Prevalence of Bovine Norovirus and Nebovirus and Risk Factors of Infection in Swedish Dairy Herds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Data Collection
2.2. Detection of Bovine Norovirus and Nebovirus by RT-PCR
2.3. Statistical Analysis
3. Results
3.1. BNoV Prevalence and Association with Animal and Herd Factors
3.2. Nebovirus Prevalence
3.3. Calf Diarrhea
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smiley, J.R.; Chang, K.O.; Hayes, J.; Vinjé, J.; Saif, L.J. Characterization of an enteropathogenic bovine calicivirus representing a potentially new calicivirus genus. J. Virol. 2002, 76, 10089–10098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, S.L.; Dastjerdi, A.M.; Wong, S.; El-Attar, L.; Gallimore, C.; Brown, D.W.G.; Green, J.; Bridger, J. Molecular characterization of bovine enteric caliciviruses: A distinct third genogroup of noroviruses (Norwalk-like viruses) unlikely to be of risk to humans. J. Virol. 2003, 77, 2789–2798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridger, J.C.; Hall, G.A.; Brown, J.F. Characterization of a calici-like virus (Newbury agent) found in association with astrovirus and bovine diarrhea. Infect. Immun. 1984, 43, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.; Scheuer, K.A.; Zhang, Z.; Wang, Q.; Saif, L.J. Pathogenesis of GIII.2 bovine norovirus, CV186-OH/00/US strain in gnotobiotic calves. Vet. Microbiol. 2014, 168, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Otto, P.H.; Clarke, I.N.; Lambden, P.R.; Salim, O.; Reetz, J.; Liebler-Tenorio, E.M. Infection of calves with bovine norovirus GIII.1 strain Jena virus: An experimental model to study the pathogenesis of norovirus infection. J. Virol. 2011, 85, 12013–12021. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.I.; Han, J.I.; Wang, C.; Cooper, V.; Schwartz, K.; Engelken, T.; Yoon, K.J. Case-control study of microbiological etiology associated with calf diarrhea. Vet. Microbiol. 2013, 166, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Ferragut, F.; Vega, C.G.; Mauroy, A.; Conceicao-Neto, N.; Zeller, M.; Heylen, E.; Uriarte, E.L.; Bilbao, G.; Bok, M.; Matthijnssens, J.; et al. Molecular detaction of bovine norovirus in Argentinean dairy calves; circulation of a tentative new genotype. Infect. Genet. Evol. 2016, 40, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Turan, T.; Isidan, H.; Atasoy, M.O.; Irehan, B. Detection and molecular analysis of bovine enteric norovirus and nebovirus in Turkey. J. Vet. Res. 2018, 62, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauroy, A.; Scipioni, A.; Mathijs, E.; Saegerman, C.; Mast, J.; Bridger, J.C.; Ziant, D.; Thys, C.; Thiry, E. Epidemiological study of bovine norovirus infection by RT-PCR and VLP-based antibody ELISA. Vet. Microbiol. 2009, 137, 243–251. [Google Scholar] [CrossRef]
- Park, S.I.; Jeong, C.; Kim, H.H.; Park, S.H.; Park, S.J.; Hyun, B.H.; Yang, D.K.; Kim, S.K.; Kang, M.I.; Cho, K.O. Molecular epidemiology of bovine noroviruses in South Korea. Vet. Microbiol. 2007, 124, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Hassine-Zaafrane, M.; Kaplon, J.; Sdiri-Loulizi, K.; Aouni, Z.; Pothier, P.; Aouni, M.; Ambert-Balay, K. Molecular prevalence of bovine noroviruses and neboviruses detected in central-eastern Tunisia. Arch. Virol. 2012, 157, 1599–1604. [Google Scholar] [CrossRef] [PubMed]
