Invited Review: Ketosis Diagnosis and Monitoring in High-Producing Dairy Cows
Abstract
:1. Introduction
2. Incidence and Economic Impact of Ketosis
3. Energy Metabolism in Ruminants
4. Pathophysiology of Ketosis and Inclusion in the Negative Energy Balance (NEB)
5. Classification and Forms of Ketosis
5.1. Primary and Secondary Ketosis
5.2. Subclinical and Clinical Manifestation of Hyperketonemia
6. Laboratory Diagnosis and Methods of Monitoring Ketosis
6.1. Laboratory Methods
6.1.1. Enzyme Catalysis
6.1.2. Fourier Transform Infrared (FTIR) Spectrometry
6.1.3. Fluorometry
6.1.4. Gas-Liquid Chromatography (GLC), Nuclear Magnetic Resonance (NMR) Spectroscopy, and Gas Chromatography-Mass Spectrometry (GC-MS)
6.2. Cowside Tests
6.2.1. Cowside Urine Tests for Ketosis
6.2.2. Cowside Milk Tests for Ketosis
6.2.3. Cowside Blood Tests for Ketosis
6.3. Other Available Tests for Ketosis Diagnosis
6.3.1. Fat to Protein Ratio (F:P)
6.3.2. Urea Content in Milk
6.3.3. Fatty Acid Profile in Milk
6.3.4. Blood NEFA
6.3.5. Analysis of Exhaled Breath
6.3.6. Metabolomics
7. Control and Prevention
7.1. Ruminatory Activity
7.2. Assessment of Body Condition and Monitoring the Thickness of the Dorsal Fat Layer
7.3. Risk Factors of Ketosis
7.3.1. Breed
7.3.2. Days in Milk
7.3.3. Parity (Number of Lactations)
7.3.4. Birth Season
7.3.5. Effective Size
7.3.6. Housing
7.3.7. Nutrition
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- McArt, J.A.A.; Nydam, D.V.; Overton, M.W. Hyperketonemia in early lactation dairy cattle: A deterministic estimate of component and total cost per case. J. Dairy Sci. 2015, 98, 2043–2054. [Google Scholar] [CrossRef] [Green Version]
- Mostert, P.F.; Bokkers, E.A.M.; van Middelaar, C.E.; Hogeveen, H.; de Boer, I.J.M. Estimating the economic impact of subclinical ketosis in dairy cattle using a dynamic stochastic simulation model. Animal 2018, 12, 145–154. [Google Scholar] [CrossRef]
- Raboisson, D.; Mounié, M.; Khenifar, E.; Maigné, E. The economic impact of subclinical ketosis at the farm level: Tackling the challenge of over-estimation due to multiple interactions. Prev. Vet. Med. 2015, 122, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.A.C.; Simões, J. Milk beta-hydroxybutyrate and fat to protein ratio patterns during the first five months of lactation in Holstein dairy cows presenting treated left displaced abomasum and other post-partum diseases. Animals 2021, 11, 816. [Google Scholar] [CrossRef]
- Overton, T.R.; McArt, J.A.A.; Nydam, D.V. A 100-year review: Metabolic health indicators and management of dairy cattle. J. Dairy Sci. 2017, 100, 10398–10417. [Google Scholar] [CrossRef] [Green Version]
- Suthar, V.S.; Canelas-Raposo, J.; Deniz, A.; Heuwieser, W. Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. J. Dairy Sci. 2013, 96, 2925–2938. [Google Scholar] [CrossRef] [Green Version]
- McArt, J.A.A.; Nydam, D.V.; Oetzel, G.R. Epidemiology of subclinical ketosis in early lactation dairy cattle. J. Dairy Sci. 2012, 95, 5056–5066. [Google Scholar] [CrossRef] [Green Version]
- Brunner, N.; Groeger, S.; Raposo, J.C.; Bruckmaier, R.M.; Gross, J.J. Prevalence of subclinical ketosis and production diseases in dairy cows in Central and South America, Africa, Asia, Australia, New Zealand, and Eastern Europe. Transl. Anim. Sci. 2018, 3, 84–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Drift, S.G.A.; Jorritsma, R.; Schonewille, J.T.; Knijn, H.M.; Stegeman, J.A. Routine detection of hyperketonemia in dairy cows using Fourier transform infrared spectroscopy analysis of β-hydroxybutyrate and acetone in milk in combination with test-day information. J. Dairy Sci. 2012, 95, 4886–4898. [Google Scholar] [CrossRef] [Green Version]
- Berge, A.C.; Vertenten, G. A field study to determine the prevalence, dairy herd management systems, and fresh cow clinical conditions associated with ketosis in western European dairy herds. J. Dairy Sci. 2014, 97, 2145–2154. [Google Scholar] [CrossRef] [Green Version]
