The Milk Fat-to-Protein Ratio as Indicator for Ruminal pH Parameters in Dairy Cows: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Research
2.2. Statistical Analysis
3. Results
3.1. Preliminary Examination
3.2. Prediction of Ruminal pH Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Oetzel, G.R. Subacute ruminal acidosis in dairy herds: Physiology, pathophysiology, milk fat responses, and nutritional management. Dairy Herd Problem Investigation Strategies, Proceedings of the 40th Annual Conference, Vancouver, Canada, 17 September 2007. Available online: https://www.vetmed.wisc.edu/fapm/wp-content/uploads/2020/01/sara1aabp.pdf (accessed on 30 September 2020).
- Stefańska, B.; Nowak, W.; Komisarek, J.; Taciak, M.; Barszcz, M.; Skomiał, J. Prevalence and consequence of subacute ruminal acidosis in Polish dairy herds. J. Anim. Physiol. Anim. Nutr. 2017, 101, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Kleen, J.L.; Upgang, L.; Rehage, J. Prevalence and consequences of subacute ruminal acidosis in German dairy herds. Acta Vet. Scand. 2013, 55, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plaizier, J.C.; Krause, D.O.; Gozho, G.N.; McBride, B.W. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 2008, 176, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Danscher, A.M.; Li, S.; Andersen, P.H.; Khafipour, E.; Kristensen, N.B.; Plaizier, J.C. Indicators of induced subacute ruminal acidosis (SARA) in Danish Holstein cows. Acta Vet. Scand. 2015, 57, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zebeli, Q.; Dijkstra, J.; Tafaj, M.; Steingass, H.; Ametaj, B.N.; Drochner, W. Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. J. Dairy Sci. 2008, 91, 2046–2066. [Google Scholar] [CrossRef] [Green Version]
- Kleen, J.L.; Hooijer, G.A.; Rehage, J.; Noordhuizen, J.P.T.M. Subacute ruminal acidosis (SARA): A review. J. Vet. Med. Ser. A 2003, 50, 406–414. [Google Scholar] [CrossRef]
- Garrett, E.; Pereira, M.N.; Nordlund, K.; Armentano, L.; Goodger, W.; Oetzel, G. Diagnostic methods for the detection of subacute ruminal acidosis in dairy cows. J. Dairy Sci. 1999, 82, 1170–1178. [Google Scholar] [CrossRef]
- GfE (Gesellschaft für Ernährungsphysiologie). Evaluation of structural effectiveness of mixed rations for dairy cows—Status and perspectives (Communications of the committee for requirement standards of the society of nutrition physiology). Proc. Soc. Nutr. Physiol. 2014, 23, 165–179. [Google Scholar]
- Villot, C.; Meunier, B.; Bodin, J.; Martin, C.; Silberberg, M. Relative reticulo-rumen pH indicators for subacute ruminal acidosis detection in dairy cows. Animal 2018, 12, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Nocek, J.; Allman, J.; Kautz, W. Evaluation of an indwelling ruminal probe methodology and effect of grain level on diurnal pH variation in dairy cattle. J. Dairy Sci. 2002, 85, 422–428. [Google Scholar] [CrossRef]
- Mottram, T.; Lowe, J.; McGowan, M.; Phillips, N. Technical note: A wireless telemetric method of monitoring clinical acidosis in dairy cows. Comput. Electron. Agric. 2008, 64, 45–48. [Google Scholar] [CrossRef]
- De Brabander, D.L.; De Boever, J.L.; De Smet, A.M.; Vanacker, J.M.; Boucqué, C.V. Evaluation of the physical structure of fodder beets, potatoes, pressed beet pulp, brewers grains, and corn cob silage. J. Dairy Sci. 1999, 82, 110–121. [Google Scholar] [CrossRef]
- Glatz-Hoppe, J.; Losand, B.; Kampf, D.; Onken, F.; Spiekers, H. Nutzung von Milchkontrolldaten zur Fütterungs- und Gesundheitskontrolle bei Milchkühen. DLG Merkbl. 2020, 451, 15. [Google Scholar]