- Kaplon, J.; Guenau, E.; Asdrubal, P.; Pothier, P.; Ambert-Balay, K. Possible novel nebovirus genotype in cattle, France. Emerg. Infect. Dis. 2011, 17, 1120–1123. [Google Scholar] [CrossRef] [PubMed]
- Karayel-Hacioglu, I.; Alkan, F. Molecular characterization of bovine noroviruses and neboviruses in Turkey; detection of recombinant strains. Arch. Virol. 2019, 164, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Pourasgari, F.; Kaplon, J.; Sanchooli, A.; Fremy, C.; Karimi-Naghlani, S.; Otarod, V.; Ambert-Balay, K.; Mojgani, N.; Pothier, P. Molecular prevalence of bovine noroviruses and neboviruses in newborn calves in Iran. Arch. Virol. 2018, 163, 1271–1277. [Google Scholar] [CrossRef]
- Jor, E.; Myrmel, M.; Jonassen, C.M. SYBR Green based real-time RT-PCR assay for detection and genotype prediction of bovine norovirus and assessment of clinical significance in Norway. J. Virol. Methods 2010, 169, 1–7. [Google Scholar] [CrossRef]
- Park, S.I.; Jeong, C.; Park, S.J.; Kim, H.H.; Jeong, Y.J.; Hyun, B.H.; Chun, Y.H.; Kang, M.I.; Cho, K.O. Molecular detection and characterization of unclassified bovine enteric caliciviruses in South Korea. Vet. Microbiol. 2008, 130, 371–379. [Google Scholar] [CrossRef]
- Guo, Z.; He, Q.; Zhang, B.; Yue, H.; Tang, C. Detection and molecular characteristics of neboviruses in dairy cows in China. J. Genet Virol. 2019, 100, 35–45. [Google Scholar] [CrossRef]
- Silverlås, C.; Emanuelson, U.; de Verdier, K.; Björkman, C. Prevalence and associated management factors of Cryptosporidium shedding in 50 Swedish dairy herds. Prev. Vet. Med. 2009, 90, 242–253. [Google Scholar] [CrossRef]
- Wise, A.G.; Monroe, S.S.; Hanson, L.E.; Grooms, D.L.; Sockett, D.; Maes, R.K. Molecular characterization of norovirus detected in diarrheic stools of Michigan and Wisconsin dairy calves: Circulation of two distinct subgroups. Virus Res. 2004, 100, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Milnes, A.S.; Binns, S.H.; Oliver, S.L.; Bridger, J.C. Retrospective study of norovirus in samples of diarrhea from cattle, using the Veterinary Laboratories Agency’s Farmfile records. Vet. Rec. 2007, 160, 326–330. [Google Scholar] [CrossRef]
- Smiley, J.R.; Hoet, A.E. Tråvén, M.; Tsunemitsu, H.; Saif, L.J. Reverse transcription-PCR assays for detection of bovine enteric caliciviruses (BEC) and analysis of the genetic relationships among BEC and human caliciviruses. J. Clin. Microbiol. 2003, 41, 3089–3099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. 1999, 41, 95–98. [Google Scholar]
- Dohoo, I.; Martin, W.; Stryhn, H. Veterinary Epidemiologic Research, 2nd ed.; VER Inc.: Charlottetown, PEI, Canada, 2010; pp. 122–126. [Google Scholar]
- Van der Poel, W.H.M.; van der Heide, R.; Verschoor, F.; Gelderblom, H.; Vinjé, J.; Koopmans, M.P.G. Epidemiology of Norwalk-like virus infections in cattle in the Netherlands. Vet. Microbiol. 2003, 92, 297–309. [Google Scholar] [CrossRef]
- Godden, S. Colostrum management for dairy calves. Vet. Clin. Food Anim. 2008, 24, 19–39. [Google Scholar] [CrossRef]