- Santschi, D.E.; Lacroix, R.; Durocher, J.; Duplessis, M.; Moore, R.K.; Lefebvre, D.M. Prevalence of elevated milk β-hydroxybutyrate concentrations in Holstein cows measured by Fourier-transform infrared analysis in Dairy Herd Improvement milk samples and association with milk yield and components. J. Dairy Sci. 2016, 99, 9263–9270. [Google Scholar] [CrossRef]
- Duval, J.E.; Fourichon, C.; Madouasse, A.; Sjöström, K.; Emanuelson, U.; Bareille, N. A participatory approach to design monitoring indicators of production diseases in organic dairy farms. Prev. Vet. Med. 2016, 128, 12–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, D.; Arnold, L.M.; Stowe, C.J.; Harmon, R.J.; Bewley, J.M. Estimating US dairy clinical disease costs with a stochastic simulation model. J. Dairy Sci. 2017, 100, 1472–1486. [Google Scholar] [CrossRef] [Green Version]
- Gohary, K.; Overton, M.W.; Von Massow, M.; LeBlanc, S.J.; Lissemore, K.D.; Duffield, T.F. The cost of a case of subclinical ketosis in Canadian dairy herds. Can. Vet. J. 2016, 57, 728–732. [Google Scholar] [PubMed]
- Benedet, A.; Manuelian, C.L.; Zidi, A.; Penasa, M.; De Marchi, M. Invited review: β-hydroxybutyrate concentration in blood and milk and its associations with cow performance. Animal 2019, 13, 1676–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, S.; Mansfeld, R. Herd health monitoring in dairy farms-discover metabolic diseases. An overview. Tierarztl Prax Ausg G Grosstiere Nutztiere 2019, 47, 246–255. [Google Scholar] [CrossRef]
- Raboisson, D.; Mounié, M.; Maigné, E. Diseases, reproductive performance, and changes in milk production associated with subclinical ketosis in dairy cows: A meta-analysis and review. J. Dairy Sci. 2014, 97, 7547–7563. [Google Scholar] [CrossRef]
- Duffield, T.F.; Lissemore, K.D.; Mcbride, B.W.; Leslie, K.E. Impact of hyperketonemia in early lactation dairy cows on health and production. J. Dairy Sci. 2009, 92, 571–580. [Google Scholar] [CrossRef] [Green Version]
- McArt, J.A.A.; Nydam, D.V.; Oetzel, G.R. Dry period and parturient predictors of early lactation hyperketonemia in dairy. J. Dairy Sci. 2013, 96, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Vanholder, T.; Papen, J.; Bemers, R.; Vertenten, G.; Berge, A.C.B. Risk factors for subclinical and clinical ketosis and association with production parameters in dairy cows in the Netherlands. J. Dairy Sci. 2015, 98, 880–888. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Ametaj, B.N. Ketosis an old story under a new approach. Dairy 2020, 1, 5. [Google Scholar] [CrossRef]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Microbial digestion in ruminants and other herbivores. In Animal Nutrition, 7th ed.; Prentice Hall/Pearson: Harlow, UK, 2011; pp. 171–186. [Google Scholar]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Energy metabolism. In Animal Nutrition, 7th ed.; Prentice Hall/Pearson: Harlow, UK, 2011; pp. 192–234. [Google Scholar]
- Urrutia, N.; Harvatine, K.J. Acetate dose-dependently stimulates milk fat synthesis in lactating dairy cows. J. Nutr. 2017, 147, 763–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urrutia, N.; Harvatine, K.J. Effect of conjugated linoleic acid and acetate on milk fat synthesis and adipose lipogenesis in lactating dairy cows. J. Dairy Sci. 2017, 100, 5792–5804. [Google Scholar] [CrossRef]
- Urrutia, N.; Bomberger, R.; Matamoros, C.; Harvatine, K.J. Effect of dietary supplementation of sodium acetate and calcium butyrate on milk fat synthesis in lactating dairy cows. J. Dairy Sci. 2019, 102, 5172–5181. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.; Kristensen, N.B. Precursors for liver gluconeogenesis in periparturient dairy cows. Animal 2013, 7, 1640–1650. [Google Scholar] [CrossRef] [Green Version]
