Conditional or Pseudo Exact Tests with an Application in the Context of Modeling Response Times
Abstract
1. Introduction
2. Motivation, Research Context, and Problem
3. Theoretical and Technical Treatment of the Problem
3.1. A Conditional Probability Distribution Derived from a Generalized Rasch Model
3.2. A Two-Sided Conditional Test
3.3. Computational Issues
4. Data Analysis and Results
5. Final Remarks
Author Contributions
Funding
Conflicts of Interest
Appendix A. R Code
References
- Rasch, G. Probabilistic Models for Some Intelligence and Attainment Tests; Danish Institute for Educational Research: Copenhagen, Denmark, 1960. [Google Scholar]
- Fischer, G.H.; Molenaar, I.W. Rasch Models. Foundations, Recent Developments and Applications; Springer: New York, NY, USA, 1995. [Google Scholar]
- Ponocny, I. Nonparametric Goodness-of-Fit Tests for the Rasch Model. Psychometrika 2001, 66, 437–459. [Google Scholar] [CrossRef]
- Verhelst, N.D. An Efficient Mcmc Algorithm to Sample Binary Matrices with Fixed Marginals. Psychometrika 2008, 73, 705–728. [Google Scholar] [CrossRef]
- Verhelst, N.D.; Hatzinger, R.; Mair, P. The Rasch Sampler. J. Stat. Softw. 2007, 20, 1–14. [Google Scholar] [CrossRef]
- Draxler, C.; Zessin, J. The Power Function of Conditional Tests of the Rasch Model. ASTA Adv. Stat. Anal. 2015, 99, 367–378. [Google Scholar] [CrossRef]
- Draxler, C.; Nolte, J.P. Computational Precision of the Power Function for Conditional Tests of Assumptions of the Rasch Model. Open J. Stat. 2018, 8, 873–884. [Google Scholar] [CrossRef]
- Draxler, C. Bayesian Conditional Inference for Rasch Models. ASTA Adv. Stat. Anal. 2018, 102, 245–262. [Google Scholar] [CrossRef]
- Shepard, R.N.; Feng, C. A chronometric study of mental paper folding. Cogn. Psychol. 1972, 3, 228–243. [Google Scholar] [CrossRef]
- De Boeck, P.; Jeon, M. An overview of models for response times and processes in cognitive tests. Front. Psychol. 2019, 10, 102. [Google Scholar] [CrossRef]
- Roskam, E.E. Towards a psychometric theory of intelligence. In Progress in Mathematical Psychology, 1st ed.; Roskam, E.E., Suck, R., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1987; Volume 1, pp. 151–174. [Google Scholar]
- Verhelst, N.D.; Verstralen, H.H.F.M.; Jansen, M.G. A logistic model for time-limit tests. In Handbook of Modern Item Response Theory, 1st ed.; van der Linden, W.J., Hambleton, R.K., Eds.; Springer: West New York, NJ, USA, 1997; Volume 1, pp. 169–185. [Google Scholar]
- Wang, T.; Hanson, B.A. Development and calibration of an item response model that incorporates response time. Appl. Psychol. Meas. 2005, 29, 323–339. [Google Scholar] [CrossRef]
- Goldhammer, F.; Steinwascher, M.A.; Kroehne, U.; Naumann, J. Modeling individual response time effects between and within experimental speed conditions: A GLMM approach for speeded tests. Br. J. Math. Stat. Psychol. 2017, 70, 238–256. [Google Scholar] [CrossRef]
- van Breukelen, G.J.P. Psychometric modeling of response speed and accuracy with mixed and conditional regression. Psychometrika 2005, 70, 359–376. [Google Scholar] [CrossRef]
- Rijmen, F.; De Boeck, P.; Leuven, K.U. The random weights linear logistic test model. Appl. Psychol. Meas. 2002, 26, 271–285. [Google Scholar] [CrossRef]
- Fischer, G.H. Linear logistic test model as aninstrument in educational research. Acta Psychol. 1973, 37, 359–374. [Google Scholar] [CrossRef]
- Draxler, C. A Note on a Discrete Probability Distribution Derived from the Rasch Model. Adv. Appl. Stat. Sci. 2011, 6, 665–673. [Google Scholar]
- Andersen, E.B. Asymptotic properties of conditional maximum-likelihood estimators. J. R. Stat. Soc. Ser. B Methodol. 1970, 32, 283–301. [Google Scholar] [CrossRef]
- Pfanzagl, J. On the consistency of conditional maximum likelihood estimators. Ann. Inst. Stat. Math. 1993, 45, 703–719. [Google Scholar] [CrossRef]
- Neyman, J.; Pearson, E.S. On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika 1928, 20 A, 263–294. [Google Scholar]
