Nutritional Properties of Camelids and Equids Fresh and Fermented Milk
Abstract
:1. Introduction
1.1. Camelids Milk
1.2. Equids Milk
2. Camel Milk
- (a)
- β-lactoglobulin has not been detected in camel’s milk;
- (b)
- Different β-casein has been detected in camel’s milk;
- (c)
- Immunoglobulins similar to those detected in human milk have been found in camel’s milk too; the use of camel’s milk may reduce children’s allergic reactions and reinforce their future response to foods [45].
3. South American Camelids Milk
4. Equine Milk
5. Fermented Milks
- Beverages obtained by lactic fermentations;
- Beverages obtained by yeast–lactic fermentations;
- Beverages obtained using mold–lactic fermentations (Geotrichum candidum).
5.1. Koumiss
- Moisture content about 90%;
- Total proteins content is in the range 2–2.5%, with whey protein content (0.9%) very close to the casein content (1.2%);
- Lactose content is in the range 4.5–5.5%;
- Fat content is about 1–1.3%;
- Ash is 0.4–0.7%.
- Mild—the acidity ranges between 0.6 and 0.8%, and the alcohol content is between 0.7 and 1.0%;
- Medium—the acidity ranges between 0.8 and 1.0%, and the alcohol content is about 1.1–1.8%;
- Strong—the acidity is around 1.0–1.2%, and the alcohol is 1.8–2.5%.
5.2. Donkey Milk Fermented Beverages
- L. casei strain produced a fermented milk with a tasty aroma;
- The beverage produced with strain AT194 showed an unpleasant taste of cooked vegetables and sour milk;
- The use of strain CLT 2/2 produced a fermented beverage with the taste of fresh milk.
5.3. Donkey Milk Kefir
5.4. Fermented Camel Milk
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- STATISTA Database. Available online: https://www.statista.com/statistics/263952/production-of-milk-worldwide/ (accessed on 28 May 2021).
- Faccia, M.; D’Alessandro, A.G.; Summer, A.; Hailu, Y. Milk Products from Minor Dairy Species: A Review. Animals 2020, 10, 1260. [Google Scholar] [CrossRef]
- Miraglia, N.; Salimei, E.; Fantuz, F. Equine milk production and valorization of marginal areas—A review. Animals 2020, 10, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degen, A.A. Sheep and goat milk in pastoral societies. Small Rumin. Res. 2007, 68, 7–19. [Google Scholar] [CrossRef]
- Faraz, A.; Waheed, A.; Tauqir, N.A.; Mirza, R.H.; Ishaq, H.M.; Nabeel, M.S. Characteristics and Composition of Camel (Camelus dromedarius) Milk: The White Gold of Desert. Adv. Anim. Vet. Sci. 2020, 8, 766–770. [Google Scholar] [CrossRef]
- Alhadrami, G.A. Camel. In Encyclopedia of Dairy Sciences; Roginski, H., Fuquay, J.W., Fox, P.F., Eds.; Academic Press: London, UK, 2003; pp. 616–622. [Google Scholar]
- Faraz, A.; Waheed, A.; Mirza, R.H.; Nabeel, M.S.; Ishaq, H.M. Milk yield and composition of Barela dromedary camel in Thal Desert Punjab, Pakistan. Pak. J. Zool. 2020, 52, 1221–1224. [Google Scholar] [CrossRef]
- Schoos, V.; Medina, M.; Saad, S.; Van Nieuwenhove, C.P. Chemical and microbiological characteristics of llamas’ (Lama glama) milk from Argentina. Milchwissenschaft 2008, 63, 398–401. [Google Scholar]