- Månsson, H.L. Fatty acids in bovine milk fat fatty acids in bovine milk fat. J. Food Nutr. Res. 2008, 52, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhang, S.; Hui, Q.; Lei, L.; Du, X.; Gao, W.; Zhang, R.; Liu, G.; Li, X.; Li, X. Β-Hydroxybutyrate facilitates fatty acids synthesis mediated by sterol regulatory element-binding protein1 in bovine mammary epithelial cells. Cell. Physiol. Biochem. 2015, 37, 2115–2124. [Google Scholar] [CrossRef]
- Drackley, J.K.; Overton, T.R.; Douglas, G.N. Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. J. Dairy Sci. 2001, 84, E100–E112. [Google Scholar] [CrossRef]
- Larsen, M.; Kristensen, N.B. Effect of abomasal glucose infusion on splanchnic amino acid metabolism in periparturient dairy cows. J. Dairy Sci. 2009, 92, 3306–3318. [Google Scholar] [CrossRef]
- Klevenhusen, F.; Humer, E.; Metzler-Zebeli, B.; Podstatzky-Lichtenstein, L.; Wittek, T.; Zebeli, Q. Metabolic profile and inflammatory responses in dairy cows with left displaced abomasum kept under small-scaled farm conditions. Animals 2015, 5, 1021–1033. [Google Scholar] [CrossRef]
- White, H.M. The role of TCA cycle anaplerosis in ketosis and fatty liver in periparturient dairy cows. Animals 2015, 5, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Drackley, J.K. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- Herdt, T.H. Ruminant adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver. Vet. Clin. N. Am. Small Anim. Pract. 2000, 16, 215–230. [Google Scholar] [CrossRef]
- Bisinotto, R.S.; Greco, L.F.; Ribeiro, E.S.; Martinez, N.; Lima, F.S.; Staples, C.R.; Thatcher, W.W.; Santos, J.E.P. Influences of nutrition and metabolism on fertility of dairy cows. Anim. Reprod. 2012, 9, 260–272. [Google Scholar]
- Bell, A.W. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 1995, 73, 2804–2819. [Google Scholar] [CrossRef] [PubMed]
- Ingvartsen, K.L. Feeding-and management-related diseases in the transition cow: Physiological adaptations around calving and strategies to reduce feeding-related diseases. Anim. Feed Sci. Technol. 2006, 126, 175–213. [Google Scholar] [CrossRef]
- Van Knegsel, A.T.M.; Hammon, H.M.; Bernabucci, U.; Bertoni, G.; Bruckmaier, R.M.; Goselink, R.M.A.; Gross, J.J.; Kuhla, B.; Metges, C.C.; Parmentier, H.K.; et al. Metabolic adaptation during early lactation: Key to cow health, longevity and a sustainable dairy production chain. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2014, 9, 1–15. [Google Scholar] [CrossRef]
- Schirmann, K.; Chapinal, N.; Weary, D.M.; Vickers, L.; von Keyserlingk, M.A.G. Short communication: Rumination and feeding behavior before and after calving in dairy cows. J. Dairy Sci. 2013, 96, 7088–7092. [Google Scholar] [CrossRef] [PubMed]
- Belić, B.; Cincović, M.; Lakić, I.; Đoković, R.; Petrović, M.; Ježek, J.; Starič, J. Metabolic status of dairy cows grouped by anabolic and catabolic indicators of metabolic stress in early lactation. Acta Sci. Vet. 2018, 46, 1–9. [Google Scholar] [CrossRef]
- Gao, W.; Du, X.; Lei, L.; Wang, H.; Zhang, M.; Wang, Z.; Li, X.; Liu, G.; Li, X. NEFA-induced ROS impaired insulin signalling through the JNK and p38MAPK pathways in non-alcoholic steatohepatitis. J. Cell. Mol. Med. 2018, 22, 3408–3422. [Google Scholar] [CrossRef]
- De Koster, J.; Hostens, M.; Van Eetvelde, M.; Hermans, K.; Moerman, S.; Bogaert, H.; Depreester, E.; Van den Broeck, W.; Opsomer, G. Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores. J. Dairy Sci. 2015, 98, 4580–4592. [Google Scholar] [CrossRef] [Green Version]
- De Koster, J.D.; Opsomer, G. Insulin resistance in dairy cows. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 299–322. [Google Scholar] [CrossRef]
- Furken, C.; Nakao, T.; Hoedemaker, M. Energy balance in transition cows and its association with health, reproduction and milk production. Tierarztl Prax Ausg G Grosstiere Nutztiere 2015, 43, 341–349. [Google Scholar] [CrossRef]
