Lost Data in Electron Microscopy
Abstract
1. Introduction
2. Results and Discussion
2.1. General Remarks and Scope of the Analysis
2.2. Data Collection and Preparation
2.3. Analysis of Stored Electron Microscopy Data
2.4. Classification and Analysis of Published Images
2.5. Estimation of the Data Loss
2.6. Solving the Data Loss Problem
2.7. Importance of Core User Facility Policy and Impact on Data Loss
3. Conclusions
- (1)
- Employ reliable data acquisition protocols and use flexible, easily accessible storage solutions to facilitate data reporting, sharing, and reuse.
- (2)
- Include all meaningful microscopy data in scientific publications, such as detailed imaging parameters and the results of seemingly “unsuccessful” experiments.
- (3)
- Use automated data analysis to extract hidden structural information that could be useful for future research.
- (4)
- Treat all high-quality images as sources of information for the future development of science.
- (5)
- Use AI/ML tools to analyze all microscopy images obtained in the project and include the results in the published data domain.
4. Methods and Experimental Data Processing
4.1. Experimental Details Typical for the Shared Facilities Operation
4.2. Scanning Electron Microscopy (SEM)
4.3. Transmission Electron Microscopy (TEM)
4.4. Scanning Transmission Electron Microscopy (STEM)
4.5. Imaging Conditions and Calibration
4.6. Collection of the Array
4.7. Images Filtering
4.8. Image Acquisition Parameters
4.9. Analysis of the Array
4.10. Analysis of the Published Images
4.11. Experimental Workflow Overview
4.12. Automated Processing
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine Learning for Molecular and Materials Science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef]
- Artrith, N.; Butler, K.T.; Coudert, F.-X.; Han, S.; Isayev, O.; Jain, A.; Walsh, A. Best Practices in Machine Learning for Chemistry. Nat. Chem. 2021, 13, 505–508. [Google Scholar] [CrossRef]
- Keith, J.A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, S.; Gastegger, M.; Müller, K.-R.; Tkatchenko, A. Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems. Chem. Rev. 2021, 121, 9816–9872. [Google Scholar] [CrossRef] [PubMed]
- Meuwly, M. Machine Learning for Chemical Reactions. Chem. Rev. 2021, 121, 10218–10239. [Google Scholar] [CrossRef]
- Coley, C.W.; Green, W.H.; Jensen, K.F. Machine Learning in Computer-Aided Synthesis Planning. Acc. Chem. Res. 2018, 51, 1281–1289. [Google Scholar] [CrossRef]
- Coley, C.W.; Barzilay, R.; Jaakkola, T.S.; Green, W.H.; Jensen, K.F. Prediction of Organic Reaction Outcomes Using Machine Learning. ACS Cent. Sci. 2017, 3, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Han, H.; Kim, H.; Choi, S. Machine Learning Applications for Chemical Reactions. Chem.—Asian J. 2022, 17, e202200203. [Google Scholar] [CrossRef] [PubMed]
- Schrier, J.; Norquist, A.J.; Buonassisi, T.; Brgoch, J. In Pursuit of the Exceptional: Research Directions for Machine Learning in Chemical and Materials Science. J. Am. Chem. Soc. 2023, 145, 21699–21716. [Google Scholar] [CrossRef]
- Oviedo, F.; Ferres, J.L.; Buonassisi, T.; Butler, K.T. Interpretable and Explainable Machine Learning for Materials Science and Chemistry. Acc. Mater. Res. 2022, 3, 597–607. [Google Scholar] [CrossRef]
- Kim, J.; Kang, D.; Kim, S.; Jang, H.W. Catalyze Materials Science with Machine Learning. ACS Mater. Lett. 2021, 3, 1151–1171. [Google Scholar] [CrossRef]