- Burton, S.; Robinson, T.F.; Roeder, G.L.; Johnson, N.P.; Latorre, E.V.; Reyes, S.B.; Schaajle, B. Body condition and blood metabolite characterization of alpaca (Lama pacos) three months prepartum and offspring three months postpartum. Small Rumin. Res. 2003, 48, 69–76. [Google Scholar] [CrossRef]
- Salimei, E.; Fantuz, F. Equid milk for human consumption. Int. Dairy J. 2012, 24, 130–142. [Google Scholar] [CrossRef]
- Iacono, G.; Carroccio, A.; Cavataio, F.; Montalto, G.; Soresi, M.; Balsamo, V. Use of ass’s milk in multiple food allergy. J. Pediatr. Gastroent. Nutr. 1992, 14, 177–181. [Google Scholar] [CrossRef]
- Polidori, P.; Vincenzetti, S. Farm Management and Feeding Strategies for Donkey Milk Production. In Agricultural Research Updates; Gorawala, P., Mandhatri, S., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2017; Volume 14, pp. 93–111. [Google Scholar]
- Camillo, F.; Rota, A.; Biagini, L.; Tesi, M.; Fanelli, D.; Panzani, D. The current situation and trend of donkey industry in Europe. J. Equine Vet. Sci. 2018, 65, 44–49. [Google Scholar] [CrossRef]
- Massouras, T.; Triantaphyllopoulos, K.A.; Theodossiou, I. Chemical composition, protein fraction and fatty acid profile of donkey milk during lactation. Int. Dairy J. 2017, 75, 83–90. [Google Scholar] [CrossRef]
- Polidori, P.; Ariani, A.; Vincenzetti, S. Use of Donkey Milk in Cases of Cow’s Milk Protein Allergies. Int. J. Child Health Nutr. 2015, 4, 174–179. [Google Scholar] [CrossRef]
- Sarti, L.; Martini, M.; Brajon, G.; Barni, S.; Salari, F.; Altomonte, I.; Ragona, G.; Mori, F.; Pucci, N.; Muscas, G.; et al. Donkey’s milk in the management of children with cow’s milk protein allergy: Nutritional and hygienic aspects. Ital. J. Pediatr. 2019, 45, 102–110. [Google Scholar] [CrossRef]
- Restani, P.; Ballabio, C.; Di Lorenzo, C.; Tripodi, S.; Fiocchi, A. Molecular aspects of milk allergens and their role in clinical events. Anal. Bioanal. Chem. 2009, 395, 47–56. [Google Scholar] [CrossRef]
- Cunsolo, V.; Saletti, R.; Muccilli, V.; Gallina, S.; Di Francesco, A.; Foti, S. Proteins and bioactive peptides from donkey milk: The molecular basis for its reduced allergenic properties. Food Res. Int. 2017, 99, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, C.; Freschi, P.; Paolino, R.; Valentini, V. Market sustainability analysis of donkey milk cosmetics. Emir. J. Food Agric. 2013, 25, 635–640. [Google Scholar] [CrossRef]
- Cunsolo, V.; Muccilli, V.; Fasoli, E.; Saletti, R.; Righetti, P.G.; Foti, S. Poppea’s bath liquor: The secret proteome of she-donkey’s milk. J. Proteom. 2011, 74, 2083–2099. [Google Scholar] [CrossRef]
- Idrees, E.M.; Ishag, I.A.; Eisa, M.O. Factors Affecting Chemical Properties of Camel Milk. Sci. Agric. 2016, 16, 49–53. [Google Scholar]
- Faye, B. The role of camelid in food security in the arid zone: Meat and milk production potential. In Book of Abstracts, Proceedings of the 70th Annual Meeting of the European Federation of Animal Science, Ghent, Belgium, 26–30 August 2019; Elsevier Press: Amsterdam, The Netherlands, 2019; p. 587. [Google Scholar]
- Khalesi, M.; Salami, M.; Moslehishad, M.; Winterburn, J.; Moosavi-Movahedi, A.A. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends Food Sci. Technol. 2017, 62, 49–58. [Google Scholar] [CrossRef]
