Pyrazolopyridines and Pyrazolopyrimidines as Functional Dipolar Scaffolds: An Approach Regarding Synthesis and Photophysics
Abstract
1. Introduction
2. Pyrazolopyridines
Entry/Fluorophore | Yield (%) | labs (nm) | lem (nm) | ΦF (%)/Solvent | Ref. |
---|---|---|---|---|---|
73 | 270 | 440 | 49/DCM | Wang et al., 2015 [58] Scheme 2a | |
86 | 462 | 541 | 34/DMSO | Deore et al., 2015 [69] Scheme 2b | |
62 | 367 | 452 | 73/DCM | Heejum et al., 2016 [59] Scheme 3b | |
70 | 277 | 372 | 15/MeCy | Miliutina et al., 2017 [71] Scheme 4a | |
87 | 365 | 440 | 25/CDCl3 | Manickam et al., 2018 [73] Scheme 5a | |
48 | 267 | 418 | 61/DCM | Yan et al., 2018 [60] Scheme 5b | |
75 | 250 | 412 | 88/DMSO | García et al., 2019 [24] Scheme 6a | |
79 | 352 | 530 | -- | Agheli et al., 2020 [57] Scheme 6b | |
70 | 330 | 465 | 34/CDCl3 | Alizadeh et al., 2020 [74] Scheme 7a | |
52 | 321 | 446 | 82/CDCl3 | Ma et al., 2020 [75] Scheme 7b | |
77 | 357 | 499 | -- | Ma et al., 2021 [56] Scheme 8a | |
50 | 261 | 463 | 75/THF | Razmiené et al., 2021 [55] Scheme 8b |
Entry/Fluorophore | Yield (%) | labs (nm) | lem (nm) | ΦF (%)/Solvent | Ref. |
---|---|---|---|---|---|
87 | 493 | 633 | 89/EtOH | Abumelha et al., 2022 [61] Scheme 9a | |
28 | 364 | 465 | -- | Shuvalov et al., 2022 [76] Scheme 9b | |
85 | 336 | 440 | 35/MeCN:H2O | Krishnan et al., 2023 [63] Scheme 10a | |
73 | 260, 302 | 419 | 22/EtOH | Vladislav et al., 2023 [77] Scheme 10b | |
79 | 395 | 454 | 13/hexane | Kolbus et al., 2024 [78] Scheme 11a | |
55 | 395 | 458 | 8.5/hexane | Kolbus et al., 2024 [79] Scheme 11b |
3. Pyrazolopyrimidines
Entry/Fluorophore | Yield (%) | labs (nm) | lem (nm) | ΦF (%)/Solvent | Ref. |
---|---|---|---|---|---|
76 | 406/430 | -- | -- | Sener et al., 2017 [117] Scheme 14a | |
90 | 353 | 479 | 44/DCM | Castillo et al., 2018 [118] Scheme 15a | |
83 | 332 | 386/470/504 | 84/benzonitrile | Singsardar et al., 2018 [119] Scheme 15b | |
74 | 464 | 525 | 42/H2O | Tigreros et al., 2019 [113] Scheme 16a | |
80 | 354/301/295 | 474 | 54/THF:H2O | Tigreros et al., 2019 [112] Scheme 17a | |
8790 | 440385 | 494488 | 53/THF97/DCM | Tigreros et al., 2020 [120] Scheme 17b | |
58 | 414 | 548 | 88/DMSO | Ma et al., 2021 [121] Scheme 18b | |
94 | 284/478325/478 | 500447 | 0.0/EtOH:H2O>20/EtOH:H2O | Tigreros et al., 2021 [22] Scheme 18c |
Entry/Fluorophore | Yield (%) | labs (nm) | lem (nm) | ΦF (%)/Solvent | Ref. |
---|---|---|---|---|---|
85 | 276/393/456 | 520 | 18/DMSO | Stefanello et al. 2022 [126] Scheme 19a | |
25 | 301/337 | 483 | 8/THF | Stefanello et al. 2022 [115] Scheme 19b | |
70 | 269/288/347 | 477 | 69/THF | Tigreros et al. 2023 [128] Scheme 20a | |
45 | 327/385 | 535 | 64/toluene | Stefanello et al. 2023 [111] Scheme 20b | |
85 | 281/345 | 434 | 49/THF | Stefanello et al. 2024 [131] Scheme 21a | |
99 | 334 | 388 | 28/toluene | García et al. 2024 [109] Scheme 21b |
