Influence of Nitrogen Doping on Vacancy-Engineered T-Graphene Fragments: Insights into Electronic and Optical Properties
Abstract
1. Introduction
2. Computational Methodology
3. Results and Discussion
3.1. Electronic Structure and Stability
3.2. Chemical Reactivity Parameters
3.3. Energy Decomposition Analysis
3.4. Linear Optical Properties
3.5. Nonlinear Optical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2009, 110, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.N.R.; Sood, A.K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene: The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Enyashin, A.N.; Ivanovskii, A.L. Graphene Allotropes. Phys. Status Solidi (B) 2011, 248, 1879–1883. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Huang, Q.; Guo, L.; Chen, X. Structural and Electronic Properties of Graphene: A Two-Dimensional Carbon Allotrope with Tetrarings. Phys. Rev. Lett. 2012, 108, 225505. [Google Scholar] [CrossRef]
- Sheng, X.-L.; Cui, H.-J.; Ye, F.; Yan, Q.-B.; Zheng, Q.-R.; Su, G. Octagraphene as a Versatile Carbon Atomic Sheet for Novel Nanotubes, Unconventional Fullerenes, and Hydrogen Storage. J. Appl. Phys. 2012, 112, 074315. [Google Scholar] [CrossRef]
- Tong, Z.; Pecchia, A.; Yam, C.; Dumitrică, T.; Frauenheim, T. Ultrahigh Electron Thermal Conductivity in T-Graphene, Biphenylene, and Net-Graphene. Adv. Energy Mater. 2022, 12, 2200657. [Google Scholar] [CrossRef]
- Ye, X.-J.; Liu, C.-S.; Zhong, W.; Zeng, Z.; Du, Y.-W. Metalized T Graphene: A Reversible Hydrogen Storage Material at Room Temperature. J. Appl. Phys. 2014, 116, 114304. [Google Scholar] [CrossRef]
- El Kassaoui, M.; Lakhal, M.; Benyoussef, A.; El Kenz, A.; Loulidi, M.; Mounkachi, O. Improvement of the Hydrogen Storage Performance of T-Graphene-like Two-Dimensional Boron Nitride upon Selected Lithium Decoration. Phys. Chem. Chem. Phys. 2022, 24, 15048–15059. [Google Scholar] [CrossRef]
- Liu, C.S.; Jia, R.; Ye, X.J.; Zeng, Z. Non-hexagonal symmetry induced functional T graphene for the detection of carbon monoxide. J. Chem. Phys. 2013, 139, 034704. [Google Scholar] [CrossRef]
- Shamim, S.U.D.; Siddique, A.; Dash, B.K.; Ahmed, T.; Shaha, S.; Islam, M.; Piya, A.A. Exploring the Sensing Performance of T-Graphene, T-Boron Nitride, and Their Lateral Heterostructure for Toxic CO, NO, NO2, and SO2 Gas Molecules. Langmuir 2025, 41, 8726–8739. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, A.; Paria, S.; Jana, D. Tetragonal graphene nanodot as carbon monoxide gas sensor and current rectification device. J. Phys. Chem. Solids 2018, 123, 172–182. [Google Scholar] [CrossRef]
- Chowdhury, S.; Majumdar, A.; Jana, D. Search for magnetism in transition metal atoms doped tetragonal graphene: A DFT approach. J. Magn. Magn. Mater. 2017, 441, 523–530. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, L.; Dai, X.; Chen, G.; Liu, G. A Record-High Ion Storage Capacity of T-Graphene as Two-Dimensional Anode Material for Li-Ion and Na-Ion Batteries. Appl. Surf. Sci. 2020, 527, 146849. [Google Scholar] [CrossRef]
