The Effect of Biracial Status and Color on Crystallized Intelligence in the U.S.-Born African–European American Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Race, Nativity, and Ethnicity
2.2. Color
2.3. Self-Reported White Ancestry
2.4. Cognitive Ability
2.5. Education
2.6. Demographic Controls in the Regression Analysis
3. Results
3.1. Comparison of Means
3.2. Reliability of Color and Wordsum
3.3. Correlations
3.4. Corrections for the Reliability of the Measures and the Validity of Color as an Index of Ancestry
3.5. Regression Analyses
4. Conclusions
5. Limitations
Author Contributions
Funding
Conflicts of Interest
References
- Lynn, R. Skin color and intelligence in African Americans. Popul. Environ. 2002, 23, 365–375. [Google Scholar] [CrossRef]
- Parra, E.J.; Kittles, R.A.; Shriver, M.D. Implications of correlations between skin color and genetic ancestry for biomedical research. Nat. Genet. 2004, 36, S54–S60. [Google Scholar] [CrossRef] [PubMed]
- Rushton, J.P.; Jensen, A.R. Thirty years of research on race differences in cognitive ability. Psychol. Public Policy Law 2005, 11, 235. [Google Scholar] [CrossRef]
- Hill, M.E. Skin color and intelligence in African Americans: A reanalysis of Lynn’s data. Popul. Environ. 2002, 24, 209–214. [Google Scholar] [CrossRef]
- Lynn, R. Skin color and intelligence in African Americans: A Reply to Hill. Popul. Environ. 2002, 24, 215–218. [Google Scholar] [CrossRef]
- Lynn, R. Race Differences in Intelligence; Revised Edition; Washington Summit: Augusta, GA, USA, 2015. [Google Scholar]
- Fuerst, J. Lineage population: A concept needed by an observer of nature? Mank. Q. 2017, 57, 590–631. [Google Scholar]
- Kirkegaard, E.O.; Wang, M.; Fuerst, J. Biogeographic Ancestry and Socioeconomic Outcomes in the Americas: a Meta-analysis. Mank. Q. 2017, 573, 398–427. [Google Scholar]
- Fuerst, J.; Kirkegaard, E.O. Admixture in the Americas: Regional and national differences. Mank. Q. 2016, 56, 255. [Google Scholar]
- Templer, D.I.; Arikawa, H. Temperature, skin color, per capita income, and IQ: An international perspective. Intelligence 2006, 34, 121–128. [Google Scholar] [CrossRef]
- Meisenberg, G. Wealth, intelligence, politics and global fertility differentials. J. Biosoc. Sci. 2009, 41, 519–535. [Google Scholar] [CrossRef] [PubMed]
- Rindermann, H. Cognitive Capitalism: Human Capital and the Wellbeing of Nations; Cambridge University Press: Cambridge, UK, 2018; p. 298. [Google Scholar]
- Dixon, A.R.; Telles, E.E. Skin color and colorism: Global research, concepts, and measurement. Annu. Rev. Sociol. 2017, 43, 405–424. [Google Scholar] [CrossRef]
- Mackintosh, N.; Mackintosh, N.J. IQ and Human Intelligence; Oxford University Press: Oxford, UK, 2011; p. 338. [Google Scholar]
- Colman, A.M. Race differences in IQ: Hans Eysenck’s contribution to the debate in the light of subsequent research. Personal. Individ. Differ. 2016, 103, 182–189. [Google Scholar] [CrossRef]