4. Conclusions and Outlooks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dhayalan, V.; Dodke, V.S.; Pradeep Kumar, M.; Korkmaz, H.S.; Hoffmann-Röder, A.; Amaladass, P.; Dandela, R.; Dhanusuraman, R.; Knochel, P. Recent Synthetic Strategies for the Functionalization of Fused Bicyclic Heteroaromatics Using Organo-Li, -Mg and -Zn Reagents. Chem. Soc. Rev. 2024, 53, 11045–11099. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.; Sohail, M.; Bilal, M.; Rasool, N.; Qamar, M.U.; Ciurea, C.; Marceanu, L.G.; Misarca, C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024, 29, 2232. [Google Scholar] [CrossRef]
- Flanigan, D.M.; Romanov-Michailidis, F.; White, N.A.; Rovis, T. Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. Chem. Rev. 2015, 115, 9307–9387. [Google Scholar] [CrossRef] [PubMed]
- Maji, M.; Panja, D.; Borthakur, I.; Kundu, S. Recent Advances in Sustainable Synthesis of N-Heterocycles Following Acceptorless Dehydrogenative Coupling Protocol Using Alcohols. Org. Chem. Front. 2021, 8, 2673–2709. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, M.; Tan, W.; Zheng, L.; Tao, K.; Fan, X. Developments towards Synthesis of N-Heterocycles from Amidines: Via C-N/C-C Bond Formation. Org. Chem. Front. 2019, 6, 2120–2141. [Google Scholar] [CrossRef]
- Rios, M.C.; Bravo, N.F.; Sanchez, C.C.; Portilla, J. Chemosensors Based on N-Heterocyclic Dyes: Advances in Sensing Highly Toxic Ions Such as CN- and Hg2+. RSC Adv. 2021, 11, 34206–34234. [Google Scholar] [CrossRef]
- Jali, B.R.; Barick, A.K.; Mohapatra, P.; Sahoo, S.K. A Comprehensive Review on Quinones Based Fluoride Selective Colorimetric and Fluorescence Chemosensors. J. Fluor. Chem. 2021, 244, 109744. [Google Scholar] [CrossRef]
- Ansari, A.; Ali, A.; Asif, M. Shamsuzzaman Review: Biologically Active Pyrazole Derivatives. New J. Chem. 2016, 41, 16–41. [Google Scholar] [CrossRef]
- Katritzky, A.; Vakulenko, A.; Sivapackiam, J.; Draghici, B.; Damavarapu, R. Synthesis of Dinitro-Substituted Furans, Thiophenes, and Azoles. Synthesis 2008, 2008, 699–706. [Google Scholar] [CrossRef]
- Sarmiento, J.T.; Portilla, J. Current Advances in Diazoles-Based Chemosensors for CN- and FDetection. Curr. Org. Synth. 2023, 20, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Lheureux, P.; Penaloza, A.; Gris, M. Pyridoxine in Clinical Toxicology: A Review. Eur. J. Emerg. Med. 2005, 12, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Jennings, O. Antipyrin and the prevailing epidemic. Lancet 1890, 135, 105–106. [Google Scholar] [CrossRef]
- Arias-Gómez, A.; Macías, M.A.; Portilla, J. Synthesis of Structural Analogues of Reversan by Ester Aminolysis: An Access to Pyrazolo[1,5-a]Pyrimidines from Chalcones. RSC Adv. 2023, 13, 16377–16386. [Google Scholar] [CrossRef] [PubMed]
- Schwärzer, K.; Rout, S.K.; Bessinger, D.; Lima, F.; Brocklehurst, C.E.; Karaghiosoff, K.; Bein, T.; Knochel, P. Selective Functionalization of the 1H-Imidazo[1,2-b]Pyrazole Scaffold. A New Potential Non-Classical Isostere of Indole and a Precursor of Push–Pull Dyes. Chem. Sci. 2021, 12, 12993–13000. [Google Scholar] [CrossRef]
- Azuma, Y.; Edwardson, T.G.W.; Hilvert, D. Tailoring Lumazine Synthase Assemblies for Bionanotechnology. Chem. Soc. Rev. 2018, 47, 3543–3557. [Google Scholar] [CrossRef]