- Gordon, J.L.; Leblanc, S.J.; Duffield, T.F. Ketosis treatment in lactating dairy cattle. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Oetzel, G.R. Herd-Level Ketosis-Diagnosis and Risk Factors. In Proceedings of the Preconference Seminar 7C: Dairy Herd Problem Investigation Strategies: Transition Cow Troubleshooting, American Association of Bovine Practitioners 40th Annual Conference, Vancouver, BC, Canada, 19 September 2007; pp. 67–91. [Google Scholar]
- Gross, J.J.; Bruckmaier, R.M. Review: Metabolic challenges in lactating dairy cows and their assessment via established and novel indicators in milk. Animal 2019, 13, s75–s81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruckmaier, R.M.; Gross, J.J. Lactational challenges in transition dairy cows. Anim. Prod. Sci. 2017, 57, 1471–1481. [Google Scholar] [CrossRef]
- Oetzel, G.R. Monitoring and testing dairy herds for metabolic disease. Vet. Clin. N. Am. Food Anim. Pract. 2004, 20, 651–674. [Google Scholar] [CrossRef] [PubMed]
- Derno, M.; Nürnberg, G.; Schön, P.; Schwarm, A.; Röntgen, M.; Hammon, H.M.; Metges, C.C.; Bruckmaier, R.M.; Kuhla, B. Short-term feed intake is regulated by macronutrient oxidation in lactating Holstein cows. J. Dairy Sci. 2013, 96, 971–980. [Google Scholar] [CrossRef] [Green Version]
- Mcart, J.A.A.; Peek, S.F.; Divers, T.J. Metabolic Diseases. In Rebhun’s Diseases of Dairy Cattle, 3rd ed.; Peek, S.F., Divers, T.J., Eds.; Elsevier, Inc.: St. Louis, MO, USA, 2018; pp. 713–722. [Google Scholar]
- Foster, L.A. Clinical Ketosis. Vet. Clin. N. Am. Food Anim. Pract. 1988, 4, 253–267. [Google Scholar] [CrossRef]
- Dar, A.M.; Malik, H.U.; Beigh, S.A.; Hussain, S.A.; Nabi, S.U.; Dar, A.A.; Dar, P.A.; Bhat, A.M. Clinico-biochemical alternation in bovine ketosis. J. Entomol. Zool. Stud. 2018, 6, 1146–1150. [Google Scholar]
- Grelet, C.; Bastin, C.; Gelé, M.; Davière, J.B.; Johan, M.; Werner, A.; Reding, R.; Fernandez Pierna, J.A.; Colinet, F.G.; Dardenne, P.; et al. Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. J. Dairy Sci. 2016, 99, 4816–4825. [Google Scholar] [CrossRef] [Green Version]
- Renaud, D.L.; Kelton, D.F.; Duffield, T.F. Short communication: Validation of a test-day milk test for β-hydroxybutyrate for identifying cows with hyperketonemia. J. Dairy Sci. 2019, 102, 1589–1593. [Google Scholar] [CrossRef] [Green Version]
- King, M.T.M.; Duffield, T.F.; DeVries, T.J. Short communication: Assessing the accuracy of inline milk fat-to-protein ratio data as an indicator of hyperketonemia in dairy cows in herds with automated milking systems. J. Dairy Sci. 2019, 102, 8417–8422. [Google Scholar] [CrossRef]
- Djoković, R.; Ilić, Z.; Kurćubić, V.; Petrović, M.; Cincović, M.; Petrović, M.P.; Perović, V.C. Diagnosis of subclinical ketosis in dairy cows. Biotechnol. Anim. Husb. 2019, 35, 111–125. [Google Scholar] [CrossRef]
- Jezek, J.; Cincović, M.R.; Nemec, M.; Belić, B.; Djoković, R.; Klinkon, M.; Staric, J. Beta-hydroxybutyrate in milk as screening test for subclinical ketosis in dairy cows. Pol. J. Vet. Sci. 2017, 20, 507–512. [Google Scholar] [CrossRef] [Green Version]
- De Marchi, M.; Toffanin, V.; Cassandro, M.; Penasa, M. Invited review: Mid-infrared spectroscopy as phenotyping tool for milk traits. J. Dairy Sci. 2014, 97, 1171–1186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, G.; Wang, H.; Li, X.; Wang, Z. Detection of subclinical ketosis in dairy cows. Pak. Vet. J. 2012, 32, 156–160. [Google Scholar]
- Larsen, T.; Nielsen, N.I. Fluorometric determination of β-hydroxybutyrate in milk and blood plasma. J. Dairy Sci. 2005, 88, P2004–P2009. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.; McConville, M.; Loukopoulos, P. Metabolomics in the study of spontaneous animal diseases. J. Vet. Diagn. Investig. 2020, 32, 635–647. [Google Scholar] [CrossRef]
- Iwersen, M.; Falkenberg, U.; Voigtsberger, R.; Forderung, D.; Heuwieser, W. Evaluation of an electronic cowside test to detect subclinical ketosis in dairy cows. J. Dairy Sci. 2009, 92, 2618–2624. [Google Scholar] [CrossRef] [Green Version]