- Zahrt, A.F.; Henle, J.J.; Rose, B.T.; Wang, Y.; Darrow, W.T.; Denmark, S.E. Prediction of Higher-Selectivity Catalysts by Computer-Driven Workflow and Machine Learning. Science 2019, 363, eaau5631. [Google Scholar] [CrossRef]
- Kitchin, J.R. Machine Learning in Catalysis. Nat. Catal. 2018, 1, 230–232. [Google Scholar] [CrossRef]
- Toyao, T.; Maeno, Z.; Takakusagi, S.; Kamachi, T.; Takigawa, I.; Shimizu, K. Machine Learning for Catalysis Informatics: Recent Applications and Prospects. ACS Catal. 2020, 10, 2260–2297. [Google Scholar] [CrossRef]
- Schlexer Lamoureux, P.; Winther, K.T.; Garrido Torres, J.A.; Streibel, V.; Zhao, M.; Bajdich, M.; Abild-Pedersen, F.; Bligaard, T. Machine Learning for Computational Heterogeneous Catalysis. ChemCatChem 2019, 11, 3581–3601. [Google Scholar] [CrossRef]
- Aliev, T.A.; Belyaev, V.E.; Pomytkina, A.V.; Nesterov, P.V.; Shityakov, S.; Sadovnichii, R.V.; Novikov, A.S.; Orlova, O.Y.; Masalovich, M.S.; Skorb, E.V. Electrochemical Sensor to Detect Antibiotics in Milk Based on Machine Learning Algorithms. ACS Appl. Mater. Interfaces 2023, 15, 52010–52020. [Google Scholar] [CrossRef]
- Aliev, T.A.; Lavrentev, F.V.; Dyakonov, A.V.; Diveev, D.A.; Shilovskikh, V.V.; Skorb, E.V. Electrochemical Platform for Detecting Escherichia Coli Bacteria Using Machine Learning Methods. Biosens. Bioelectron. 2024, 259, 116377. [Google Scholar] [CrossRef]
- Aliev, T.; Korolev, I.; Yasnov, M.; Nosonovsky, M.; Skorb, E.V. Rosé or White, Glass or Plastic: Computer Vision and Machine Learning Study of Cavitation Bubbles in Sparkling Wines. RSC Adv. 2025, 15, 5151–5158. [Google Scholar] [CrossRef] [PubMed]
- Bird, C.L.; Frey, J.G. Chemical Information Matters: An e-Research Perspective on Information and Data Sharing in the Chemical Sciences. Chem. Soc. Rev. 2013, 42, 6754–6776. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.S.; Duerr, R.E.; Parsons, M.A. Scientific Knowledge Mobilization: Co-Evolution of Data Products and Designated Communities. Int. J. Digit. Curation 2015, 10, 110–135. [Google Scholar] [CrossRef]
- Tedersoo, L.; Küngas, R.; Oras, E.; Köster, K.; Eenmaa, H.; Leijen, Ä.; Pedaste, M.; Raju, M.; Astapova, A.; Lukner, H.; et al. Data Sharing Practices and Data Availability upon Request Differ across Scientific Disciplines. Sci. Data 2021, 8, 192. [Google Scholar] [CrossRef] [PubMed]
- Hardwicke, T.E.; Mathur, M.B.; MacDonald, K.; Nilsonne, G.; Banks, G.C.; Kidwell, M.C.; Hofelich Mohr, A.; Clayton, E.; Yoon, E.J.; Henry Tessler, M.; et al. Data Availability, Reusability, and Analytic Reproducibility: Evaluating the Impact of a Mandatory Open Data Policy at the Journal Cognition. R. Soc. Open Sci. 2018, 5, 180448. [Google Scholar] [CrossRef]
- Kindling, M.; Strecker, D. Data Quality Assurance at Research Data Repositories. Data Sci. J. 2022, 21, 1–17. [Google Scholar] [CrossRef]
- Hart, E.M.; Barmby, P.; LeBauer, D.; Michonneau, F.; Mount, S.; Mulrooney, P.; Poisot, T.; Woo, K.H.; Zimmerman, N.B.; Hollister, J.W. Ten Simple Rules for Digital Data Storage. PLoS Comput. Biol. 2016, 12, e1005097. [Google Scholar] [CrossRef]
- Roche, D.G.; Lanfear, R.; Binning, S.A.; Haff, T.M.; Schwanz, L.E.; Cain, K.E.; Kokko, H.; Jennions, M.D.; Kruuk, L.E.B. Troubleshooting Public Data Archiving: Suggestions to Increase Participation. PLoS Biol. 2014, 12, e1001779. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.L.; Weber, N.M.; Cragin, M.H. The Analytic Potential of Scientific Data: Understanding Re-Use Value. Proc. Am. Soc. Inf. Sci. Technol. 2011, 48, 1–10. [Google Scholar] [CrossRef]