- Al Haj, O.A.; Al Kanhal, H.A. Compositional, technological and nutritional aspects of dromedary camel milk. Int. Dairy J. 2010, 20, 811–821. [Google Scholar] [CrossRef]
- Yadav, A.K.; Kumar, R.; Priyadarshini, L.; Singh, J. Composition and medicinal properties of camel milk: A Review. Asian J. Dairy Food Res. 2015, 34, 83–91. [Google Scholar] [CrossRef]
- Konuspayeva, G.; Faye, B.; Loiseau, G. Variability of vitamin C content in camel milk from Kazakhstan. J. Camelid Sci. 2011, 4, 63–69. [Google Scholar]
- Mal, G.; Suchitra Sena, D.; Jain, V.K.; Sahani, M.S. Therapeutic value of camel milk as a nutritional supplement for multiple drug resistant (MDR) tuberculosis patients. Israel J. Vet. Med. 2006, 61, 88–94. [Google Scholar]
- Mal, G.; Suchitra Sena, D.; Sahani, M.S. Changes in chemical and macro-minerals content of dromedary milk during lactation. J. Camel Pract. Res. 2007, 14, 195–197. [Google Scholar]
- Kamoun, M.; Jemmali, B. Milk yield and characteristics of Tunisian camel. J. Anim. Sci. 2012, 1, 12–13. [Google Scholar]
- El-Agamy, S.I.; Ruppanner, R.; Ismail, A.; Champagne, C.P.; Assaf, R.J. Antibacterial and Antiviral activity of camel milk protective proteins. J. Dairy Res. 1992, 59, 169–175. [Google Scholar] [CrossRef]
- Zibaee, S.; Hosseini, S.M.; Yousefi, M.; Taghipour, A.; Kiani, M.A.; Reza Noras, M. Nutritional and Therapeutic Characteristics of Camel Milk in Children: A Systematic Review. Electr. Phys. 2015, 7, 1523–1528. [Google Scholar] [CrossRef] [Green Version]
- Hoelzer, W.; Muyldermans, S.; Wernery, U. A note on camel IgG antibodies. J. Camel Pract. Res. 1998, 5, 187–188. [Google Scholar]
- Hamers, R. Immunology of camels and llamas. In Handbook of Veterinary Immunology; Pastoret, P.P., Griebel, P., Gaevarts, A., Eds.; Academic Press: London, UK, 1998; pp. 421–437. [Google Scholar]
- Mal, G.; Suchitra Sena, D.; Jain, V.K.; Sahani, M.S. Therapeutic utility of camel milk as nutritional supplement in chronic pulmonary tuberculosis. Livest. Int. 2001, 7, 4–8. [Google Scholar]
- Mati, A.; Senoussi-Ghezali, C.; Zennia, S.S.A.; Almi-Sebbane, D.; El-Hatmi, H.; Girardet, J.M. Dromedary camel milk proteins, a source of peptides having biological activities e A review. Int. Dairy J. 2017, 73, 25–37. [Google Scholar] [CrossRef]
- Alhaider, A.; Abdelgader, A.G.; Turjoman, A.A.; Newell, K.; Hunsucker, S.W.; Shan, B.; Ma, B.; Gibson, D.S.; Duncan, M.W. Through the eye of an electrospray needle: Mass spectrometric identification of the major peptides and proteins in the milk of the one-humped camel (Camelus dromedarius). J. Mass Spectrom. 2013, 48, 779–794. [Google Scholar] [CrossRef]
- Devendra, K.; Verma, A.K.; Chatli, M.K.; Singh, R.; Kumar, P.; Mehta, N.; Malav, O.P. Camel milk: Alternative milk for human consumption and its health benefits. Nutr. Food Sci. 2016, 46, 217–227. [Google Scholar]
- Swelum, A.A.; El-Saadony, M.T.; Abdo, M.; Ombarak, R.A.; Hussein, E.O.S.; Suliman, G.; Alhimaidi, A.R.; Ammari, A.A.; Ba-Awadh, H.; Taha, A.E.; et al. Nutritional, antimicrobial and medicinal properties of Camel’s milk: A review. Saudi J. Biol. Sci. 2021, 28, 3126–3136. [Google Scholar] [CrossRef]
