Unexpectedly High Acidity of Water-Soluble Phosphacoumarins
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals Used
2.2. Synthesis of Compounds
2.3. FTIR Spectroscopy
2.4. NMR Measurements
2.5. Steady-State and Time-Resolved Spectral Measurements
2.6. Calculation of Dissociation Constant
2.7. Electronic Structure Calculations
3. Results and Discussion
3.1. Spectral and Photophysical Properties
3.2. Acidic Properties
3.3. DFT Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Servain, C.M.; Berchel, M.; Couthon, H.; Jaffres, P.-A. Phosphonic acid: Preparation and applications. Beilstein J. Org. Chem. 2017, 13, 2186–2213. [Google Scholar] [CrossRef]
- Boczkowski, M.; Popiel, S.; Nawała, J.; Hubert Suska, H. History of Organophosphorus Compounds in the Context of Their Use as Chemical Warfare Agents. Molecules 2025, 30, 1615. [Google Scholar] [CrossRef]
- Franz, R.G. Comparisons of pKa and log P values of some carboxylic and phosphonic acids: Synthesis and measurement. AAPS PharmSci 2010, 3, 10. [Google Scholar] [CrossRef]
- Glöckler, J.; Klützke, S.; Meyer-Zaika, W.; Reller, A.; García-García, F.J.; Strehblow, H.; Keller, P.; Rentschler, E.; Kläui, W. With Phosphinophosphonic acids to nanostructured, water-soluble, and catalytically active rhodium clusters. Angew. Chem. Int. Ed. 2007, 46, 1164–1167. [Google Scholar] [CrossRef]
- Akiyama, T. Stronger Brönsted Acids. Chem. Rev. 2007, 107, 5744–5758. [Google Scholar] [CrossRef]
- Akiyama, T.; Itoh, J.; Fuchibe, K. Recent progress in chiral Brönsted Acid catalysis. Adv. Synth. Catal. 2006, 348, 999–1010. [Google Scholar] [CrossRef]
- Sadykova, Y.M.; Sadikova, L.M.; Badrtdinova, A.R.; Dobrynin, A.B.; Burilov, A.R.; Pudovik, M.A. Condensation of 2-Ethoxyvinylphosphonic Acid Dichloroanhydride with 2,3,5-Trimethylphenol. Novel Method for Preparation of Phosphacoumarins. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 2267–2272. [Google Scholar] [CrossRef]
- Sadikova, L.M.; Sadykova, Y.M.; Zalaltdinova, A.V.; Burilov, A.R.; Pudovik, M.A.; Voronina, J.K.; Mitrasov, Y.N. The reactions of 2-ethoxyvinyldichlorophosphonate with 4-chloro- or 4-bromoresorcinols and 2,3,5-trimethylphenol. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1562–1563. [Google Scholar] [CrossRef]
- Li, B.; Zhou, B.; Lu, H.; Ma, L.; Peng, A.-Y. Phosphaisocoumarins as a New Class of Potent Inhibitors for Pancreatic Cholesterol Esterase. Eur. J. Med. Chem. 2010, 45, 1955–1963. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Pang, H.; Shen, F.; Fu, H.; Jiang, Y.; Zhao, Y. Synthesis of a Diverse Series of Phosphacoumarins with Biological Activity. Org. Lett. 2005, 7, 4919–4922. [Google Scholar] [CrossRef] [PubMed]
- Hariri, M.; Darvish, F.; Mengue Me Ndong, K.-P.; Babouri, R.; Mwande-Maguene, G.; Burilov, A.R.; Licznar-Fajardo, P.; Pirat, J.-L.; Ayad, T.; Virieux, D. Biologically Relevant Surrogates of Coumarins: 2-Phenyl H-Isophosphinoline 2-Oxides with Antibacterial Activity. GSC Biol. Pharm. Sci. 2021, 16, 283–296. [Google Scholar] [CrossRef]
- Sennikova, V.V.; Zalaltdinova, A.V.; Sadykova, Y.M.; Khamatgalimov, A.R.; Gazizov, A.S.; Voloshina, A.D.; Lyubina, A.P.; Amerhanova, S.K.; Voronina, J.K.; Chugunova, E.A.; et al. Diastereoselective Synthesis of Novel Spiro-Phosphacoumarins and Evaluation of Their Anti-Cancer Activity. Int. J. Mol. Sci. 2022, 23, 14348. [Google Scholar] [CrossRef] [PubMed]