- Ospina, P.A.; McArt, J.A.; Overton, T.R.; Stokol, T.; Nyda, D.V. Using nonesterified fatty acids and b-hydroxybutyrate concentrations during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking performance. Vet. Clin. Food Anim. 2013, 29, 387–412. [Google Scholar] [CrossRef]
- Krogh, M.A.; Toft, N.; Enevoldsen, C. Latent class evaluation of a milk test, a urine test, and the fat-to-protein percentage ratio in milk to diagnose ketosis in dairy cows. J. Dairy Sci. 2011, 94, 2360–2367. [Google Scholar] [CrossRef]
- Bach, K.D.; Heuwieser, W.; McArt, J.A.A. Technical note: Comparison of 4 electronic handheld meters for diagnosing hyperketonemia in dairy cows. J. Dairy Sci. 2016, 99, 9136–9142. [Google Scholar] [CrossRef] [Green Version]
- Sailer, K.J.; Pralle, R.S.; Oliveira, R.C.; Erb, S.J.; Oetzel, G.R.; White, H.M. Technical note: Validation of the BHB check blood β-hydroxybutyrate meter as a diagnostic tool for hyperketonemia in dairy cows. J. Dairy Sci. 2018, 101, 1524–1529. [Google Scholar] [CrossRef] [PubMed]
- Bach, K.D.; Barbano, D.M.; Mcart, J.A.A. Association of mid-infrared-predicted milk and blood constituents with early-lactation disease, removal, and production outcomes in Holstein cows. J. Dairy Sci. 2019, 102, 10129–10139. [Google Scholar] [CrossRef] [PubMed]
- Solano, J.; Galindo, F.; Orihuela, A.; Galina, C.S. The effect of social rank on the physiological response during repeated stressful handling in Zebu cattle (Bos indicus). Physiol. Behav. 2004, 82, 679–683. [Google Scholar] [CrossRef]
- Auldist, M.J.; Johnston, K.A.; White, N.J.; Fitzsimons, W.P.; Boland, M.J. A comparison of the composition, coagulation characteristics and cheesemaking capacity of milk from Friesian and Jersey dairy cows. J. Dairy Res. 2004, 71, 51–57. [Google Scholar] [CrossRef]
- Jensen, H.B.; Poulsen, N.A.; Andersen, K.K.; Hammershøj, M.; Poulsen, H.D.; Larsen, L.B. Distinct composition of bovine milk from Jersey and Holstein-Friesian cows with good, poor, or noncoagulation properties as reflected in protein genetic variants and isoforms. J. Dairy Sci. 2012, 95, 6905–6917. [Google Scholar] [CrossRef]
- De Marchi, M.; Bittante, G.; Dal Zotto, R.; Dalvit, C.; Cassandro, M. Effect of Holstein Friesian and Brown Swiss breeds on quality of milk and cheese. J. Dairy Sci. 2008, 91, 4092–4102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmquist, D.L.; Jenkins, T.C. A 100-year review: Fat feeding of dairy cows. J. Dairy Sci. 2017, 100, 10061–10077. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.; van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Performance and metabolic profile of dairy cows during a lactational and deliberately induced negative energy balance with subsequent realimentation. J. Dairy Sci. 2011, 94, 1820–1830. [Google Scholar] [CrossRef]
- Heuer, C.; Schukken, Y.H.; Dobbelaar, P. Postpartum body condition score and results from the first test day milk as predictors of disease, fertility, yield, and culling in commercial dairy herds. J. Dairy Sci. 1999, 82, 295–304. [Google Scholar] [CrossRef]
- Jenkins, N.T.; Peña, G.; Risco, C.; Barbosa, C.C.; Vieira-Neto, A.; Galvão, K.N. Utility of inline milk fat and protein ratio to diagnose subclinical ketosis and to assign propylene glycol treatment in lactating dairy cows. Can. Vet. J. 2015, 56, 850–854. [Google Scholar]
- Čejna, V.; Chládek, G. The importance of monitoring changes in milk fat to milk protein ratio in Holstein cows during lactation. J. Cent. Eur. Agric. 2005, 6, 539–546. [Google Scholar]
- Kamphuis, C.; Dela Rue, B.T.; Eastwood, C.R. Field validation of protocols developed to evaluate in-line mastitis detection systems. J. Dairy Sci. 2016, 99, 1619–1631. [Google Scholar] [CrossRef] [PubMed]