- Massey, D.S.; Martin, J.A. The NIS Skin Color Scale; Office of Population Research, Princeton University: Princeton, NJ, USA, 2003. [Google Scholar]
- Wolfle, L.M. The enduring effects of education on verbal skills. Sociol. Educ. 1980, 104–114. [Google Scholar] [CrossRef]
- Cor, M.K.; Haertel, E.; Krosnick, J.A.; Malhotra, N. Improving ability measurement in surveys by following the principles of IRT: The Wordsum vocabulary test in the General Social Survey. Soc. Sci. Res. 2012, 41, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Kreisman, D.; Rangel, M.A. On the blurring of the color line: Wages and employment for Black males of different skin tones. Rev. Econ. Stat. 2015, 97, 1–13. [Google Scholar] [CrossRef]
- Gullickson, A.O. Amalgamations, New and Old: The Stratification of America’s Mixed Black/White Population. Doctoral Dissertation, University of California, Berkeley, CA, USA, 2004. [Google Scholar]
- Hannon, L.; DeFina, R. Reliability concerns in measuring respondent skin tone by interviewer observation. Public Opin. Q. 2016, 80, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Yaeger, R.; Avila-Bront, A.; Abdul, K.; Nolan, P.C.; Grann, V.R.; Birchette, M.G.; Choudhry, S.; Burchard, E.G.; Beckman, K.B.; Gorroochurn, P.; et al. Comparing genetic ancestry and self-described race in African Americans born in the United States and in Africa. Cancer Epidemiol. Prev. Biomark 2008, 17, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [PubMed]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef]
- Nisbett, R.E. Intelligence and How to Get It: Why Schools and Cultures Count; WW Norton & Company: New York, NY, USA, 2009; p. 227. [Google Scholar]
- Nisbett, R.E. Heredity, environment, and race differences in IQ: A commentary on Rushton and Jensen (2005). Psychol. Public Policy Law 2005, 11, 302–310. [Google Scholar] [CrossRef]
- Kirkegaard, E.O.; Woodley of Menie, M.; Williams, R.; Fuerst, J.; Meisenberg, G. Biogeographic ancestry, cognitive ability, and socioeconomic outcomes. Psych 2019, 1, 1. [Google Scholar] [CrossRef]
- Fryer, R.G., Jr.; Kahn, L.; Levitt, S.D.; Spenkuch, J.L. The plight of mixed-race adolescents. Rev. Econ. Stat. 2012, 94, 621–634. [Google Scholar] [CrossRef]
- Guo, G.; Fu, Y.; Lee, H.; Cai, T.; Harris, K.M.; Li, Y. Genetic bio-ancestry and social construction of racial classification in social surveys in the contemporary United States. Demography 2014, 51, 141–172. [Google Scholar] [CrossRef] [PubMed]
- Kirkegaard, E.O.; Fuerst, J. Inequality in the United States: Ethnicity, Racial Admixture and Environmental Causes. Mank. Q. 2016, 56, 580. [Google Scholar]
- Fuerst, J.; Kirkegaard, E.O. The genealogy of differences in the Americas. Mank. Q. 2016, 56, 425. [Google Scholar]
- Kirkegaard, E.O.; Fuerst, J. Admixture in Argentina. Mank. Q. 2017, 57, 542–580. [Google Scholar]
- Jensen, A.R. The g Factor: The Science of Mental Ability; Praeger: Westport, CT, USA, 1998; Volume 648. [Google Scholar]