- El-Agamy, E.I.; Nawar, M.; Shamsia, S.M.; Awada, S.; Haenlein, G.H. Are camel milk proteins convenient to the nutrition of cow milk allergic children? Small Rumin. Res. 2009, 82, 1–6. [Google Scholar] [CrossRef]
- Agrawal, R.P.; Jain, S.; Shah, S.; Chopra, A.; Agarwal, V. Effect of camel milk on glycemic control and insulin requirement in patients with type 1 diabetes: 2-years randomized controlled trial. Eur. J. Clin. Nutr. 2011, 65, 1048–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zagorski, O.; Maman, A.; Yafee, A.; Meisles, A.; Van Creveld, C.; Yagil, R. Insulin in milk—A comparative study. Int. J. Anim. Sci. 1988, 13, 241–244. [Google Scholar]
- Bath, D.P.; Kanga, U.; Kumar, N.; Agrawal, R.P.; Mourya, M.; Kalaivani, M.; Kaur, T.; Mehra, N.K. The Raikas—A unique combination of high prevalence of type 1 diabetes susceptibility genes and near zero incidence of the disease. Hum. Immunol. 2014, 75, 1252–1258. [Google Scholar]
- Shabo, Y.; Yagil, R. Etiology of autism and camel milk as therapy. Int. J. Disab. Hum. Dev. 2005, 4, 67–70. [Google Scholar] [CrossRef]
- Fantuz, F.; Salimei, E.; Papademas, P. Macro-and Micronutrients in Non-cow Milk and Products and Their Impact on Human Health. In Non-Bovine Milk and Milk Products; Tsakalidou, E., Papadimitriou, K., Eds.; Academic Press: London, UK, 2016; pp. 209–261. [Google Scholar]
- Makinen-Kijunen, S.; Palosne, T. A sensitive enzyme-linked immunosorbent assay for determination of bovine beta-lactoglobulin in infant feeding formulas and human milk. Allergy 1992, 47, 347–352. [Google Scholar] [CrossRef]
- Izadi, A.; Khedmat, L.; Yousef Mojtahedi, S.Y. Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties. J. Funct. Foods 2016, 60, 103441. [Google Scholar] [CrossRef]
- Abdel Gader, A.G.M.; Alhaider, A.A. The unique medicinal properties of camel products: A review of the scientific evidence. J. Taibah Univ. Med. Sci. 2016, 11, 98–103. [Google Scholar] [CrossRef] [Green Version]
- Kamala, M.; Karoui, R. Monitoring of mild heat treatment of camel milk by front-face fluorescence spectroscopy. LWT Food Sci. Technol. 2017, 79, 586–593. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Xu, S.; Villalobos-Santeli, J.A.; Huang, J.Y. Fouling characterization of camel milk with comparison to bovine milk. J. Food Eng. 2020, 285, 110085. [Google Scholar] [CrossRef]
- Polidori, P.; Antonini, M.; Torres, D.; Beghelli, D.; Renieri, C. Tenderness evaluation and mineral levels of llama (Lama glama) and alpaca (Lama pacos) meat. Meat Sci. 2007, 77, 599–601. [Google Scholar] [CrossRef]
- Riek, A.; Gerken, M. Changes in llama (Lama glama) milk composition during lactation. J. Dairy Sci. 2006, 89, 3484–3493. [Google Scholar] [CrossRef] [Green Version]
- Martini, M.; Altomonte, I.; da Silva Sant’ana, A.M.; Del Plavignano, G.; Federica Salari, F. Gross, mineral and fatty acid composition of alpaca (Vicugna pacos) milk at 30 and 60 days of lactation. Small Rumin. Res. 2015, 132, 50–54. [Google Scholar] [CrossRef]
- Wheeler, J.C. South American camelids—Past, present and future. J. Camelid Sci. 2012, 5, 1–24. [Google Scholar]