- Budzisz, E. Cytotoxic Effects, Alkylating Properties and Molecular Modelling of Coumarin Derivatives and Their Phosphonic Analogues. Eur. J. Med. Chem. 2003, 38, 597–603. [Google Scholar] [CrossRef]
- Zalaltdinova, A.V.; Sadykova, Y.M.; Gazizov, A.S.; Smailov, A.K.; Syakaev, V.V.; Gerasimova, D.P.; Chugunova, E.A.; Akylbekov, N.I.; Zhapparbergenov, R.U.; Appazov, N.O.; et al. Superelectrophilic Activation of Phosphacoumarins towards Weak Nucleophiles via Brønsted Acid Assisted Brønsted Acid Catalysis. Int. J. Mol. Sci. 2024, 25, 6327. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.A.; Yates, K. Acidity Functions: An Update. Can. J. Chem. 1983, 61, 2225–2243. [Google Scholar] [CrossRef]
- Ivanenko, T.Y.; Kondrasenko, A.A.; Rubaylo, A.I. The Determination of the Hammett Acidity Function H0 in a Mixtures of Phosphoric and Acetic Acids by NMR Measurements. J. Mol. Liq. 2023, 391, 123438. [Google Scholar] [CrossRef]
- Sadykova, Y.M.; Dalmatova, N.V.; Voronina, Y.K.; Burilov, A.R.; Pudovik, M.A.; Sinyashin, O.G. Formation of Phosphorus-containing Cage Structures in the Reaction of 2-ethoxyvinylphosphonic Acid Dichloroanhydride with Resorcinol and Its Derivatives. Heteroat. Chem. 2012, 23, 340–344. [Google Scholar] [CrossRef]
- Cox, R.A.; Yates, K. The Excess Acidity of Aqueous HCl and HBr Media. An Improved Method for the Calculation of X-Functions and H0 Scales. Can. J. Chem. 1981, 59, 2116–2124. [Google Scholar] [CrossRef]
- Leggett, D.J. Computational Methods for the Determination of Formation Constants; Plenum Press: New York, NY, USA, 1985; 494p. [Google Scholar] [CrossRef]
- GNU Octave Software. Available online: https://octave.org/ (accessed on 1 February 2025).
- Schmidt, M.W. General atomic and molecular electronic structure system. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154126. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Ross, R.B.; Powers, J.M.; Atashroo, T.; Ermler, W.C.; LaJohn, L.A.; Christiansen, P.A. Abinitio relativistic effective potentials with spin-orbit operators. IV. Cs through Rn. J. Chem. Phys. 1990, 93, 6654–6670. [Google Scholar] [CrossRef]
- Sancho-Garcia, J.C.; Perez-Jimenez, A.J. Assessment of double-hybrid energy functionals for π-conjugated systems. J. Chem. Phys. 2009, 131, 084108. [Google Scholar] [CrossRef]
- Champagne, B.; Botek, E.; Nakano, M.; Nitta, T.; Yamaguchi, K. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell π-conjugated systems. J. Chem. Phys. 2005, 122, 114315. [Google Scholar] [CrossRef]
- Lutoshkin, M.A. Solvation Effects on the Sustainability of Lanthanum Complexes. J. Phys. Chem. A 2025, 129, 5490–5498. [Google Scholar] [CrossRef] [PubMed]
- Bryantsev, V.S.; Mamadou, S.D.; Goddard, W.A., III. Calculation of Solvation Free Energies of Charged Solutes Using Mixed Cluster/Continuum Models. J. Phys. Chem. B 2008, 112, 9709–9719. [Google Scholar] [CrossRef]
- Lutoshkin, M.A.; Petrov, A.I.; Golovenev, N.N. Acid–Base, Complexing and Spectral Properties of Thiobarbituric Acid and Its 1,3-Derivatives in Aqueous Solutions: Spectrophotometric and Quantum Chemical Approach. J. Sol. Chem. 2016, 45, 1453–1467. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Laurent, A.D.; Jacquemin, D. TD-DFT benchmarks: A review. Int. J. Quantum Chem. 2013, 113, 2019–2039. [Google Scholar] [CrossRef]