- Marira, T.D.; Mitra, P. Colorism: Ubiquitous yet understudied. Ind. Organ. Psychol. 2013, 6, 103–107. [Google Scholar] [CrossRef]
- Carneiro, P.; Heckman, J.J.; Masterov, D.V. Labor market discrimination and racial differences in premarket factors. J. Law Econ. 2005, 48, 1–39. [Google Scholar] [CrossRef]
- Fryer, R. Racial inequality in the 21st century: The declining significance of discrimination. In Handbook of Labor Economics; Elsevier: Amsterdam, The Netherlands, 2011; Volume 4, pp. 855–971. [Google Scholar]
- Rogers, M.A. Using Genomic Ancestry and Demographic Variables to Study Perception in Human Faces. Master’s Thesis, The Pennsylvania State University, University Park, PA, USA, 2012. [Google Scholar]
Race | 2000–2016 WQ (Wordsum M; SD) | Weight N | 2012–2016 WQ (Wordsum M; SD) | Weight N | 2012–2016 Color | Weight N | 2016 Degree White | Weight N |
---|---|---|---|---|---|---|---|---|
White | 100.00 (6.43; 1.82) | 7569 | 100.00 (6.41; 1.76) | 2958 | 1.57 (0.93) | 3888 | 9.50 (1.55) | 593 |
White–Black (Primary race: White) | 96.07 (5.94; 1.70) | 43 | 95.73 (5.90; 1.79) | 28 | 3.71 (1.83) | 42 | 3.58 (1.56) | 9 |
White–Black (Primary race: Black) | 94.14 (5.70; 2.20) | 50 | 91.87 (5.44; 1.64) | 26 | 4.87 (1.75) | 36 | 2.33 (1.30) | 6 |
Black | 89.81 (5.16; 1.74) | 1381 | 90.70 (5.30; 1.66) | 599 | 5.63 (1.99) | 845 | 0.28 (1.03) | 129 |
Total | 98.40 (6.23; 1.87) | 9043 | 98.32 (6.21; 1.79) | 3611 | 2.32 (1.97) | 4811 | 7.76 (3.85) | 736 |
Primary Race | 2000–2016 WQ (Wordsum M; SD) | N | 2012–2016 WQ (Wordsum M; SD) | N | 2012–2016 Color | N | 2016 Degree White | N |
---|---|---|---|---|---|---|---|---|
White | 100.00 (6.46; 1.86) | 7617 | 100.00 (6.42; 1.82) | 3022 | 1.56 (0.94) | 4067 | 9.52 (1.49) | 600 |
White–Black (Primary race: White) | 95.05 (5.83; 1.71) | 40 | 94.97 (5.80; 1.85) | 25 | 3.53 (1.75) | 40 | 3.44 (1.67) | 9 |
White–Black (Primary race: Black) | 93.87 (5.68; 2.02) | 53 | 93.59 (5.63; 1.69) | 30 | 4.83 (1.76) | 41 | 2.75 (1.71) | 4 |
Black | 89.87 (5.17; 1.74) | 1515 | 90.51 (5.25; 1.68) | 657 | 5.62 (1.97) | 919 | .36 (1.23) | 138 |
Total | 98.27 (6.24; 1.91) | 9225 | 98.22 (1.85) | 3734 | 2.34 (1.99) | 5067 | 7.73 (3.88) | 751 |
Science Knowledge (Weighted N) | Color (Weighted N) | Highest Year of Education (Weighted N) | Degree White (Weighted N) | |
---|---|---|---|---|
Wordsum | 0.328 * (566) | −0.102 * (574) | 0.371 * (1428) | |
Science Knowledge | −0.069 (423) | 0.265 * (939) | ||
Color | −0.085 * (880) | −0.155 (133) | ||
Highest year of education | 0.077 (134) | |||
Degree White |
Science Knowledge (N) | Color (N) | Highest Year of Education (N) | Degree White (N) | |
---|---|---|---|---|
Wordsum | 0.331 * (639) | −0.109 * (637) | 0.369 * (1565) | |
Science Knowledge | −0.051 (462) | 0.290 * (1044) | ||
Color | −0.061 * (958) | −0.176 * (140) | ||
Highest year of education | 0.110 (141) | |||
Degree White |
Science Knowledge (N) | Color (N) | Highest Year of Education (N) | Degree White (N) | |
---|---|---|---|---|
Wordsum | 0.439 * (3880) | −0.239 * (3348) | 0.466 * (9212) | |