- Park, Y.W.; Haenlein, G.F.W. Milk from Other Minor Species (Reindeer, Caribou, Musk Ox, Llama, Alpaca, Moose, Elk and Others). In Milk and Dairy Products in Human Nutrition: Production, Composition and Health, 1st ed.; Park, Y.W., Haenlein, G.F.W., Eds.; John Wiley & Sons, Ltd.: New York, NY, USA, 2013; pp. 644–658. [Google Scholar]
- Medina, M.; Van Nieuwenhove, G.A.; Pizarro, P.L.; Nieuwenhove, C.V. Comparison of the nutritional value and fatty acid composition of milk from four South American camelid species. Can. J. Zool. 2019, 97, 203–209. [Google Scholar] [CrossRef]
- Ormachea, V.E.; Olarte, D.U.; Zanabria, H.V.; Melo, A.M.; Masias, G.Y. Milk composition in Huacaya alpaca (Vicugna pacos) and llama (Lama glama). Rev. Inv. Vet. Perú 2021, 32, e17800. [Google Scholar] [CrossRef]
- Monti, G.; Viola, S.; Baro, C.; Cresi, F.; Tovo, P.A.; Moro, G.; Ferrero, M.P.; Conti, A.; Bertino, E. Tolerability of donkey’s milk in 92 highly problematic cow’s milk allergic children. J. Biol. Regul. Homeost. Agents 2012, 26 (Suppl. 3), 75–82. [Google Scholar]
- Verduci, E.; D’Elios, S.; Cerrato, L.; Comberiati, P.; Calvani, M.; Palazzo, S.; Martelli, A.; Landi, M.; Trikamjee, T.; Peroni, D.G. Cow’s milk substitutes for children: Nutritional aspects of milk from different mammalian species, special formula and plant-based beverages. Nutrients 2019, 11, 1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polidori, P.; Vincenzetti, S.; Pucciarelli, S.; Polzonetti, V. CLAs in Animal Source Foods: Healthy Benefits for Consumers. In Bioactive Molecules in Food, Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K.G., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 667–698. [Google Scholar]
- Morin, D.E.; Rowan, L.L.; Hurley, W.L.; Braselton, W.E. Composition of Milk from Llamas in the United States. J. Dairy Sci. 1995, 78, 1713–1720. [Google Scholar] [CrossRef]
- Polidori, P.; Vincenzetti, S. The Therapeutical, Nutritional and Cosmetic Properties of Donkey Milk; Cambridge Scholars Publishing: Cambridge, UK, 2019; pp. 45–68. [Google Scholar]
- Altomonte, I.; Salari, F.; Licitra, R.; Martini, M. Donkey and human milk: Insights into their compositional similarities. Int. Dairy J. 2019, 89, 111–118. [Google Scholar] [CrossRef]
- Guo, H.Y.; Ren, F.Z.; Zhang, X.Y.; Zhao, L.; Pang, K.; Chen, S.W.; Dong, M.L. Composition, Physiochemical Properties, Nitrogen Fraction Distribution, and Amino Acid Profile of Donkey Milk. J. Dairy Sci. 2007, 90, 1635–1643. [Google Scholar] [CrossRef]
- Doreau, M.; Martin-Rosset, W. Dairy animals: Horse. In Encyclopedia of Dairy Sciences; Hubert, R., Ed.; Elsevier: Oxford, UK, 2002; pp. 630–637. [Google Scholar]
- Raspa, F.; Cavallarin, L.; McLean, A.K.; Bergero, D.; Valle, E. A Review of the Appropriate Nutrition Welfare Criteria of Dairy Donkeys: Nutritional Requirements, Farm Management Requirements and Animal-Based Indicators. Animals 2019, 9, 315. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Composition, Structure, and Digestive Dynamics of Milk from Different Species—A Review. Front. Nutr. 2020, 7, 577759. [Google Scholar] [CrossRef]