- Fadul-Pacheco, L.; Lacroix, R.; Séguin, M.; Grisé, M.; Vasseur, E.; Lefebvre, D.M. Characterization of Milk Composition and Somatic Cell Count Estimates from Automatic Milking Systems Sensors; Bryant, J., Burke, M., Cook, R., Harris, B., Mosconi, C., Wickham, B., Eds.; ICAR Technical Series No. 23; ICAR: Rome, Italy, 2018; pp. 53–63. [Google Scholar]
- Plaizier, J.C.; Krause, D.O.; Gozho, G.N.; Mcbride, B.W. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 2008, 176, 21–31. [Google Scholar] [CrossRef]
- Schwab, C.G.; Broderick, G.A. A 100-year review: Protein and amino acid nutrition in dairy cows. J. Dairy Sci. 2017, 100, 10094–10112. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.T.; Lee, J.H.; Kim, C.K.; Chung, C.Y.; Kim, C.-H. Effects of milk production, season, parity and lactation period on variations of milk urea nitrogen concentration and milk components of Holstein dairy cows. Asian Australas. J. Anim. Sci. 2004, 17, 479–484. [Google Scholar] [CrossRef]
- Arunvipas, P.; Dohoo, I.R.; VanLeeuwen, J.A.; Keefe, G.P. The effect of non-nutritional factors on milk urea nitrogen levels in dairy cows in Prince Edward Island, Canada. Prev. Vet. Med. 2003, 59, 83–93. [Google Scholar] [CrossRef]
- Nousiainen, J.; Shingfield, K.J.; Huhtanen, P. Evaluation of milk urea nitrogen as a diagnostic of protein feeding. J. Dairy Sci. 2004, 87, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Stoop, W.M.; Bovenhuis, H.; Heck, J.M.L.; van Arendonk, J.A.M. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 2009, 92, 1469–1478. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Denise Beaulieu, A.; Barbano, D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Gross, J.; van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Milk fatty acid profile related to energy balance in dairy cows. J. Dairy Res. 2011, 78, 479–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Haelst, Y.N.T.; Beeckman, A.; Van Knegsel, A.T.M.; Fievez, V. Short communication: Elevated concentrations of oleic acid and long- chain fatty acids in milk fat of multiparous subclinical ketotic cows. J. Dairy Sci. 2008, 91, 4683–4686. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, S. Health in the transition reproductive performance period and reproductive performance. In Proceedings of the WCDS Advances in Dairy Technology, Red Deer, AB, Canada, 9–12 March 2010; pp. 97–110. [Google Scholar]
- Shin, E.-K.; Jeong, J.-K.; Choi, I.-S.; Kang, H.-G.; Hur, T.-Y.; Jung, Y.-H.; Kim, I.-H. Relationships among ketosis, serum metabolites, body condition and reproductive outcomes in dairy cows. Theriogenology 2015, 15, 252–260. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, J.; Yang, W.; Xia, C.; Zhang, H.-Y.; Wang, Y.-H.; Xu, C. Predictive value of plasma parameters in the risk of postpartum ketosis in dairy cows. J. Vet. Res. 2017, 61, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Leblanc, S. Monitoring metabolic health of dairy cattle in the transition period. J. Reprod. Dev. 2010, 56, S29–S35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobbelaar, P.; Mottram, T.; Nyabadza, C.; Hobbs, P.; Elliott-Martin, R.J.; Schukken, Y.H. Detection of ketosis in dairy cows by analysis of exhaled breath. Veterinary 1996, 18, 151–152. [Google Scholar] [CrossRef]
- Küntzel, A.; Oertel, P.; Trefz, P.; Miekisch, W.; Schubert, J.K.; Köhler, H.; Reinhold, P. Animal science meets agricultural practice: Preliminary results of an innovative technical approach for exhaled breath analysis in cattle under field conditions. Berl. Munch. Tierarztl. Wochenschr. 2018, 444–452. [Google Scholar] [CrossRef]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Mann, S.; Leal Yepes, F.A.; Overton, T.R.; Wakshlag, J.J.; Lock, A.L.; Ryan, C.M.; Nydam, D.V. Dry period plane of energy: Effects on feed intake, energy balance, milk production, and composition in transition dairy cows. J. Dairy Sci. 2015, 98, 3366–3382. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, E.I.; Leblanc, S.J.; Mcbride, B.W.; Duffield, T.F.; Devries, T.J. Association of rumination time with subclinical ketosis in transition dairy cows. J. Dairy Sci. 2016, 99, 5604–5618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirmann, K.; Weary, D.M.; Heuwieser, W.; Chapinal, N.; Cerri, R.L.A.; von Keyserlingk, M.A.G. Short communication: Rumination and feeding behaviors differ between healthy and sick dairy cows during the transition period. J. Dairy Sci. 2016, 99, 9917–9924. [Google Scholar] [CrossRef] [PubMed]