- Strieth-Kalthoff, F.; Sandfort, F.; Kühnemund, M.; Schäfer, F.R.; Kuchen, H.; Glorius, F. Machine Learning for Chemical Reactivity: The Importance of Failed Experiments. Angew. Chem. Int. Ed. 2022, 61, e202204647. [Google Scholar] [CrossRef] [PubMed]
- Vines, T.H.; Albert, A.Y.K.; Andrew, R.L.; Débarre, F.; Bock, D.G.; Franklin, M.T.; Gilbert, K.J.; Moore, J.-S.; Renaut, S.; Rennison, D.J. The Availability of Research Data Declines Rapidly with Article Age. Curr. Biol. 2014, 24, 94–97. [Google Scholar] [CrossRef]
- Goodman, A.; Pepe, A.; Blocker, A.W.; Borgman, C.L.; Cranmer, K.; Crosas, M.; Di Stefano, R.; Gil, Y.; Groth, P.; Hedstrom, M.; et al. Ten Simple Rules for the Care and Feeding of Scientific Data. PLoS Comput. Biol. 2014, 10, e1003542. [Google Scholar] [CrossRef]
- Pagliaro, M. Publishing Scientific Articles in the Digital Era. Open Sci. J. 2020, 5, 1–12. [Google Scholar] [CrossRef]
- Pagliaro, M. “Highly Read and Poorly Cited?” A Critical Perspective on Academic Social Networks. J. Data Sci. Inf. Cit. Stud. 2024, 3, 155–160. [Google Scholar] [CrossRef]
- Ciriminna, R.; Li Petri, G.; Angellotti, G.; Luque, R.; Pagliaro, M. Open and Impactful Academic Publishing. Front. Res. Metrics Anal. 2025, 10, 1544965. [Google Scholar] [CrossRef]
- Science of Microscopy; Hawkes, P.W., Spence, J.C.H., Eds.; Springer: New York, NY, USA, 2007; ISBN 978-0-387-25296-4. [Google Scholar]
- Modern Electron Microscopy in Physical and Life Sciences; Janecek, M., Kral, R., Eds.; IN TECH d.o.o.: Rijeka, Croatia, 2016; ISBN 978-953-51-2252-4. [Google Scholar]
- Liquid Cell Electron Microscopy; Ross, F.M., Ed.; Cambridge University Press: New York, NY, USA, 2017; ISBN 978-1-107-11657-3. [Google Scholar]
- Kalinin, S.V.; Ophus, C.; Voyles, P.M.; Erni, R.; Kepaptsoglou, D.; Grillo, V.; Lupini, A.R.; Oxley, M.P.; Schwenker, E.; Chan, M.K.Y.; et al. Machine Learning in Scanning Transmission Electron Microscopy. Nat. Rev. Methods Prim. 2022, 2, 11. [Google Scholar] [CrossRef]
- Muto, S.; Shiga, M. Application of Machine Learning Techniques to Electron Microscopic/Spectroscopic Image Data Analysis. Microscopy 2020, 69, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Groschner, C.K.; Choi, C.; Scott, M.C. Machine Learning Pipeline for Segmentation and Defect Identification from High-Resolution Transmission Electron Microscopy Data. Microsc. Microanal. 2021, 27, 549–556. [Google Scholar] [CrossRef]
- Botifoll, M.; Pinto-Huguet, I.; Arbiol, J. Machine Learning in Electron Microscopy for Advanced Nanocharacterization: Current Developments, Available Tools and Future Outlook. Nanoscale Horiz. 2022, 7, 1427–1477. [Google Scholar] [CrossRef]
- Eremin, D.B.; Galushko, A.S.; Boiko, D.A.; Pentsak, E.O.; Chistyakov, I.V.; Ananikov, V.P. Toward Totally Defined Nanocatalysis: Deep Learning Reveals the Extraordinary Activity of Single Pd/C Particles. J. Am. Chem. Soc. 2022, 144, 6071–6079. [Google Scholar] [CrossRef] [PubMed]
- Galushko, A.S.; Boiko, D.A.; Pentsak, E.O.; Eremin, D.B.; Ananikov, V.P. Time-Resolved Formation and Operation Maps of Pd Catalysts Suggest a Key Role of Single Atom Centers in Cross-Coupling. J. Am. Chem. Soc. 2023, 145, 9092–9103. [Google Scholar] [CrossRef]
- Ho, B.; Zhao, J.; Liu, J.; Tang, L.; Guan, Z.; Li, X.; Li, M.; Howard, E.; Wheeler, R.; Bae, J. SEMPro: A Data-Driven Pipeline To Learn Structure–Property Insights from Scanning Electron Microscopy Images. ACS Mater. Lett. 2023, 5, 3117–3125. [Google Scholar] [CrossRef]