- Hu, J.; Liu, Y.; Liu, N.; Li, J.; Ouyang, C. Theoretical Prediction of T-Graphene as a Promising Alkali-Ion Battery Anode Offering Ultrahigh Capacity. Phys. Chem. Chem. Phys. 2020, 22, 3281–3289. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Dhilip Kumar, T.J. Si Doped T-Graphene: A 2D Lattice as an Anode Electrode in Na Ion Secondary Batteries. New J. Chem. 2022, 46, 9718–9726. [Google Scholar] [CrossRef]
- Yadav, N.; Dhilip Kumar, T.J. Ab Initio Characterization of N Doped T-Graphene and Its Application as an Anode Material for Na Ion Rechargeable Batteries. Sustain. Energy Fuels 2021, 5, 4060–4068. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Nandy, A.; Chakrabarti, A.; Jana, D. Optical properties and magnetic flux-induced electronic band tuning of a T-graphene sheet and nanoribbon. Phys. Chem. Chem. Phys. 2017, 19, 21584–21594. [Google Scholar] [CrossRef]
- Wang, X.Q.; Li, H.D.; Wang, J.T. Structural stabilities and electronic properties of planar C4 carbon sheet and nanoribbons. Phys. Chem. Chem. Phys. 2012, 14, 11107–11111. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.J.; Yan, X.H.; Xiao, Y.; Guo, Y.D. Electronic and transport properties of T-graphene nanoribbon: Symmetry-dependent multiple Dirac points, negative differential resistance and linear current-bias characteristics. Euro. Phys. Lett. 2014, 107, 37004. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Z.; Zhao, G.; Wang, F. Quantum Confinement Effect on the Electronic and Optical Properties of Two-Dimensional Halide Perovskites. Comput. Mater. Sci. 2023, 230, 112524. [Google Scholar] [CrossRef]
- Huang, Y.C.; Chang, C.P.; Lin, M.F. Magnetic and Quantum Confinement Effects on Electronic and Optical Properties of Graphene Ribbons. Nanotechnology 2007, 18, 495401. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, C.M.; Yang, L.; Chou, M.Y. Quantum Confinement and Electronic Properties of Silicon Nanowires. Phys. Rev. Lett. 2004, 92, 236805. [Google Scholar] [CrossRef]
- Deb, J.; Paul, D.; Sarkar, U. Density Functional Theory Investigation of Nonlinear Optical Properties of T-Graphene Quantum Dots. J. Phys. Chem. A 2020, 124, 1312–1320. [Google Scholar] [CrossRef]
- Sarwar, S.; Yaqoob, J.; Khan, M.U.; Hussain, R.; Zulfiqar, S.; Anwar, A.; Assiri, M.A.; Imran, M.; Ibrahim, M.M.; Mersal, G.A.M.; et al. Deciphering the Role of Alkali Metals (Li, Na, K) Doping for Triggering Nonlinear Optical (NLO) Properties of T-Graphene Quantum Dots: Toward the Development of Giant NLO Response Materials. ACS Omega 2022, 7, 24396–24414. [Google Scholar] [CrossRef]
- Saedi, L.; Alipour, E.; Javanshir, Z.; Vahabi, V. Reversible Hydrogen Adsorption on Li-Decorated T-Graphene Flake: The Effect of Electric Field. J. Mol. Graphics Model. 2019, 87, 192–196. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Pal, P.; Chowdhury, S.; Jana, D. First Principles Raman Study of Boron and Nitrogen Doped Planar T-Graphene Clusters. Mater. Res. Express 2015, 2, 095603. [Google Scholar] [CrossRef]
- Nazir, A.; Shukla, A. Computational Study of Geometry, Electronic Structure, and Low-Lying Excited States of Linear T-Graphene Quantum Dots. J. Phys. Chem. Solids 2025, 207, 112912. [Google Scholar] [CrossRef]
- Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I.I.; Batzill, M. An Extended Defect in Graphene as a Metallic Wire. Nat. Nanotechnol. 2010, 5, 326–329. [Google Scholar] [CrossRef]
- Kotakoski, J.; Krasheninnikov, A.V.; Kaiser, U.; Meyer, J.C. From Point Defects in Graphene to Two-Dimensional Amorphous Carbon. Phys. Rev. Lett. 2011, 106, 105505. [Google Scholar] [CrossRef]
- Fan, Q.; Yan, L.; Tripp, M.W.; Krejčí, O.; Dimosthenous, S.; Kachel, S.R.; Chen, M.; Foster, A.S.; Koert, U.; Liljeroth, P.; et al. Biphenylene Network: A Nonbenzenoid Carbon Allotrope. Science 2021, 372, 852–856. [Google Scholar] [CrossRef]
- Chen, K.; Wang, W.; Chen, L.; Dao, D.V.; Park, J.; Rajendiran, R.; Lee, I.-H.; Li, O.L. Oxygen Vacancy Defect Tungsten-Oxide-Quantum-Dot-Modified Nitrogen-Doped Graphene with Interfacial Tiny Primitives to Boost Oxygen Reduction Reaction. J. Alloys Compd. 2022, 908, 164588. [Google Scholar] [CrossRef]
- Feng, J.; Xu, S.; Xia, C.; Song, N.; Dong, H.; Yu, L.; Dong, L. Density Functional Theory Study of the Relationship between N-Dopants and Vacancy Defects on Graphene Quantum Dots for Oxygen Reduction Electrocatalysis. ACS Appl. Nano Mater. 2024, 7, 21578–21589. [Google Scholar] [CrossRef]
- Zhu, J.; Mu, S. Defect Engineering in Carbon-Based Electrocatalysts: Insight into Intrinsic Carbon Defects. Adv. Funct. Mater. 2020, 30, 2001097. [Google Scholar] [CrossRef]
- Martins, G.; Galvan, A.L.S.; Valenga, M.G.P.; Cardozo Martins, T.A.; Bergamini, M.F.; Marcolino-Junior, L.H. Nitrogen-Doped Graphene Quantum Dots (N-GQDs): A Promising Material for the Development of Electrochemical Immunosensors. ACS Appl. Nano Mater. 2025, 8, 5908–5918. [Google Scholar] [CrossRef]
- Carolan, D.; Rocks, C.; Padmanaban, D.B.; Maguire, P.; Svrcek, V.; Mariotti, D. Environmentally Friendly Nitrogen-Doped Carbon Quantum Dots for next Generation Solar Cells. Sustain. Energy Fuels 2017, 1, 1611–1619. [Google Scholar] [CrossRef]
- Feng, J.; Guo, Q.; Song, N.; Liu, H.; Dong, H.; Chen, Y.; Yu, L.; Dong, L. Density Functional Theory Study on Optical and Electronic Properties of Co-Doped Graphene Quantum Dots Based on Different Nitrogen Doping Patterns. Diam. Relat. Mater. 2021, 113, 108264. [Google Scholar] [CrossRef]
- Jabed, M.A.; Zhao, J.; Kilin, D.; Yu, T. Understanding of Light Absorption Properties of the N-Doped Graphene Oxide Quantum Dot with TD-DFT. J. Phys. Chem. C 2021, 125, 14979–14990. [Google Scholar] [CrossRef]
- Chan, S.-C.; Cheng, Y.-L.; Chang, B.K.; Hong, C.-W. DFT Calculation in Design of Near-Infrared Absorbing Nitrogen-Doped Graphene Quantum Dots. Phys. Chem. Chem. Phys. 2022, 24, 1580–1589. [Google Scholar] [CrossRef]
- Chakraborty, D.; Chattaraj, P.K. Conceptual Density Functional Theory Based Electronic Structure Principles. Chem. Sci. 2021, 12, 6264–6279. [Google Scholar] [CrossRef] [PubMed]
- Chattaraj, P.K.; Sarkar, U.; Roy, D.R. Electrophilicity Index. Chem. Rev. 2006, 106, 2065–2091. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.v.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Deb, J.; Paul, D.; Sarkar, U.; Ayers, P.W. Characterizing the Sensitivity of Bonds to the Curvature of Carbon Nanotubes. J. Mol. Model. 2018, 24, 249. [Google Scholar] [CrossRef] [PubMed]