- Ortiz, M.-C.; Portilla, J. Access to Five-Membered N-Heteroaromatic Compounds: Current Appoach Based on Microwave-Assisted Synthesis. In Targets Heterocyclic Systems; Attanasi, O.A.S.D., Ed.; Società Chimica Italiana: Italy, 2021; Volume 25, pp. 436–462. [Google Scholar]
- Joule, J.A.; Mills, K. 1,2-Azoles: Pyrazoles, Isothiazoles, Isoxazoles: Reactions and Synthesis. In Heterocyclic Chemistry, 5th ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2010; pp. 485–501. ISBN 9781405193658. [Google Scholar]
- Portilla, J. Recent Advances in the Chemistry of Pyrazolo[1,5-a]Pyrimidines. In Advances Heterocyclic Chemistry; Scriven, E.F.V., Ramsden, C.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 142, pp. 71–138. [Google Scholar]
- Tigreros, A.; Macías, M.; Portilla, J. Structural, Photophysical, and Water Sensing Properties of Pyrazolo[1,5-a]Pyrimidine-Triphenylamine Hybrid Systems. ChemPhotoChem 2022, 6, e202200133. [Google Scholar] [CrossRef]
- Quiroga, J.; Trilleras, J.; Insuasty, B.; Abonía, R.; Nogueras, M.; Cobo, J. Regioselective Formylation of Pyrazolo[3,4-b]Pyridine and Pyrazolo[1,5-a]Pyrimidine Systems Using Vilsmeier-Haack Conditions. Tetrahedron Lett. 2008, 49, 2689–2691. [Google Scholar] [CrossRef]
- Bravo, N.-F.; Cifuentes, C.; Ríos, M.-C.; Pérez, L.-J.; Portilla, J. Synthesis and Photophysical Properties of Conjugated Fluorophores with N-Heteroaromatic Rings. Asian J. Org. Chem. 2025, 14, e202400742. [Google Scholar] [CrossRef]
- Tigreros, A.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-a]Pyrimidinium Salts for Cyanide Sensing: A Performance and Sustainability Study of the Probes. ACS Sustain. Chem. Eng. 2021, 9, 12058–12069. [Google Scholar] [CrossRef]
- Chen, J.; Liu, W.; Ma, J.; Xu, H.; Wu, J.; Tang, X.; Fan, Z.; Wang, P. Synthesis and Properties of Fluorescence Dyes: Tetracyclic Pyrazolo[3,4-b]Pyridine-Based Coumarin Chromophores with Intramolecular Charge Transfer Character. J. Org. Chem. 2012, 77, 3475–3482. [Google Scholar] [CrossRef]
- García, M.; Romero, I.; Portilla, J. Synthesis of Fluorescent 1,7-Dipyridyl-Bis-Pyrazolo[3,4-b:4′,3′-e]Pyridines: Design of Reversible Chemosensors for Nanomolar Detection of Cu 2+. ACS Omega 2019, 4, 6757–6768. [Google Scholar] [CrossRef] [PubMed]
- Abet, V.; Nuñez, A.; Mendicuti, F.; Burgos, C.; Alvarez-Builla, J. A New Class of Pyrazolopyridine Nucleus with Fluorescent Properties, Obtained through Either a Radical or a Pd Arylation Pathway from N-Azinylpyridinium N-Aminides. J. Org. Chem. 2008, 73, 8800–8807. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Jain Kumar, S. A Comprehensive Review of N-Heterocycles as Cytotoxic Agents. Curr. Med. Chem. 2016, 23, 4338–4394. [Google Scholar] [CrossRef] [PubMed]
- Asati, V.; Anant, A.; Patel, P.; Kaur, K.; Gupta, G.D. Pyrazolopyrimidines as Anticancer Agents: A Review on Structural and Target-Based Approaches. Eur. J. Med. Chem. 2021, 225, 113781. [Google Scholar] [CrossRef]
- Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J.S.; Lin, W. Coumarin-Based Small-Molecule Fluorescent Chemosensors. Chem. Rev. 2019, 119, 10403–10519. [Google Scholar] [CrossRef]