Science Knowledge | −0.257 * (2459) | 0.398 * (6282) | ||
Color | −0.109 * (5063) | −0.757 * (712) | ||
Highest year of education | 0.140 * (750) | |||
Degree White |
Variable | Mean | SD | Weighted N | N |
---|---|---|---|---|
Wordsum | 5.294 | 1.634 | 574 | 637 |
Color | 5.585 | 1.943 | 574 | 637 |
Age (in years) | 44.414 | 16.201 | 574 | 637 |
Sex (Female = 1) | 0.604 | 0.490 | 574 | 637 |
Year_2012 | 0.247 | 0.432 | 574 | 637 |
Year_2014 | 0.329 | 0.470 | 574 | 637 |
Region (South = 1) | 0.603 | 0.490 | 574 | 637 |
Interviewer (White = 1) | 0.599 | 0.490 | 574 | 637 |
Interviewer (Black = 1) | 0.273 | 0.446 | 574 | 637 |
Interviewer (Hispanic = 1) | 0.050 | 0.218 | 574 | 637 |
Biracial (Biracial = 1) | 0.041 | 0.198 | 574 | 637 |
Respondent’s Education (1 case imputed) | 13.196 | 573.9 | 637 | |
Parental Socioeconomic Status (SES) (89 cases imputed) | 0.01 | 573.9 | 637 |
Variable | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
B (SE B) | β | B (SE B) | β | B (SE B) | β | |
(Constant) | 7.046 (0.384) | 3.147 (0.514) | 3.160 (0.514) | |||
Skin Color | −0.119 (0.036) | −0.142 * | −0.097 (0.033) | −0.116 * | −0.094 (0.033) | −0.112 * |
Age (in years) | −0.009 (0.004) | −0.091 * | −0.009 (0.004) | −0.091 * | −0.008 (0.004) | −0.075 |
Sex (Female = 1) | −0.070 (0.137) | −0.021 | −0.247 (0.126) | −0.073 | −0.238 (0.127) | −0.071 |
Year_2012 | −0.287 (0.171) | −0.077 | −0.195 (0.157) | −0.052 | −0.186 (0.157) | −0.050 |
Year_2014 | −0.298 (0.157) | −0.084 | −0.219 (0.144) | −0.061 | −0.212 (0.144) | −0.060 |
Region (South = 1) | −0.402 (0.139) | −0.119 * | −0.255 (0.129) | −0.075 * | −0.242 (0.129) | −0.071 |
Interviewer (White = 1) | 0.000 (0.254) | 0.000 | 0.164 (0.233) | 0.048 | 0.155 (0.234) | 0.046 |
Interviewer (Black = 1) | −0.734 (0.273) | −0.195 * | −0.464 (0.251) | −0.124 | −0.471 (0.251) | −0.125 |
Interviewer (Hispanic = 1) | −0.328 (0.382) | −0.044 | −0.127 (0.351) | −0.017 | −0.162 (0.352) | −0.022 |
Mixed Race | −0.323 (0.342) | −0.039 | −0.124 (0.314) | −0.015 | −0.138 (0.314) | −0.016 |
Respondent’s Education | 0.270 (0.026) | 0.405 * | 0.262 (0.027) | 0.393 * | ||
Parental SES | 0.084 (0.072) | 0.050 | ||||
Observations | 637 | 637 | 637 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuerst, J.G.R.; Lynn, R.; Kirkegaard, E.O.W. The Effect of Biracial Status and Color on Crystallized Intelligence in the U.S.-Born African–European American Population. Psych 2019, 1, 44-54. https://doi.org/10.3390/psych1010004
Fuerst JGR, Lynn R, Kirkegaard EOW. The Effect of Biracial Status and Color on Crystallized Intelligence in the U.S.-Born African–European American Population. Psych. 2019; 1(1):44-54. https://doi.org/10.3390/psych1010004
Chicago/Turabian StyleFuerst, John G. R., Richard Lynn, and Emil O. W. Kirkegaard. 2019. "The Effect of Biracial Status and Color on Crystallized Intelligence in the U.S.-Born African–European American Population" Psych 1, no. 1: 44-54. https://doi.org/10.3390/psych1010004