- Ghara, M.; Pan, S.; Deb, J.; Kumar, A.; Sarkar, U.; Chattaraj, P.K. A Computational Study on Structure, Stability and Bonding in Noble Gas Bound Metal Nitrates, Sulfates and Carbonates (Metal = Cu, Ag, Au). J. Chem. Sci. 2016, 128, 1537–1548. [Google Scholar] [CrossRef]
- Paul, D.; Sarkar, U.; Ayers, P.W. Impact of Confining Hydrogen Molecule inside Fullerenes: A Glance through DFT Study. J. Mol. Model. 2025, 31, 23. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Account. 2007, 120, 215–241. [Google Scholar]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2011, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The Density Functional Viewpoint. J. Chem. Phys. 1978, 68, 3801–3807. [Google Scholar] [CrossRef]
- Parr, R.G.; Pearson, R.G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. [Google Scholar] [CrossRef]
- Ayers, P.W. The Physical Basis of the Hard/Soft Acid/Base Principle. Faraday Discuss. 2007, 135, 161–190. [Google Scholar] [CrossRef]
- Parr, R.G.; Chattaraj, P.K. Principle of Maximum Hardness. J. Am. Chem. Soc. 1991, 113, 1854–1855. [Google Scholar] [CrossRef]
- Miranda-Quintana, R.A.; Chattaraj, P.K.; Ayers, P.W. Finite Temperature Grand Canonical Ensemble Study of the Minimum Electrophilicity Principle. J. Chem. Phys. 2017, 147, 124103. [Google Scholar] [CrossRef]
- Liu, S. Steric Effect: A Quantitative Description from Density Functional Theory. J. Chem. Phys. 2007, 126, 244103. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, T.; Sui, S.; Chen, Z. Influence on the Optical and Electronic Properties of Graphene Quantum Dots Originating from the S-Doping Site: A Theoretical Investigation. J. Phys. Chem. A 2025, 129, 4357–4363. [Google Scholar] [CrossRef]
- Kurtz, H.A.; Stewart, J.J.P.; Dieter, K.M. Calculation of the nonlinear optical properties of molecules. J. Comput. Chem. 1990, 11, 82–87. [Google Scholar] [CrossRef]
- Yamijala, S.S.; Mukhopadhyay, M.; Pati, S.K. Linear and Nonlinear Optical Properties of Graphene Quantum Dots: A Computational Study. J. Phys. Chem. C 2015, 119, 12079–12087. [Google Scholar] [CrossRef]
- Li, X. Design of novel graphdiyne-based materials with large second-order nonlinear optical properties. J. Mater. Chem. C 2018, 6, 7576–7583. [Google Scholar] [CrossRef]
- Armaković, S.; Armaković, S.J.; Šetrajčić, J.P.; Holodkov, V. Aromaticity, Response, and Nonlinear Optical Properties of Sumanene Modified with Boron and Nitrogen Atoms. J. Mol. Model. 2014, 20, 2538. [Google Scholar] [CrossRef]
- Nath, S.; Bandyopadhyay, A.; Sen, S.; Jana, D. First Principles Investigation of Structural, Electronic and Optical Properties of Synthesized Radiaannulene Oligomers for 6,6,12-Graphyne. J. Phys. Chem. Solids 2021, 153, 109990. [Google Scholar] [CrossRef]
- Ghosh, M.; Nath, S.; Sen, S.; Jana, D. Nonlinear Optical Response and Characteristic Raman Spectra of Phagraphene Quantum Dots. Phys. Scr. 2023, 98, 045109. [Google Scholar] [CrossRef]