- Zheng, H.; Lu, X.; He, K. In Situ Transmission Electron Microscopy and Artificial Intelligence Enabled Data Analytics for Energy Materials. J. Energy Chem. 2022, 68, 454–493. [Google Scholar] [CrossRef]
- Faraz, K.; Grenier, T.; Ducottet, C.; Epicier, T. Deep Learning Detection of Nanoparticles and Multiple Object Tracking of Their Dynamic Evolution during in Situ ETEM Studies. Sci. Rep. 2022, 12, 2484. [Google Scholar] [CrossRef]
- Kang, S.; Kim, J.-H.; Lee, M.; Yu, J.W.; Kim, J.; Kang, D.; Baek, H.; Bae, Y.; Kim, B.H.; Kang, S.; et al. Real-Space Imaging of Nanoparticle Transport and Interaction Dynamics by Graphene Liquid Cell TEM. Sci. Adv. 2021, 7, eabi5419. [Google Scholar] [CrossRef]
- Yao, L.; Ou, Z.; Luo, B.; Xu, C.; Chen, Q. Machine Learning to Reveal Nanoparticle Dynamics from Liquid-Phase TEM Videos. ACS Cent. Sci. 2020, 6, 1421–1430. [Google Scholar] [CrossRef]
- Cheng, B.; Ye, E.; Sun, H.; Wang, H. Deep Learning-Assisted Analysis of Single Molecule Dynamics from Liquid-Phase Electron Microscopy. Chem. Commun. 2023, 59, 1701–1704. [Google Scholar] [CrossRef]
- Kashin, A.S.; Boiko, D.A.; Ananikov, V.P. Neural Network Analysis of Electron Microscopy Video Data Reveals the Temperature-Driven Microphase Dynamics in the Ions/Water System. Small 2021, 17, 2007726. [Google Scholar] [CrossRef]
- Jordan, J.W.; Chernov, A.I.; Rance, G.A.; Stephen Davies, E.; Lanterna, A.E.; Alves Fernandes, J.; Grüneis, A.; Ramasse, Q.; Newton, G.N.; Khlobystov, A.N. Host–Guest Chemistry in Boron Nitride Nanotubes: Interactions with Polyoxometalates and Mechanism of Encapsulation. J. Am. Chem. Soc. 2023, 145, 1206–1215. [Google Scholar] [CrossRef]
- Fung, K.L.Y.; Skowron, S.T.; Hayter, R.; Mason, S.E.; Weare, B.L.; Besley, N.A.; Ramasse, Q.M.; Allen, C.S.; Khlobystov, A.N. Direct Measurement of Single-Molecule Dynamics and Reaction Kinetics in Confinement Using Time-Resolved Transmission Electron Microscopy. Phys. Chem. Chem. Phys. 2023, 25, 9092–9103. [Google Scholar] [CrossRef]
- Yan, P.; Zhang, D.; Zhang, W.; Sun, K.; Jin, M.; Chamberlain, T.W.; Khlobystov, A.N.; Kaiser, U.; Hu, Y.; Cao, K. Atomic-Scale Imaging of Transformation of Nickel Nanocrystals to Nickel Carbides in Real Time. ACS Nano 2025, 19, 23306–23314. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Lloret, V.; Rivero-Crespo, M.Á.; Hirsch, A.; Doménech-Carbó, A.; Abellán, G.; Leyva-Pérez, A. Acid Catalysis with Alkane/Water Microdroplets in Ionic Liquids. JACS Au 2021, 1, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Pérez, A.; Bilanin, C.; Bacic, M.; Greco, R. Acid and Base Water Coexists in a Micro-Structured Ionic Liquid and Catalyzes Organic Reactions in One-Pot. ChemCatChem 2022, 14, e202200557. [Google Scholar] [CrossRef]
- Fedorets, A.A.; Koltsov, S.; Muravev, A.A.; Fotin, A.; Zun, P.; Orekhov, N.; Nosonovsky, M.; Skorb, E.V. Observation of a Chemical Reaction in a Levitating Microdroplet Cluster and Droplet-Generated Music. Chem. Sci. 2024, 15, 12067–12076. [Google Scholar] [CrossRef] [PubMed]
- Kashin, A.S.; Ananikov, V.P. Nanoscale Advancement Continues—From Catalysts and Reagents to Restructuring of Reaction Media. Angew. Chem. Int. Ed. 2021, 60, 18926–18928. [Google Scholar] [CrossRef] [PubMed]
- Ede, J.M. Deep Learning in Electron Microscopy. Mach. Learn. Sci. Technol. 2021, 2, 011004. [Google Scholar] [CrossRef]
- Williams, E.; Moore, J.; Li, S.W.; Rustici, G.; Tarkowska, A.; Chessel, A.; Leo, S.; Antal, B.; Ferguson, R.K.; Sarkans, U.; et al. Image Data Resource: A Bioimage Data Integration and Publication Platform. Nat. Methods 2017, 14, 775–781. [Google Scholar] [CrossRef]