- Crowley, S.V.; Kelly, A.L.; Lucey, J.A.; O’Mahony, J.A. Potential applications of nonbovine mammalian milk in infant nutrition. In Handbook of Milk of Non-Bovine Mammals; Park, Y.W., Haenlein, G.F.W., Wendorff, W.L., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2017; pp. 625–654. [Google Scholar]
- Ye, A.; Cui, J.; Carpenter, E.; Prosser, C.; Singh, H. Dynamic in vitro gastric digestion of infant formulae made with goat milk and cow milk: Influence of protein composition. Int. Dairy J. 2019, 97, 76–85. [Google Scholar] [CrossRef]
- El-Hatmi, H.; Jrad, Z.; Salhi, I.; Aguibi, A.; Nadri, A.; Khorchani, T. Comparison of composition and whey protein fractions of human, camel, donkey, goat and cow milk. Mljekarstvo 2015, 65, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Martini, M.; Altomonte, I.; Licitra, R.; Salari, F. Short communication: Technological and seasonal variations of vitamin D and other nutritional components in donkey milk. J. Dairy Sci. 2018, 101, 8721–8725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polidori, P.; Ariani, A.; Micozzi, D.; Vincenzetti, S. The effects of low voltage electrical stimulation on donkey meat. Meat Sci. 2016, 119, 160–164. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E.K. Evaluation of Physicochemical and Glycaemic Properties of Commercial Plant-Based Milk Substitutes. Plant Foods Hum. Nutr. 2017, 72, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Singhal, S.; Baker, R.D.; Baker, S.S. A Comparison of the Nutritional Value of Cow’s Milk and Nondairy Beverages. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 799–805. [Google Scholar] [CrossRef]
- Tsakali, E.; Bosdra, K.; Giannopoulos, N.R.; Koulouris, S.; Houhoula, D.; Tsaknis, J.; Akkermans, S.; Van Impe, J.F.M. A Preliminary Study on the Development of Donkey Milk Based Fermented Product. Sci. Rev. Chem. Commun. 2017, 7, 113. [Google Scholar]
- Tidona, F.; Charfi, I.; Povolo, M.; Pelizzola, V.; Carminati, D.; Contarini, G.; Giraffa, G. Fermented beverage emulsion based on donkey milk with sunflower oil. Int. J. Food Sci. Technol. 2015, 50, 2644–2652. [Google Scholar] [CrossRef]
- Aspri, M.; Leni, G.; Galaverna, G.; Papademasa, P. Bioactive properties of fermented donkey milk, before and after in vitro simulated gastrointestinal digestion. Food Chem. 2018, 268, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Tidona, F.; Criscione, A.; Guastella, A.M.; Bordonaro, S.; Marletta, D. Gross composition and nutritional properties of donkey milk produced in Sicily. J. Sci. Technol. 2011, 62, 217–221. [Google Scholar]
- Coppola, R.; Salimei, E.; Succi, M.; Sorrentino, E.; Nanni, M.; Ranieri, P.; Belli Blanes, R.; Grazia, L. Behaviour of Lactobacillus rhamnosus strains in ass’s milk. Ann. Microbiol. 2002, 52, 55–60. [Google Scholar]
- Kopanos, G.K.; Puigjaner, L.; Georgiadis, M.C. Optimal production scheduling and lot-sizing in dairy plants: The yogurt production line. Ind. Eng. Chem. Res. 2010, 49, 701–718. [Google Scholar] [CrossRef]
- Santini, G.; Bonazza, F.; Pucciarelli, S.; Polidori, P.; Ricciutelli, M.; Klimanova, Y.; Silvi, S.; Polzonetti, V.; Vincenzetti, S. Proteomic characterization of kefir milk by two-dimensional electrophoresis followed by mass spectrometry. J. Mass Spectrom. 2020, e4635. [Google Scholar] [CrossRef]