- Song, Y.-D.; Wang, Q.-T.; Gao, W.-W.; He, Z.; Wu, Y. Theoretical Study of Electronic and Nonlinear Optical Properties of Novel Graphenylene-Based Materials with Donor–Acceptor Frameworks. J. Mol. Model. 2022, 28, 165. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.J.; Gu, F.L. Tuning the Nonlinear Optical Response of Graphitic Carbon Nitride by Doping Li Atoms. J. Phys. Chem. C 2018, 122, 26635–26641. [Google Scholar] [CrossRef]
- Khan, M.U.; Khalid, M.; Ibrahim, M.; Braga, A.A.C.; Safdar, M.; Al-Saadi, A.A.; Janjua, M.R.S.A. First Theoretical Framework of Triphenylamine-Dicyanovinylene Based Nonlinear Optical Dyes: Structural Modification of π-Linkers. J. Phys. Chem. C 2018, 122, 4009–4018. [Google Scholar] [CrossRef]
Systems | (eV) | (eV) |
---|---|---|
TF | −6.751 | 3.642 |
v-TF | −6.017 | 3.622 |
v-NTF1 | −6.034 | 3.680 |
v-NTF2 | −5.848 | 2.957 |
v-NTF3 | −6.031 | 4.009 |
v-NTF4 | −5.751 | 4.800 |
v-NTF5 | −5.953 | 5.544 |
Systems | (eV) | (eV) | (eV) | (eV) | (eV) |
---|---|---|---|---|---|
TF | 6.483 | 2.017 | 4.466 | −4.250 | 2.022 |
v-TF | 5.048 | 1.774 | 3.274 | −3.411 | 1.777 |
v-NTF1 | 6.346 | 1.848 | 4.498 | −4.097 | 1.866 |
v-NTF2 | 4.420 | 2.649 | 1.771 | −3.534 | 3.527 |
v-NTF3 | 6.711 | 2.016 | 4.695 | −4.364 | 2.028 |
v-NTF4 | 6.410 | 0.941 | 5.469 | −3.676 | 1.235 |
v-NTF5 | 5.591 | −0.760 | 6.351 | −2.416 | 0.459 |
System | Transition | λmax (nm) | ΔE (eV) | f0 | µe (Debye) | Nature of Transition | ηλ |
---|---|---|---|---|---|---|---|
TF | S0 → S1 | 712.88 | 1.739 | 0.000 | 0.000 | Forbidden | 0.000 |
S0 → S20 | 258.22 | 4.802 | 1.175 | 8.033 | π → π* | 0.933 | |
v-TF | S0 → S1 | 722.32 | 1.717 | 0.001 | 0.336 | Forbidden | 0.000 |
S0 → S17 | 283.61 | 4.372 | 0.686 | 6.432 | π → π* | 0.794 | |
v-NTF1 | S0 → S1 | 712.11 | 1.741 | 0.000 | 0.387 | Forbidden | 0.000 |
S0 → S8 | 296.95 | 4.175 | 0.808 | 7.145 | π → π* | 0.844 | |
v-NTF2 | S0 → S1 | 1344.25 | 0.922 | 0.000 | 0.274 | Forbidden | 0.000 |
S0 → S14 | 321.53 | 3.856 | 0.781 | 7.304 | π → π* | 0.834 | |
v-NTF3 | S0 → S1 | 631.12 | 1.965 | 0.000 | 0.108 | Forbidden | 0.000 |
S0 → S9 | 286.08 | 4.334 | 0.568 | 5.875 | π → π* | 0.730 | |
v-NTF4 | S0 → S1 | 464.74 | 2.668 | 0.000 | 0.000 | Forbidden | 0.000 |
S0 → S6 | 292.13 | 4.244 | 0.536 | 5.772 | π → π* | 0.709 | |
v-NTF5 | S0 → S1 | 342.26 | 3.623 | 0.000 | 0.000 | Forbidden | 0.000 |
S0 → S16 | 243.46 | 5.093 | 0.308 | 3.991 | π → π* | 0.508 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deb, J.; Chattaraj, P.K. Influence of Nitrogen Doping on Vacancy-Engineered T-Graphene Fragments: Insights into Electronic and Optical Properties. Chemistry 2025, 7, 126. https://doi.org/10.3390/chemistry7040126
Deb J, Chattaraj PK. Influence of Nitrogen Doping on Vacancy-Engineered T-Graphene Fragments: Insights into Electronic and Optical Properties. Chemistry. 2025; 7(4):126. https://doi.org/10.3390/chemistry7040126
Chicago/Turabian StyleDeb, Jyotirmoy, and Pratim Kumar Chattaraj. 2025. "Influence of Nitrogen Doping on Vacancy-Engineered T-Graphene Fragments: Insights into Electronic and Optical Properties" Chemistry 7, no. 4: 126. https://doi.org/10.3390/chemistry7040126
APA StyleDeb, J., & Chattaraj, P. K. (2025). Influence of Nitrogen Doping on Vacancy-Engineered T-Graphene Fragments: Insights into Electronic and Optical Properties. Chemistry, 7(4), 126. https://doi.org/10.3390/chemistry7040126