- Strickler, S.J.; Berg, R.A. Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 1962, 37, 814–822. [Google Scholar] [CrossRef]
- Sheldrick, G.M. N.m.r. study of the protonation of phosphine, hypophosphorous acid and orthophosphorous acid. Trans. Faraday Soc. 1967, 63, 1077–1082. [Google Scholar] [CrossRef]
- Mader, P.M. Trifluoroacetanilide. pKa and Alkaline Hydrolysis Kinetics. J. Am. Chem. Soc. 1965, 87, 3191–3195. [Google Scholar] [CrossRef]
- Alves, W.A.; Tellez, C.A.; Sala, O.; Santos, P.S.; Faria, R.B. Dissociation and rate of proton transfer of HXO3 (X = Cl, Br) in aqueous solution determined by Raman spectroscopy. J. Raman Spectrosc. 2001, 32, 1032–1036. [Google Scholar] [CrossRef]







| Compound | , a | , b nm | , c nm | Stokes Shift, nm | τfl, d ns | ϕfl, e % |
|---|---|---|---|---|---|---|
| P1 | 14.1 ± 0.7 (273) | 273, 216 | 385 | 112 | 0.73 ± 0.05 | 12.6 ± 1.7 |
| P2 | 9.2 ± 0.1 (310) | 341, 310, 231 | 365 | 55 | 0.28 ± 0.03 | 4.6 ± 0.5 |
| P3 | 8.4 ± 0.1 (319) | 319, 280, 234, 216 | 394 | 75 | 0.24 ± 0.02 | 3.9 ± 0.4 |
| P4 | 12.6 ± 0.6 (276) | 276, 209 | 300 | 24 | 0.06 ± 0.02 | 1.8 ± 0.3 |
| Compound | logεanion | logεneutral | pKa | m* (Solvation Coefficient) |
|---|---|---|---|---|
| P1 (292 nm) | 3.78 ± 0.01 | 4.02 ± 0.01 | 0.19 ± 0.10 | - |
| P2 (251 nm) | 3.51 ± 0.01 | 3.78 ± 0.01 | −1.30 ± 0.15 | 0.35 ± 0.10 |
| P3 (325 nm) | 3.40 ± 0.01 | 3.73 ± 0.01 | −1.26 ± 0.12 | 0.45 ± 0.12 |
| P4 (298 nm) | 4.13 ± 0.01 | 4.33 ± 0.01 | −0.70 ± 0.06 | 0.12 ± 0.02 |
| Compound | λmaxexp | λmaxcalc | Oscillator Strength |
|---|---|---|---|
| P1 | 273 | 253 | 0.188 |
| P2 | 231 | 251 | 0.319 |
| P3 | 234 | 216 | 0.178 |
| P4 | 276 | 281 | 0.077 |
| Compound | δΔGsolv | ΔEZPE | ΔGaq. | logKcalc | logKexp |
|---|---|---|---|---|---|
| P1 | −41.5 | 40.3 | −1.2 | 0.22 | −0.19 |
| P2 | −57.0 | 46.0 | −11.1 | 1.94 | 1.3 |
| P3 | −53.2 | 40.7 | −12.5 | 2.19 | 1.26 |
| P4 | −53.4 | 40.3 | −14.1 | 2.48 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanenko, T.Y.; Zalaltdinova, A.V.; Darmagambet, K.K.; Gerasimova, M.A.; Sadykova, Y.M.; Levandovski, V.D.; Gazizov, A.S.; Akylbekov, N.I.; Appazov, N.O.; Burilov, A.R.; et al. Unexpectedly High Acidity of Water-Soluble Phosphacoumarins. Chemistry 2025, 7, 175. https://doi.org/10.3390/chemistry7060175
Ivanenko TY, Zalaltdinova AV, Darmagambet KK, Gerasimova MA, Sadykova YM, Levandovski VD, Gazizov AS, Akylbekov NI, Appazov NO, Burilov AR, et al. Unexpectedly High Acidity of Water-Soluble Phosphacoumarins. Chemistry. 2025; 7(6):175. https://doi.org/10.3390/chemistry7060175
Chicago/Turabian StyleIvanenko, Timur Yu., Alena V. Zalaltdinova, Klara Kh. Darmagambet, Marina A. Gerasimova, Yulia M. Sadykova, Valeriy D. Levandovski, Almir S. Gazizov, Nurgali I. Akylbekov, Nurbol O. Appazov, Alexander R. Burilov, and et al. 2025. "Unexpectedly High Acidity of Water-Soluble Phosphacoumarins" Chemistry 7, no. 6: 175. https://doi.org/10.3390/chemistry7060175
APA StyleIvanenko, T. Y., Zalaltdinova, A. V., Darmagambet, K. K., Gerasimova, M. A., Sadykova, Y. M., Levandovski, V. D., Gazizov, A. S., Akylbekov, N. I., Appazov, N. O., Burilov, A. R., & Lutoshkin, M. A. (2025). Unexpectedly High Acidity of Water-Soluble Phosphacoumarins. Chemistry, 7(6), 175. https://doi.org/10.3390/chemistry7060175