- Grieve, D.G.; Korver, S.; Rijpkema, Y.S.; Hof, G. Relationship between milk composition and some nutritional parameters in early lactation. Livest. Prod. Sci. 1986, 14, 239–254. [Google Scholar] [CrossRef]
- Buttchereit, N.; Stamer, E.; Junge, W.; Thaller, G. Evaluation of five lactation curve models fitted for fat:protein ratio of milk and daily energy balance. J. Dairy Sci. 2010, 93, 1702–1712. [Google Scholar] [CrossRef]
- Jenkins, N.T.; Peña, G.; Risco, C.; Barbosa, C.C.; Vieira-Neto, A.; Galvão, K.N. Utility of inline milk fat and protein ratio to diagnose subclinical ketosis and to assign propylene glycol treatment in lactating dairy cows. Can. Vet. J. Rev. Vet. Can. 2015, 56, 850–854. [Google Scholar]
- Li, S.; Gozho, G.N.; Gakhar, N.; Khafipour, E.; Krause, D.O.; Plaizier, J.C. Evaluation of diagnostic measures for subacute ruminal acidosis in dairy cows. Can. J. Anim. Sci. 2012, 92, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Enemark, J.; Jorgensen, R.; Enemark, P. Rumen acidosis with special emphasis on diagnostic aspects of subclinical rumen acidosis: A review. Vet. Zootech. 2002, 20, 16–29. [Google Scholar]
- KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft). Tierschutzindikatoren: Leitfaden für die Praxis—Rind; KTBL: Darmstadt, Germany, 2016; 60p. [Google Scholar]
- Mensching, A.; Hummel, J.; Sharifi, A.R. Statistical modeling of ruminal pH parameters from dairy cows based on a meta-analysis. J. Dairy Sci. 2020, 103, 750–767. [Google Scholar] [CrossRef] [Green Version]
- Humer, E.; Petri, R.M.; Aschenbach, J.R.; Bradford, B.J.; Penner, G.B.; Tafaj, M.; Südekum, K.-H.; Zebeli, Q. Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle. J. Dairy Sci. 2017, 101, 872–888. [Google Scholar] [CrossRef] [Green Version]
- Stein, S.K. Determination of subclinical metabolic disorders in transition dairy cows. Ph.D. Dissertation, Degree at the Faculty of Organic Agricultural Sciences, University of Kassel, Kassel, Germany, 2016. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Nakagawa, S.; Johnson, P.C.D.; Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 2017, 14, 20170213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.43.6. Available online: https://cran.r-project.org/package=mumin (accessed on 30 September 2020).
- Enemark, J.M.D. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. Vet. J. 2008, 176, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Sutton, J.D. Altering milk composition by feeding. J. Dairy Sci. 1989, 72, 2801–2814. [Google Scholar] [CrossRef]
- Harvatine, K.J.; Boisclair, Y.R.; Bauman, D.E. Recent advances in the regulation of milk fat synthesis. Animal 2009, 3, 40–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strobel, H.J.; Russell, J.B. Effect of pH and energy spilling on bacterial protein synthesis by carbohydrate-limited cultures of mixed rumen bacteria. J. Dairy Sci. 1986, 69, 2941–2947. [Google Scholar] [CrossRef]
- McCarthy, M.M.; Overton, T.R.; Mechor, G.D.; Bauman, D.E.; Jenkins, T.C.; Nydam, D.V. Field study to investigate the associations between herd-level risk factors for milk fat depression and bulk tank milk fat percent in dairy herds feeding monensin. J. Dairy Sci. 2018, 101, 3118–3125. [Google Scholar] [CrossRef] [Green Version]
- Bauman, D.E.; Griinari, J.M. Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 2003, 23, 203–227. [Google Scholar] [CrossRef] [Green Version]
- Feedipedia—Animal Feed Resources Information System. Available online: https://www.feedipedia.org/ (accessed on 12 November 2018).