- Gillund, P.; Reksen, O.; Gröhn, Y.T.; Karlberg, K. Body condition related to ketosis and reproductive performance in Norwegian dairy cows. J. Dairy Sci. 2001, 84, 1390–1396. [Google Scholar] [CrossRef]
- Roche, J.R.; Kay, J.K.; Friggens, N.C.; Loor, J.J.; Berry, D.P. Assessing and managing body condition score for the prevention of metabolic disease in dairy cows. Vet. Clin. N. Am. Small Anim. Pract. 2013, 29, 323–336. [Google Scholar] [CrossRef]
- Busato, A.; Faissler, D.; Küpfer, U.; Blum, J.W. Body condition scores in dairy cows: Associations with metabolic and endocrine changes in healthy dairy cows. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2002, 49, 455–460. [Google Scholar] [CrossRef]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Schröder, U.J.; Staufenbiel, R. Invited review: Methods to determine body fat reserves in the dairy cow with special regard to ultrasonographic measurement of backfat thickness. J. Dairy Sci. 2006, 89, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Chandler, T.L.; Pralle, R.S.; Dórea, J.R.R.; Poock, S.E.; Oetzel, G.R.; Fourdraine, R.H.; White, H.M. Predicting hyperketonemia by logistic and linear regression using test-day milk and performance variables in early-lactation Holstein and Jersey cows. J. Dairy Sci. 2018, 101, 2476–2491. [Google Scholar] [CrossRef]
- Biswal, S.; Nayak, D.C.; Sardar, K.K. Prevalence of ketosis in dairy cows in milk shed areas of Odisha state, India. Vet. World 2016, 9, 1242–1247. [Google Scholar] [CrossRef] [Green Version]
- Erb, H.N.; Martin, S.W. Age, breed and seasonal patterns in the occurrence of ten dairy cow diseases: A case control study. Can. J. Comp. Med. 1978, 42, 1–9. [Google Scholar]
- Andersson, L.; Emanuelson, U. An epidemiological study of hyperketonaemia in Swedish dairy cows; Determinants and the relation to fertility. Prev. Vet. Med. 1985, 3, 449–462. [Google Scholar] [CrossRef]
- Bendixen, P.H.; Vilson, B.; Ekesbo, I.; Åstrand, D.B. Disease frequencies in dairy cows in Sweden. IV. Ketosis. Prev. Vet. Med. 1987, 5, 99–109. [Google Scholar] [CrossRef]
- Rathbun, F.M.; Pralle, R.S.; Bertics, S.J.; Armentano, L.E.; Cho, K.; Do, C.; Weigel, K.A.; White, H.M. Relationships between body condition score change, prior mid-lactation phenotypic residual feed intake, and hyperketonemia onset in transition dairy cows. J. Dairy Sci. 2017, 100, 3685–3696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miettinen, P.V.A.; Setälä, J.J. Relationships between subclinical ketosis, milk production and fertility in Finnish dairy cattle. Prev. Vet. Med. 1993, 17, 1–8. [Google Scholar] [CrossRef]
Country | Prevalence (%) | DIM | Method and BHB (mmol/L) Thresholds | Source | |
---|---|---|---|---|---|
Subclinical Ketosis | Clinical Ketosis | ||||
Netherlands | 11.2 | 5 to 60 | Randox kit—plasma. ≥1.2 | [9] | |
Germany | 20 | 2 | 2 to 15 | Precision Xtra—total blood. Subclinical ketosis ≥ 1.2 | [6] |
Croatia | 14.8 | 1.4 | |||
Slovenia | 24 | 2.6 | |||
Spain | 22.5 | 2.5 | |||
Hungary | 15.6 | 0.4 | |||
Italy | 36.6 | 11.1 | |||
Poland | 19.4 | 0.7 | |||
Portugal | 29.5 | 6.6 | |||
Serbia | 19.5 | 5.7 | |||
Turkey | 11.2 | 2.2 | |||
Germany | 42 | 7 to 21 | Keto-Test—milk. ≥0.1 | [10] | |
France | 49 | ||||
Netherlands | 48 | ||||
Italy | 32 | ||||
United Kingdom | 30 | ||||
East Canada | 22.6 | 5 to 35 | FTIR—milk. Suspect: 0.15 to 0.19; Positive: 0.20 | [11] | |