- Terai, T.; Nagano, T. Small-Molecule Fluorophores and Fluorescent Probes for Bioimaging. Pflug. Arch. Eur. J. Physiol. 2013, 465, 347–359. [Google Scholar] [CrossRef]
- Kim, H.M.; Cho, B.R. Small-Molecule Two-Photon Probes for Bioimaging Applications. Chem. Rev. 2015, 115, 5014–5055. [Google Scholar] [CrossRef]
- Wu, L.; Liu, J.; Li, P.; Tang, B.; James, T.D. Two-Photon Small-Molecule Fluorescence-Based Agents for Sensing, Imaging, and Therapy within Biological Systems. Chem. Soc. Rev. 2021, 50, 702–734. [Google Scholar] [CrossRef]
- Jiao, X.; Li, Y.; Niu, J.; Xie, X.; Wang, X.; Tang, B. Small-Molecule Fluorescent Probes for Imaging and Detection of Reactive Oxygen, Nitrogen, and Sulfur Species in Biological Systems. Anal. Chem. 2018, 90, 533–555. [Google Scholar] [CrossRef]
- Ríos, M.-C.; Portilla, J. Recent Advances in Synthesis and Properties of Pyrazoles. Chemistry 2022, 4, 940–968. [Google Scholar] [CrossRef]
- Tigreros, A.; Portilla, J. Recent Progress in Chemosensors Based on Pyrazole Derivatives. RSC Adv. 2020, 10, 19693–19712. [Google Scholar] [CrossRef] [PubMed]
- Portilla, J. Current Advances in Synthesis of Pyrazole Derivatives: An Approach Toward Energetic Materials. J. Heterocycl. Chem. 2024, 61, 2026–2039. [Google Scholar] [CrossRef]
- Hemalatha K., K. R.H.; Pal, R.; Matada, G.S.P.; B, K.; I, A.; Aishwarya, N.V.S.S. Pyrazole, Pyrazoline, and Fused Pyrazole Derivatives: New Horizons in EGFR-Targeted Anticancer Agents. Chem. Biodivers. 2024, 21, e2024008. [Google Scholar] [CrossRef]
- Shaabani, A.; Nazeri, M.T.; Afshari, R. 5-Amino-Pyrazoles: Potent Reagents in Organic and Medicinal Synthesis. Mol. Divers. 2019, 23, 751–807. [Google Scholar] [CrossRef]
- Nair, A.R.; Sunil Kumar, Y.C.; Sivan, A. Synthesis and In-Depth Investigation of the Photophysical and Electrochemical Properties of Novel Pyrazole Cored D-A-D Molecules. Opt. Mater. 2022, 134, 113117. [Google Scholar] [CrossRef]
- Arias-Gómez, A.; Godoy, A.; Portilla, J. Functional Pyrazolo[1,5-a]Pyrimidines: Current Approaches in Synthetic Transformations and Uses as an Antitumor Scaffold. Molecules 2021, 26, 2708. [Google Scholar] [CrossRef]
- Devi Priya, D.; Nandhakumar, M.; Mohana Roopan, S. Pyrazolo[1,5-a]Pyridine: Recent Synthetic View on Crucial Heterocycles. Synth. Commun. 2020, 50, 3535–3562. [Google Scholar] [CrossRef]
- Donaire-Arias, A.; Montagut, A.M.; de la Bellacasa, R.P.; Estrada-Tejedor, R.; Teixidó, J.; Borrell, J.I. 1H-Pyrazolo[3,4-b]Pyridines: Biomedical Applications Synthesis and Biomedical Applications. Molecules 2022, 27, 2237. [Google Scholar] [CrossRef]
- Danel, A.; Gondek, E.; Kucharek, M.; Szlachcic, P.; Gut, A. 1H-Pyrazolo[3,4-b]Quinolines: Synthesis and Properties over 100 Years of Research. Molecules 2022, 27, 2775. [Google Scholar] [CrossRef]
- Atukuri, D. Pyrazolopyridine: An Efficient Pharmacophore in Recent Drug Design and Development. Chem. Biol. Drug Des. 2022, 100, 376–388. [Google Scholar] [CrossRef]