- Derdak, R.; Sakoui, S.; Pop, O.L.; Muresan, C.I.; Vodnar, D.C.; Addoum, B.; Vulturar, R.; Chis, A.; Suharoschi, R.; Soukri, A.; et al. Insights on Health and Food Applications of Equus asinus (Donkey) Milk Bioactive Proteins and Peptides—An Overview. Foods 2020, 9, 1302. [Google Scholar] [CrossRef] [PubMed]
- Prado, M.R.; Blandón, L.M.; Vandenberghe, L.P.S.; Rodrigues, C.; Castro, G.R.; Thomaz-Soccol, V.; Soccol, C.R. Milk kefir: Composition, microbial cultures, biological activities, and related products. Front. Microbiol. 2015, 6, 1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. Donkey milk for manufacture of novel functional fermented beverages. J. Food Sci. 2015, 80, S1352–S1359. [Google Scholar] [CrossRef]
- Chiavari, C.; Coloretti, F.; Nanni, M.; Sorrentino, E.; Grazia, L. Use of donkey’s milk for a fermented beverage with lactobacilli. Lait 2005, 85, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Barreto, Í.M.L.G.; Rangel, A.H.N.; Urbano, S.A.; Bezerra, J.S.; Oliveira, C.A.A. Equine milk and its potential use in the human diet. Food Sci. Technol. 2019, 39, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Vincenzetti, S.; Polidori, P.; Mariani, P.; Cammertoni, N.; Fantuz, F.; Vita, A. Donkey’s milk protein fractions characterization. Food Chem. 2008, 106, 640–649. [Google Scholar] [CrossRef]
- Carminati, D.; Tidona, F.; Fornasari, M.E.; Rossetti, L.; Meucci, A.; Giraffa, G. Biotyping of cultivable lactic acid bacteria isolated from donkey milk. Lett. Appl. Microbiol. 2014, 59, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Koroleva, N.S. Technology of kefir and kumys. Bull. Int. Dairy Fed. 1988, 227, 96–100. [Google Scholar]
- Esener, O.B.B.; Balkan, B.M.; Armutak, E.I.; Uvez, A.; Yildiz, G.; Hafizoglu, M.; Yilmazer, N.; Gurel-Gurevin, E. Donkey milk kefir induces apoptosis and suppresses proliferation of Ehrlich ascites carcinoma by decreasing iNOS in mice. Biotech. Histochem. 2018, 93, 424–431. [Google Scholar] [CrossRef]
- Mao, X.; Gu, J.; Sun, Y.; Xu, S.; Zhang, X.; Yang, H.; Ren, F. Antiproliferative and anti-tumour effect of active components in donkey milk on A549 human lung cancer cells. Int. Dairy J. 2009, 19, 703–708. [Google Scholar] [CrossRef]
- Ayyash, M.; Al-Dhaheri, A.S.; Al Mahadin, S.; Kizhakkayil, J.; Abushelaibi, A. In vitro investigation of anticancer, antihypertensive, antidiabetic, and antioxidant activities of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. J. Dairy Sci. 2018, 101, 900–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, C.M.; Ramachandra, C.T.; Kumar, G.M. A Comprehensive Review on Composition of Donkey Milk in Comparison to Human, Cow, Buffalo, Sheep, Goat, Camel and Horse Milk. Mysore J. Agric. Sci. 2020, 54, 42–50. [Google Scholar]
- Ayyash, M.; Al-Nuaimi, A.K.; Al-Mahadin, S.; Liu, S.-Q. In vitro investigation of anticancer and ACE-inhibiting activity, α-amylase and α-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. Food Chem. 2018, 239, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Yahya, M.A.; Alhaj, O.A.; Al-Khalifah, A.S. Antihypertensive effect of fermented skim camel (Camelus dromedarius) milk on spontaneously hypertensive rats. Nutr. Hosp. 2017, 34, 416–421. [Google Scholar] [CrossRef] [Green Version]