- Ohlson, A.; Alenius, S.; Tråvén, M.; Emanuelson, U. A longitudinal study of the dynamics of bovine coronavirus and respiratory syncytial virus infections in dairy herds. Vet. J. 2013, 197, 395–400. [Google Scholar] [CrossRef]
- McGuirk, S.M.; Collins, M. Managing the production, storage and delivery of colostrum. Vet. Clin. Food Anim. 2004, 20, 593–603. [Google Scholar] [CrossRef]
- Berge, A.C.B.; Besser, T.E.; Moore, D.A.; Sischo, W.M. Evaluation of the effects of oral colostrum supplementation during the first fourteen days on the health and performance of preweaned calves. J. Dairy Sci. 2009, 92, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Weaver, D.M.; Tyler, J.W.; VanMetre, D.C.; Hostetler, D.E.; Barrington, G.M. Passive transfer of colostral immunoglobulins in calves. J. Vet. Intern. Med. 2000, 14, 569–577. [Google Scholar] [CrossRef]
- Gulliksen, S.M.; Jor, E.; Lie, K.I.; Hamnes, I.S.; Løken, T.; Åkerstedt, J.; Østerås, O. Enteropathogens and risk factors for diarrhea in Norwegian dairy calves. J. Dairy Sci. 2009, 92, 5057–5066. [Google Scholar] [CrossRef]
Variable | Class | No. of Observations | Percent Positive | p-Value a |
---|---|---|---|---|
Calves per pen | 1 | 151 | 25 | 0.08 |
2–4 | 58 | 16 | ||
≥5 | 41 | 10 | ||
Region | S. Norrland | 30 | 17 | 0.002 |
Uppland | 25 | 32 | ||
Östergötland | 50 | 8 | ||
Västergötland | 70 | 13 | ||
Skåne | 75 | 32 | ||
Colostrum feeding b | Suckling only | 20 | 45 | 0.002 |
Bottle if needed | 80 | 25 | ||
Bottle routinely | 150 | 14 | ||
Age at diarrhea (weeks) c | <1 | 65 | 25 | 0.11 |
1–3 | 155 | 16 | ||
>3 | 30 | 30 | ||
Housing | Free stall | 140 | 29 | 0.000 |
Tie stall | 110 | 9 | ||
Calving pen type d | Single | 150 | 23 | 0.02 |
Multiple | 40 | 28 | ||
Not used | 60 | 8 | ||
Time in calving pen before calving (days) | 0–1 | 95 | 29 | 0.02 |
2–5 | 65 | 12 | ||
>5 | 35 | 31 | ||
Single calf pens located | Separate room | 15 | 0 | 0.03 |
By group pens | 120 | 27 | ||
By young stock or cows | 85 | 19 | ||
Cleaning of single calf pens | Few times/year | 20 | 0 | 0.02 |
Between calves | 100 | 27 | ||
Several times/calf | 100 | 21 | ||
Continuous variable | Median (IQ) e norovirus positive (n = 50) | Median (IQ) e norovirus negative (n = 200) | ||
No. of preweaned calves at sampling | 20 (12–30) | 14 (9–24) | 0.009 | |
Calf density at sampling f | 0.23 (0.17–0.27) | 0.20 (0.12–0.25) | 0.06 | |
Age of calves sampled | 7 d (5–12) | 16 d (8–33) | 0.000 | |
No. of cows/year | 78 (63–110) | 75 (63–94) | 0.1 | |
Milk yield g | 9300 (8943–9840) | 9550 (8900–10,000) | 0.17 |
Variable | Class | Parameter Estimate | Odds Ratio (95% Confidence Interval) | p-Value |
---|---|---|---|---|
Calves per pen | 1 | 1.61 | 5.0 (1.6;15.7) | 0.005 |
2–4 | 0.40 | 1.5 (0.4;5.9) | ||
≥5 | Ref a | 1 | ||
Region | S. Norrland | −0.89 | 0.4 (0.1;3.4) | 0.026 |
Uppland | −0.33 | 0.7 (0.2;2.6) | ||
Östergötland | −1.42 | 0.2 (0.1;0.8) | ||
Västergötland | −1.81 | 0.2 (0.1;0.4) | ||
Skåne | ref | 1 | ||
Colostrum feeding | Suckling only | 2.64 | 14.1 (3.2;62.9) | 0.029 |
Bottle if needed | 1.33 | 3.8 (1.4;10.0) | ||
Bottle routinely | ref | 1 | ||
No. of pre-weaned calves at sampling | (continuous) | 0.07 | 3.9 (1.6;5.4) b | 0.037 |
Variable | Class | No. of Observations | Percent Positive | p-Value a |
---|---|---|---|---|
Region | S. Norrland | 30 | 3 | 0.04 |
Uppland | 25 | 0 | ||