- National Research Council. Nutrient Requirements of Swine: 11th Revised Edition; The National Academies Press: Washington, DC, USA, 2012; p. 400. [Google Scholar]
- Le, K.; Gj, L. Milk fat depression: Etiology, theories, and soluble carbohydrate interactions. J. Anim. Res. Nutr. 2018, 3. [Google Scholar] [CrossRef]
Item | Model No. | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Intercept | x | x | x | x | x |
Milk FPR 1 | x | x | x | x | x |
Milk yield | x | x | x | x | |
Ruminating time | x | x | |||
Dietary starch | x | x | |||
Dietary peNDF8mm 2 | x |
Item | NTreatment 1 | Mean | SD 2 | Min | 25Perc | Median | 75Perc | Max |
---|---|---|---|---|---|---|---|---|
Cow data | ||||||||
DMI, kg/d 3 | 189 | 23.56 | 3.06 | 14.35 | 21.80 | 23.70 | 25.70 | 31.60 |
NDFintake, kg/d 4 | 184 | 7.50 | 1.27 | 5.09 | 6.570 | 7.41 | 8.34 | 10.49 |
Total chewing time, h | 129 | 11.43 | 1.83 | 5.38 | 10.09 | 11.62 | 12.81 | 15.42 |
Feed intake time, h | 129 | 4.07 | 1.02 | 1.35 | 3.44 | 3.97 | 4.57 | 7.45 |
Rumination time, h | 129 | 7.36 | 1.18 | 4.03 | 6.67 | 7.42 | 8.30 | 9.73 |
Milk yield, kg/d | 189 | 35.11 | 7.24 | 18.34 | 29.40 | 36.00 | 41.00 | 51.60 |
Milk fat, % | 189 | 3.51 | 0.42 | 2.29 | 3.29 | 3.52 | 3.73 | 4.78 |
Milk protein, % | 189 | 3.15 | 0.24 | 2.63 | 2.98 | 3.14 | 3.28 | 3.89 |
Milk lactose, % | 117 | 4.71 | 0.17 | 4.36 | 4.57 | 4.71 | 4.86 | 5.16 |
Fat-to-protein ratio | 189 | 1.12 | 0.13 | 0.69 | 1.03 | 1.13 | 1.20 | 1.43 |
Diet composition, % of DM 5 | ||||||||
NEL, MJ/kg DM 6 | 122 | 6.81 | 0.29 | 6.15 | 6.66 | 6.84 | 6.99 | 7.53 |
NDF | 189 | 31.85 | 4.99 | 22.80 | 28.30 | 31.60 | 35.40 | 44.00 |
ADF 7 | 158 | 19.64 | 3.22 | 13.00 | 17.20 | 19.20 | 21.90 | 27.40 |
CP 8 | 181 | 17.48 | 1.49 | 14.60 | 16.40 | 17.60 | 18.20 | 21.80 |
Starch | 147 | 27.28 | 6.34 | 12.60 | 23.00 | 27.40 | 31.90 | 41.20 |
Ether extracts | 60 | 3.46 | 0.99 | 1.80 | 2.70 | 3.50 | 4.40 | 7.02 |
NFC 9 | 126 | 37.76 | 6.82 | 15.20 | 33.90 | 38.15 | 42.70 | 50.10 |
peNDF8mm 10 | 75 | 16.73 | 5.03 | 7.80 | 12.72 | 15.85 | 20.84 | 27.84 |
Forage | 180 | 49.30 | 10.32 | 20.00 | 40.60 | 50.00 | 57.40 | 75.90 |
Rumen parameters | ||||||||
pHmean | 189 | 6.05 | 0.18 | 5.57 | 5.95 | 6.06 | 6.16 | 6.56 |
pHmin | 93 | 5.49 | 0.24 | 4.80 | 5.36 | 5.46 | 5.61 | 6.14 |
pHmax | 70 | 6.69 | 0.16 | 6.32 | 6.60 | 6.66 | 6.80 | 7.05 |
pHrange | 84 | 1.19 | 0.25 | 0.66 | 1.04 | 1.21 | 1.34 | 1.78 |
pHtime with pH<5.8, h/d | 91 | 6.38 | 3.77 | 0.10 | 3.40 | 5.37 | 8.96 | 15.90 |
Acetate:Propionate | 173 | 2.62 | 0.66 | 1.30 | 2.23 | 2.57 | 3.01 | 4.83 |