Energy (kJ) | Fat | Proteins | Lactose | |
---|---|---|---|---|
Dromedary camel | 277 | 3.1 | 3.5 | 4.4 |
Bactrian camel | 372 | 5.3 | 3.9 | 4.5 |
Cow | 300 | 3.7 | 3.3 | 4.7 |
Sheep | 470 | 7.0 | 6.0 | 4.9 |
Goat | 270 | 4.7 | 3.8 | 4.3 |
Human | 269 | 3.0 | 1.5 | 6.8 |
Alpaca | Llama | Vicugna | |
---|---|---|---|
Fat | 3.8 | 4.7 | 4.58 |
Lactose | 6.9 | 5.93 | 7.43 |
Proteins | 4.4 | 4.23 | 3.7 |
Ash | 1.7 | 0.74 | n.d. |
Dry Matter | 16.8 | 15.6 | n.d. |
Fat | Proteins | Lactose | Ash | |
---|---|---|---|---|
Mare | 0.5–2.00 | 1.5–2.8 | 5.8–7.0 | 0.3–0.5 |
Donkey | 0.3–1.8 | 1.3–2.0 | 6.4–7.9 | 0.3–0.5 |
Human | 3.4 | 1.3 | 6.9 | 0.2 |
Protein Fraction | Human | Cow | Sheep | Camel | Donkey | Mare |
---|---|---|---|---|---|---|
Total caseins | 2.4–4.2 | 24–28 | 41–52 | 22–26 | 6.4–10.3 | 9.4–13.6 |
Total whey proteins | 6.2–8.3 | 5.5–7.0 | 10.2–16.1 | 5.0–8.1 | 4.3–8.0 | 7.4–9.1 |
Caseins/whey proteins ratio | 29.7–33.6 | 82.2 | 76.2 | 73.3–76.2 | 56.4 | 52.5 |
αs1-casein | 0.77 | 8–10.7 | 2.4–22.1 | 4.0–5.7 | Traces | 2.4 |
αs2-casein | n.d. | 2.8–3.4 | 6.0 | 2.1–2.5 | Traces | 0.2 |
β-casein | 3.87 | 8.6–9.3 | 15.6–39.6 | 14.4–16 | Traces | 10.6 |
k-casein | 0.14 | 2.3–3.3 | 3.2–12.2 | 0.8–0.9 | Traces | 0.24 |
α-lactoalbumin | 1.9–3.4 | 1.2–1.3 | 1–1.9 | 0.5–3.5 | 1.9 | 2.37 |
β-lactoglobulin | n.d. | 3.2–3.3 | 6.5–13.5 | n.d. | 3.3 | 2.55 |
Food | Fat (g/100 g) | Proteins (g/100 g) | Carbohydrates (g/100 g) | Energy (kcal) |
---|---|---|---|---|
Cow [46] | 3.6 | 3.2 | 4.7 | 62 |
Dromedary [46] | 3.1 | 3.5 | 4.4 | 66.1 |
Llama [46] | 4.2 | 4.1 | 6.3 | 87.2 |
Donkey [46] | 0.7 | 1.6 | 6.6 | 41.8 |
Human [46] | 3.5 | 1.2 | 6.4 | 64.2 |
Soy-based [58] | 1.9 | 2.9 | 0.8 | 32 |
Almond [58] | 3.3 | 1.3 | 5.5 | 56 |
Rice-based [58] | 0.97 | 0.28 | 9.17 | 47 |
Milk | % Starter Culture |
---|---|
100% donkey | 3.0 |
100% donkey | 4.5 |
100% donkey | 6.0 |
90% donkey–10% ovine | 3.0 |
80% donkey–20% ovine | 3.0 |
70% donkey–30% ovine | 3.0 |
90% donkey–10% bovine | 3.0 |
80% donkey–20% bovine | 3.0 |
70% donkey–30% bovine | 3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polidori, P.; Cammertoni, N.; Santini, G.; Klimanova, Y.; Zhang, J.-J.; Vincenzetti, S. Nutritional Properties of Camelids and Equids Fresh and Fermented Milk. Dairy 2021, 2, 288-302. https://doi.org/10.3390/dairy2020024
Polidori P, Cammertoni N, Santini G, Klimanova Y, Zhang J-J, Vincenzetti S. Nutritional Properties of Camelids and Equids Fresh and Fermented Milk. Dairy. 2021; 2(2):288-302. https://doi.org/10.3390/dairy2020024
Chicago/Turabian StylePolidori, Paolo, Natalina Cammertoni, Giuseppe Santini, Yulia Klimanova, Jing-Jing Zhang, and Silvia Vincenzetti. 2021. "Nutritional Properties of Camelids and Equids Fresh and Fermented Milk" Dairy 2, no. 2: 288-302. https://doi.org/10.3390/dairy2020024
APA StylePolidori, P., Cammertoni, N., Santini, G., Klimanova, Y., Zhang, J.-J., & Vincenzetti, S. (2021). Nutritional Properties of Camelids and Equids Fresh and Fermented Milk. Dairy, 2(2), 288-302. https://doi.org/10.3390/dairy2020024