Östergötland | 50 | 14 | ||
Västergötland | 70 | 1 | ||
Skåne | 75 | 5 | ||
Colostrum feeding | Suckling only | 20 | 5 | 0.11 |
Bottle if needed | 80 | 1 | ||
Bottle routinely | 150 | 7 | ||
Calving pen type | Single | 150 | 5 | 0.10 |
Multiple | 40 | 0 | ||
Not used | 60 | 10 | ||
Time in calving pen before calving (days) | 0–1 | 95 | 6 | 0.18 |
2–5 | 65 | 2 | ||
>5 | 35 | 0 | ||
Cow and calf together | <24 h | 130 | 8 | 0.09 |
1–4 d | 120 | 2 | ||
Continuous variable | Median (IQ) b nebovirus positive (n = 13) | Median (IQ) b nebovirus negative (n = 237) | ||
Age of calves sampled | 21 d (11–38) | 13 d (6–27) | 0.12 | |
No. of cows/year | 65 (48–99) | 75 (63–99) | 0.19 |
Variable | Class | No. of Observations | Percent Positive | p-Value a | |
---|---|---|---|---|---|
Calves per pen | 1 | 151 | 12 | 0.004 | |
2–4 | 58 | 28 | |||
≥5 | 41 | 5 | |||
Calving pen type | Individual | 150 | 11 | 0.08 | |
Group | 40 | 22 | |||
Not used | 60 | 18 | |||
Colostrum Feeding b | Suckling only | 20 | 25 | 0.19 | |
Bottle if needed | 80 | 10 | |||
Bottle routinely | 150 | 15 | |||
Grouping calves at age (weeks) | <1 | 35 | 6 | 0.14 | |
1–2 | 75 | 20 | |||
2–3 | 25 | 24 | |||
3–4 | 0 | ||||
>4 | 55 | 13 | |||
Continuous variable | Median (IQ) c diarrhea at sampling (n = 36) | Median (IQ) c no diarrhea at sampling (n = 214) | |||
Calf density d | 0.24 (0.17–0.27) | 0.20 (0.12–0.25) | 0.03 | ||
No. of calves at sampling | 22 (12–28) | 14 (9–24) | 0.05 |
Variable | Class | Parameter Estimate | Odds Ratio (95% Confidence Interval) | p-Value |
---|---|---|---|---|
Calves per pen | 1 | 0.66 | 1.9 (0.5;7.3) | 0.005 |
2–4 | 1.90 | 6.7 (1.7;26.6) | ||
≥5 | ref a | 1 | ||
Calving pen type | Individual | −2.08 | 0.1 (0.1;0.3) | 0.021 |
Group | −1.35 | 0.3 (0.1;0.6) | ||
Not used | ref | 1 | ||
Colostrum Feeding b | Suckling only | 1.30 | 3.7 (1.9;7.1) | 0.079 |
Bottle if needed | 0.31 | 1.4 (0.6;3.3) | ||
Bottle routinely | ref | 1 | ||
Grouping calves at age (weeks) | <1 | −1.26 | 0.3 (0.1;0.7) | 0.021 |
1–2 | 0.77 | 2.2 (1.1;4.2) | ||
2–3 | 0.25 | 1.3 (0.7;2.5) | ||
3–4 | ||||
>4 | ref | 1 | ||
Calf density b | (continuous) | −3.59 | 0.7 (0.6;0.9) c | 0.086 |
No. of calves at sampling | (continuous) | 0.03 | 1.6 (1.1;2.4) d | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tråvén, M.; Axén, C.; Svensson, A.; Björkman, C.; Emanuelson, U. Prevalence of Bovine Norovirus and Nebovirus and Risk Factors of Infection in Swedish Dairy Herds. Dairy 2022, 3, 137-147. https://doi.org/10.3390/dairy3010011
Tråvén M, Axén C, Svensson A, Björkman C, Emanuelson U. Prevalence of Bovine Norovirus and Nebovirus and Risk Factors of Infection in Swedish Dairy Herds. Dairy. 2022; 3(1):137-147. https://doi.org/10.3390/dairy3010011
Chicago/Turabian StyleTråvén, Madeleine, Charlotte Axén, Anna Svensson, Camilla Björkman, and Ulf Emanuelson. 2022. "Prevalence of Bovine Norovirus and Nebovirus and Risk Factors of Infection in Swedish Dairy Herds" Dairy 3, no. 1: 137-147. https://doi.org/10.3390/dairy3010011
APA StyleTråvén, M., Axén, C., Svensson, A., Björkman, C., & Emanuelson, U. (2022). Prevalence of Bovine Norovirus and Nebovirus and Risk Factors of Infection in Swedish Dairy Herds. Dairy, 3(1), 137-147. https://doi.org/10.3390/dairy3010011