Item | Model No. | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Intercept | 5.132 | 5.371 | 5.040 | 5.593 | 5.648 |
Milk FPR 1 | 0.825 *** | 0.796 *** | 0.876 *** | 0.649 *** | 0.625 * |
Milk yield, kg/d | −0.006 * | −0.008 * | −0.008 * | −0.006 | |
Ruminating time, h/d | 0.041 *** | 0.033 ** | |||
Dietary starch, % DM | −0.009 * | −0.010 * | |||
Dietary peNDF8mm, % DM | 0.010 * | ||||
Fit statistics | |||||
NStudy 2 | 47 | 47 | 31 | 24 | 17 |
NTreatment | 189 | 189 | 129 | 94 | 62 |
3 | 0.30 | 0.32 | 0.42 | 0.46 | 0.42 |
4 | 0.79 | 0.80 | 0.85 | 0.86 | 0.83 |
Item | Model No. | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Intercept | 30.537 | 31.159 | 32.728 | 19.861 | 30.105 |
Milk FPR 1 | −21.520 *** | −21.620 *** | −20.685 *** | −13.964 ** | −19.869 *** |
Milk yield, kg/d | −0.015 | −0.002 | −0.004 | −0.109 | |
Ruminating time, h/d | −0.387 | −0.433 | |||
Dietary starch, % DM | 0.199 * | 0.164 * | |||
Dietary peNDF8mm, % DM | −0.145 | ||||
Fit statistics | |||||
NStudy 2 | 26 | 26 | 16 | 16 | 13 |
NTreatment | 91 | 91 | 62 | 62 | 46 |
3 | 0.32 | 0.32 | 0.30 | 0.32 | 0.58 |
4 | 0.85 | 0.85 | 0.86 | 0.86 | 0.87 |
Item | Model No. | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Intercept | 2.294 | 2.463 | 2.470 | 2.543 | 1.508 |
Milk FPR 1 | −0.951 *** | −0.982 *** | −1.025 *** | −1.060 *** | −0.338 |
Milk yield, kg/d | −0.004 | −0.001 | −0.001 | −0.001 | |
Ruminating time, h/d | −0.013 | −0.014 | |||
Dietary starch, % DM | −0.001 | 0.008 | |||
Dietary peNDF8mm, % DM | −0.002 | ||||
Fit statistics | |||||
NStudy 2 | 24 | 24 | 14 | 14 | 11 |
NTreatment | 84 | 84 | 56 | 56 | 40 |
3 | 0.17 | 0.20 | 0.20 | 0.20 | 0.07 |
4 | 0.86 | 0.86 | 0.86 | 0.86 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zschiesche, M.; Mensching, A.; Sharifi, A.R.; Hummel, J. The Milk Fat-to-Protein Ratio as Indicator for Ruminal pH Parameters in Dairy Cows: A Meta-Analysis. Dairy 2020, 1, 259-268. https://doi.org/10.3390/dairy1030017
Zschiesche M, Mensching A, Sharifi AR, Hummel J. The Milk Fat-to-Protein Ratio as Indicator for Ruminal pH Parameters in Dairy Cows: A Meta-Analysis. Dairy. 2020; 1(3):259-268. https://doi.org/10.3390/dairy1030017
Chicago/Turabian StyleZschiesche, Marleen, André Mensching, A. Reza Sharifi, and Jürgen Hummel. 2020. "The Milk Fat-to-Protein Ratio as Indicator for Ruminal pH Parameters in Dairy Cows: A Meta-Analysis" Dairy 1, no. 3: 259-268. https://doi.org/10.3390/dairy1030017
APA StyleZschiesche, M., Mensching, A., Sharifi, A. R., & Hummel, J. (2020). The Milk Fat-to-Protein Ratio as Indicator for Ruminal pH Parameters in Dairy Cows: A Meta-Analysis. Dairy, 1(3), 259-268. https://doi.org/10.3390/dairy1030017