02 e | 2.82 ± 0.01 c | 2.99 ± 0.01 a | 2.70 ± 0.01 d | <0.001 |
C8:0 | 1.69 ± 0.01 a | 1.57 ± 0.01 b | 1.34 ± 0.01 e | 1.54 ± 0.01 c | 1.57 ± 0.01 b | 1.41 ± 0.01 d | <0.001 |
C10:0 | 3.94 ± 0.04 a | 3.65 ± 0.04 b | 3.11 ± 0.04 e | 3.39 ± 0.02 d | 3.55 ± 0.02 c | 3.13 ± 0.02 e | <0.001 |
C12:0 | 4.15 ± 0.03 a | 4.07 ± 0.03 a | 3.78 ± 0.04 d | 3.64 ± 0.02 e | 3.91 ± 0.02 c | 3.67 ± 0.02 e | <0.001 |
C14:0 | 12.04 ± 0.11 d | 13.45 ± 0.11 a | 13.0 ± 0.12 c | 11.72 ± 0.07 e | 13.03 ± 0.07 c | 13.40 ± 0.07 a | <0.001 |
C16:0 | 29.83 ± 0.22 e | 32.66 ± 0.22 c | 31.43 ± 0.23 d | 30.26 ± 0.14 e | 33.70 ± 0.14 a | 33.21 ± 0.14 b | <0.001 |
C18:0 | 11.92 ± 0.15 c | 12.89 ± 0.15 b | 13.05 ± 0.16 b | 13.49 ± 0.10 a | 13.43 ± 0.10 a | 12.81 ± 0.1 b | <0.001 |
C18:0 cis-9 | 21.36 ± 0.24 b | 18.18 ± 0.24 e | 20.15 ± 0.25 c | 22.62 ± 0.15 a | 18.94 ± 0.16 d | 19.08 ± 0.15 d | <0.001 |
Omega6 | 2.17 ± 0.03 a | 1.53 ± 0.03 d | 1.32 ± 0.03 e | 1.63 ± 0.02 c | 1.73 ± 0.02 b | 1.22 ± 0.02 f | <0.001 |
SCFA 4 | 8.67 ± 0.05 b | 8.37 ± 0.05 c | 7.33 ± 0.05 e | 8.49 ± 0.03 c | 8.88 ± 0.03 a | 8.02 ± 0.03 d | <0.001 |
MCFA 5 | 20.13 ± 0.18 bc | 21.17 ± 0.18 a | 19.9 ± 0.19 c | 18.75 ± 0.11 d | 20.49 ± 0.11 b | 20.16 ± 0.11 c | <0.001 |
LCFA 6 | 65.28 ± 0.26 c | 65.27 ± 0.26 c | 65.96 ± 0.28 b | 68.0 ± 0.17 a | 67.8 ± 0.17 a | 66.37 ± 0.17 b | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanjayaranj, I.; Lopez-Villalobos, N.; Blair, H.T.; Janssen, P.W.M.; Holroyd, S.E.; MacGibbon, A.K.H. Fatty Acid Composition of Dairy Milk: A Case Study Comparing Once- and Twice-a-Day Milking of Pasture-Fed Cows at Different Stages of Lactation. Dairy 2022, 3, 174-189. https://doi.org/10.3390/dairy3010014
Sanjayaranj I, Lopez-Villalobos N, Blair HT, Janssen PWM, Holroyd SE, MacGibbon AKH. Fatty Acid Composition of Dairy Milk: A Case Study Comparing Once- and Twice-a-Day Milking of Pasture-Fed Cows at Different Stages of Lactation. Dairy. 2022; 3(1):174-189. https://doi.org/10.3390/dairy3010014
Chicago/Turabian StyleSanjayaranj, Inthujaa, Nicolas Lopez-Villalobos, Hugh T. Blair, Patrick W. M. Janssen, Stephen E. Holroyd, and Alastair K. H. MacGibbon. 2022. "Fatty Acid Composition of Dairy Milk: A Case Study Comparing Once- and Twice-a-Day Milking of Pasture-Fed Cows at Different Stages of Lactation" Dairy 3, no. 1: 174-189. https://doi.org/10.3390/dairy3010014
APA StyleSanjayaranj, I., Lopez-Villalobos, N., Blair, H. T., Janssen, P. W. M., Holroyd, S. E., & MacGibbon, A. K. H. (2022). Fatty Acid Composition of Dairy Milk: A Case Study Comparing Once- and Twice-a-Day Milking of Pasture-Fed Cows at Different Stages of Lactation. Dairy, 3(1), 174-189. https://doi.org/10.3390/dairy3010014