- Wilks, S.S. The large sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 1938, 9, 60–62. [Google Scholar] [CrossRef]
- Rao, C.R. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Proc. Camb. Philos. Soc. 1948, 44, 50–57. [Google Scholar]
- Wald, A. Test of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 1943, 54, 426–482. [Google Scholar] [CrossRef]
- Terrell, G.R. The gradient statistic. Comput. Sci. Stat. 2002, 34, 206–215. [Google Scholar]
- Lemonte, A.J. The Gradient Test. Another Likelihood-Based Test; Academic Press: London, UK, 2016. [Google Scholar]
- Draxler, C.; Kurz, A.; Lemonte, A.J. The gradient test and its finite sample size properties in a conditional maximum likelihood and psychometric modeling context. Commun. Stat. Simul. Comput. 2020, 1–19. [Google Scholar] [CrossRef]
- Agresti, A. Categorical Data Analysis, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Miller, J.W.; Harrison, M.T. Exact Sampling and Counting for Fixed-Margin Matrices. Ann. Stat. 2013, 41, 1569–1592. [Google Scholar] [CrossRef]
- Chen, Y.; Diaconis, P.; Holmes, S.P.; Liu, J.S. Sequential Monte Carlo Methods for Statistical Analysis of Tables. J. Am. Stat. Assoc. 2005, 100, 109–120. [Google Scholar] [CrossRef]
- Chen, Y.; Small, D. Exact Tests for the Rasch Model via Sequential Importance Sampling. Psychometrika 2005, 70, 11–30. [Google Scholar] [CrossRef]
Pers. No. | p Value | Score | No. Corr. | Pers. No. | p Value | Score | No. Corr. |
---|---|---|---|---|---|---|---|
1 | 0.236 | 0.543 | 420 | 30 | 0.154 | −1.127 | 391 |
2 | 0.687 | 0.296 | 398 | 31 | <0.001 | 6.889 | 251 |
3 | 0.717 | 0.224 | 411 | 32 | 0.023 | 1.045 | 419 |
4 | 0.003 | 3.190 | 259 | 33 | 0.090 | −0.679 | 422 |
5 | 0.278 | −0.876 | 387 | 34 | 0.645 | 0.399 | 370 |
6 | 0.795 | −0.162 | 411 | 35 | 0.001 | −2.155 | 403 |
7 | 0.024 | 1.882 | 383 | 36 | 0.686 | −0.111 | 426 |
8 | 0.758 | 0.176 | 416 | 37 | 0.578 | 0.360 | 408 |
9 | 0.246 | 0.342 | 425 | 38 | 0.116 | −1.278 | 385 |
10 | 0.915 | −0.085 | 398 | 39 | 0.001 | −3.142 | 338 |
11 | 0.067 | 1.944 | 260 | 40 | 0.111 | −0.637 | 422 |
12 | 0.262 | 0.688 | 412 | 41 | 0.739 | 0.233 | 404 |
13 | 0.762 | 0.157 | 418 | 42 | 0.152 | 0.877 | 411 |
14 | 0.607 | 0.386 | 400 | 43 | 0.910 | 0.091 | 402 |
15 | 0.194 | −0.777 | 412 | 44 | 0.356 | −0.737 | 394 |
16 | 0.937 | −0.031 | 417 | 45 | 0.634 | 0.269 | 413 |
17 | 0.439 | −0.669 | 385 | 46 | 0.891 | 0.068 | 413 |
18 | 0.471 | −0.290 | 423 | 47 | 0.848 | 0.071 | 423 |
19 | 0.003 | −1.550 | 416 | 48 | - | - | - |
20 | 0.003 | 1.919 | 408 | 49 | 0.251 | 0.655 | 414 |
21 | 0.944 | 0.054 | 391 | 50 | 0.295 | −0.774 | 397 |
22 | 0.893 | 0.082 | 399 | 51 | 0.265 | 0.797 | 400 |
23 | 0.632 | 0.409 | 376 | 52 | 0.224 | −0.982 | 390 |
24 | 0.924 | −0.076 | 403 | 53 | 0.002 | −2.043 | 408 |
25 | 0.006 | −1.256 | 419 | 54 | 0.209 | 0.632 | 418 |
26 | 0.114 | −1.257 | 392 | 55 | 0.050 | −0.964 | 418 |
27 | 0.471 | −0.320 | 421 | 56 | 0.494 | −0.323 | 419 |
28 | 0.218 | −0.701 | 414 | 57 | 0.153 | −0.524 | 423 |
29 | 0.295 | −0.694 | 406 | 58 | 0.574 | −0.458 | 386 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Draxler, C.; Dahm, S. Conditional or Pseudo Exact Tests with an Application in the Context of Modeling Response Times. Psych 2020, 2, 198-208. https://doi.org/10.3390/psych2040017
Draxler C, Dahm S. Conditional or Pseudo Exact Tests with an Application in the Context of Modeling Response Times. Psych. 2020; 2(4):198-208. https://doi.org/10.3390/psych2040017
Chicago/Turabian StyleDraxler, Clemens, and Stephan Dahm. 2020. "Conditional or Pseudo Exact Tests with an Application in the Context of Modeling Response Times" Psych 2, no. 4: 198-208. https://doi.org/10.3390/psych2040017
APA StyleDraxler, C., & Dahm, S. (2020). Conditional or Pseudo Exact Tests with an Application in the Context of Modeling Response Times. Psych, 2(4), 198-208. https://doi.org/10.3390/psych2040017