- Iudin, A.; Korir, P.K.; Somasundharam, S.; Weyand, S.; Cattavitello, C.; Fonseca, N.; Salih, O.; Kleywegt, G.J.; Patwardhan, A. EMPIAR: The Electron Microscopy Public Image Archive. Nucleic Acids Res. 2023, 51, D1503–D1511. [Google Scholar] [CrossRef]
- van den Enden, D. Electron Microscope Images—1995–2007, Ver. 1; Australian Antarctic Data Centre: Kingston, Tasmania, Australia, 2023. [CrossRef]
- Sarkans, U.; Chiu, W.; Collinson, L.; Darrow, M.C.; Ellenberg, J.; Grunwald, D.; Hériché, J.-K.; Iudin, A.; Martins, G.G.; Meehan, T.; et al. REMBI: Recommended Metadata for Biological Images—Enabling Reuse of Microscopy Data in Biology. Nat. Methods 2021, 18, 1418–1422. [Google Scholar] [CrossRef]
- Moore, J.; Basurto-Lozada, D.; Besson, S.; Bogovic, J.; Bragantini, J.; Brown, E.M.; Burel, J.-M.; Casas Moreno, X.; de Medeiros, G.; Diel, E.E.; et al. OME-Zarr: A Cloud-Optimized Bioimaging File Format with International Community Support. Histochem. Cell Biol. 2023, 160, 223–251. [Google Scholar] [CrossRef] [PubMed]
Data Source | Core User Facility | Third-Party Facilities | |||||
---|---|---|---|---|---|---|---|
Data type | SEM | TEM | TOTAL | SEM | STEM | TEM | TOTAL |
Number of acquired images | 119,557 | 32,540 | 152,097 | No data | No data | No data | No data |
Number of published articles | 238 | 94 | 292 | 158 | 38 | 122 | 200 |
Number of published images | 3054 | 523 | 3577 | 1624 | 274 | 818 | 2766 |
Average number of images per article | 12.83 | 5.56 | 12.25 | 10.28 | 7.21 | 6.70 | 13.83 |
Published data, % | 2.55 | 1.61 | 2.35 | − | − | − | − |
Lost data, % | 97.45 | 98.39 | 97.65 | − | − | − | − |
Parameter | Search Type | Formulated Task/Request |
---|---|---|
Type of the instrument | File search | Search for the image files (*.png, *.jpg, *.tif) in the tree folder transferred from a specific instrument’s workstation |
Year of image acquisition | File search, string search | File attribute search, date search in DD.MM.YYYY format: dir/t:w/s *.%Filetype% > <List> Filetype = png, jpg, tif find/c/i “%Year%” <List> Year = 2011, 2012, …, 2023 Search in parameter files (in metadata), date search in MM/DD/YYYY format: findstr/s/m “/%Year%” <Log file> > <List> Year = 2011, 2012, …, 2023 |
Type of the detector | String search | Search in parameter files (in metadata), search for a specific value: findstr/s/m “SignalName=%Detector%” <Log file> > <List> Detector = SE, LA-BSE, HA-BSE, PDBSE, TE, BFSTEM, DFSTEM |
Magnification value | String search | Search in parameter files (in metadata), search for a specific value: findstr/s/m “Magnification=%Mag%” <Log file> > <List> Mag = 20, 25, 30,…, 800,000 Search in parameter files (in metadata), extraction of all values: findstr/s/n “Magnification=” <Log file> > <List> |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, N.M.; Kashin, A.S.; Ananikov, V.P. Lost Data in Electron Microscopy. Chemistry 2025, 7, 160. https://doi.org/10.3390/chemistry7050160
Ivanova NM, Kashin AS, Ananikov VP. Lost Data in Electron Microscopy. Chemistry. 2025; 7(5):160. https://doi.org/10.3390/chemistry7050160
Chicago/Turabian StyleIvanova, Nina M., Alexey S. Kashin, and Valentine P. Ananikov. 2025. "Lost Data in Electron Microscopy" Chemistry 7, no. 5: 160. https://doi.org/10.3390/chemistry7050160
APA StyleIvanova, N. M., Kashin, A. S., & Ananikov, V. P. (2025). Lost Data in Electron Microscopy. Chemistry, 7(5), 160. https://doi.org/10.3390/chemistry7050160