South Africa | 17 | 0 | 2 to 21 | Precision Xceed—total blood. ≥1.2 without clinical signs = subclinical ketosis | [8] |
Argentina | 18.8 | 4 | |||
Australia | 9.6 | 1.9 | |||
Brazil | 10.7 | 0 | |||
Chile | 14.8 | 2.2 | |||
China | 32.9 | 1.2 | |||
Colombia | 8.3 | 0 | |||
México | 14.1 | 0.6 | |||
New Zealand | 40.1 | 0.1 | |||
Russia | 14.1 | 0.9 | |||
Thailand | 24.1 | 0 | |||
Ukraine | 39 | 0 |
Source | Percentage (%) | Mean (%) | |||
---|---|---|---|---|---|
Productive losses | 26 | 38 | 11 | 22 | 14.6 |
Reproductive losses | 34 | 36 | 9 | 28 | 23.6 |
Losses for associated pathologies | 80 | 37 | 23.4 | ||
Diagnosis and treatment | 6 | 19 | 13.6 | ||
Death and cull | 34 | 6 | 13 | 7.8 | |
Reference | [1] | [2] | [3] | [14] |
Pathologies | OR (CI 95%) | Threshold of Subclinical and/or Clinical Ketosis | p Value | Reference |
---|---|---|---|---|
Clinical ketosis | 5.4 (3.3–8.8) | >1.4 mmol/L in the blood without clinical signs (A) | <0.0001 | [17] |
Displaced abomasum | 3.4 (1.9–6.4) | ≥0.1 mmol/L in milk without clinical signs = subclinical ketosis; with clinical signs = clinical ketosis (B) | <0.01 | [10] |
5 (3.5–7.2) | ≥1.2 mmol/L in the blood = subclinical ketosis | <0.001 | [6] | |
6.1 (2.3–16.0) | 1.2 to 2.9 mmol/L = subclinical ketosis; ≥3.0 mmol/L = clinical ketosis (blood) (C) | <0.001 | [7] | |
3.3 (2.6–4.3) | A | <0.001 | [17] | |
Metritis | 1.5 (1.0–2.0) | B | 0.03 | [10] |
1.5 (1.2–1.8) | ≥1.4 mmol/L in the blood = subclinical ketosis | <0.001 | [6] | |
1.8 (1.5–2.0) | A | <0.0001 | [17] | |
Placental retention | 1.5 (1.2–1.9) | A | <0.001 | [17] |
Mastitis | 1.9 (1.3–2.7) | B | <0.01 | [10] |
1.6 (1.2–2.1) | A | <0.001 | [17] | |
Duplication of SCC | 1.4 (1.3–1.6) | A | <0.001 | [17] |
Laminitis | 1.7 (1–3.1) | B | 0.05 | [10] |
1.8 (1.3–2.5) | ≥1.2 mmol/L in the blood = subclinical ketosis | <0.001 | [6] | |
2.0 (1.6–2.4) | A | <0.001 | [17] | |
Early cull | 1.9 (1.6–2.3) | A | <0.0001 | [17] |
2.6 (1.3–5.2) | 1.2 mmol/L in the blood = subclinical ketosis | 0.008 | [18] | |
3.0 (2.2–4.2) | C | <0.001 | [7] |
Clinical Sign | Number of Animals that Showed the Sign | Percentage from the Affected Animals (%) |
---|---|---|
Nervous signs | 1 | 4 |
Reluctance to movement | 1 | 4 |
Constipation | 4 | 14 |
Acetone odor on breath or milk | 5 | 18 |
Dry and fewer feces | 6 | 21 |
Complete anorexia | 7 | 25 |
Prostration | 10 | 36 |
Selective food intake | 21 | 75 |
Abrupt drop in productivity | 28 | 100 |
Test | Measured Substance | Sampled Fluid | Detection Threshold | Sensibility | Specificity |
---|---|---|---|---|---|
KetoLac® | BHB | Blood | ≥0.2 mmol/L | 59% | 91% |
KetoStix® | Acetoacetate | Urine | Cutoff low to moderate | 78 to 49% | 96 to 99% |
KetoCheck Powder™ | Acetoacetate | Milk | Non defined | 41% | 99% |
KetoTest™, KetoLac | BHB | Milk | ≥0.1 mmol/L or ≥0.2 mmol/L | 73% or 27% | 96% or 99% |
Precision Xtra® | BHB | Blood | ≥1.2 mmol/L | 100% | 100% |
Urine | Non defined | 100% | 25% | ||
Milk | Non defined | 60% | 89% | ||
MilkoScan™ FT600 | BHB | Milk | ≥1.2 mmol/L | 80 to 82.4% | 70 to 83.8% |
Acetoacetate | Milk | Non defined | 80 to 82.4% | 70 to 83.8% | |
MilkoScan™ FT6000 | BHB | Milk | ≥0.2 mmol/L | 96% | 89% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, M.A.C.; Simões, J. Invited Review: Ketosis Diagnosis and Monitoring in High-Producing Dairy Cows. Dairy 2021, 2, 303-325. https://doi.org/10.3390/dairy2020025
Lei MAC, Simões J. Invited Review: Ketosis Diagnosis and Monitoring in High-Producing Dairy Cows. Dairy. 2021; 2(2):303-325. https://doi.org/10.3390/dairy2020025
Chicago/Turabian StyleLei, Mariana Alves Caipira, and João Simões. 2021. "Invited Review: Ketosis Diagnosis and Monitoring in High-Producing Dairy Cows" Dairy 2, no. 2: 303-325. https://doi.org/10.3390/dairy2020025
APA StyleLei, M. A. C., & Simões, J. (2021). Invited Review: Ketosis Diagnosis and Monitoring in High-Producing Dairy Cows. Dairy, 2(2), 303-325. https://doi.org/10.3390/dairy2020025