- Basir, N.H.; Ramle, A.Q.; Ng, M.P.; Tan, C.H.; Tiekink, E.R.T.; Sim, K.S.; Basirun, W.J.; Khairuddean, M. Discovery of Indoleninyl-Pyrazolo[3,4-b]Pyridines as Potent Chemotherapeutic Agents against Colorectal Cancer Cells. Bioorg. Chem. 2024, 146, 107256. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, T.; Hu, M.; Yang, Y.; Tang, M.; Deng, D.; Liu, K.; Fu, S.; Tan, Y.; Wang, H.; et al. Synthesis and Biological Evaluation of 6-(Pyrimidin-4-Yl)-1H-Pyrazolo[4,3-b]Pyridine Derivatives as Novel Dual FLT3/CDK4 Inhibitors. Bioorg. Chem. 2022, 121, 105669. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.A.; Halu, B.; Saundane, A.R.; Meti, R.S. Synthesis, Biological Validation, and Docking Studies of Novel Purine Derivatives Containing Pyridopyrimidine, Pyrazolopyridine, and Pyranonapthyridine Rings. Polycycl. Aromat. Compd. 2022, 42, 3694–3716. [Google Scholar] [CrossRef]
- Milišiūnaitė, V.; Arbačiauskienė, E.; Řezníčková, E.; Jorda, R.; Malínková, V.; Žukauskaitė, A.; Holzer, W.; Šačkus, A.; Kryštof, V. Synthesis and Anti-Mitotic Activity of 2,4- or 2,6-Disubstituted- and 2,4,6-Trisubstituted-2H-Pyrazolo[4,3-c]Pyridines. Eur. J. Med. Chem. 2018, 150, 908–919. [Google Scholar] [CrossRef]
- Sabat, M.; Wang, H.; Scorah, N.; Lawson, J.D.; Atienza, J.; Kamran, R.; Hixon, M.S.; Dougan, D.R. Design, Synthesis and Optimization of 7-Substituted-Pyrazolo[4,3-b]Pyridine ALK5 (Activin Receptor-like Kinase 5) Inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 1955–1961. [Google Scholar] [CrossRef]
- Metwally, N.H.; Deeb, E.A. Synthesis, Anticancer Assessment on Human Breast, Liver and Colon Carcinoma Cell Lines and Molecular Modeling Study Using Novel Pyrazolo[4,3-c]Pyridine Derivatives. Bioorg. Chem. 2018, 77, 203–214. [Google Scholar] [CrossRef]
- Braganza, J.F.; Bernier, L.; Botrous, I.; Collins, M.R.; Li, B.; McAlpine, I.; Ninkovic, S.; Ren, S.; Sach, N.; Tran-Dubé, M.; et al. Improved Cyclization Conditions to Prepare 6-Substituted Pyrazolo[1,5-a]Pyridines and Pyrazolo[1,5-a]Pyrazines Using Catalytic Ag(I) and Au(III) Salts. Tetrahedron Lett. 2015, 56, 5757–5760. [Google Scholar] [CrossRef]
- Mohan, D.C.; Ravi, C.; Rao, S.N.; Adimurthy, S. Copper-Mediated Synthesis of Pyrazolo[1,5-a]Pyridines through Oxidative Linkage of C–C/N–N Bonds. Org. Biomol. Chem. 2015, 13, 3556–3560. [Google Scholar] [CrossRef]
- Grošelj, U.; Pušavec, E.; Golobič, A.; Dahmann, G.; Stanovnik, B.; Svete, J. Synthesis of 1,5-Disubstituted-4-Oxo-4,5-Dihydro-1H-Pyrazolo[4,3-c]Pyridine-7-Carboxamides. Tetrahedron 2015, 71, 109–123. [Google Scholar] [CrossRef]
- Patel, J.B.; Malick, J.B. Pharmacological Properties of Tracazolate: A New Non-Benzodiazepine Anxiolytic Agent. Eur. J. Pharmacol. 1982, 78, 323–333. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, S.; Abadi, L.F.; Gaikwad, S.; Desai, D.; Bhutani, K.K.; Kulkarni, S.; Singh, I.P. Synthesis and in–Vitro Anti–HIV–1 Evaluation of Novel Pyrazolo[4,3-c]Pyridin–4–One Derivatives. Eur. J. Med. Chem. 2019, 183, 111714. [Google Scholar] [CrossRef] [PubMed]
- Razmienė, B.; Řezníčková, E.; Dambrauskienė, V.; Ostruszka, R.; Kubala, M.; Žukauskaitė, A.; Kryštof, V.; Šačkus, A.; Arbačiauskienė, E. Synthesis and Antiproliferative Activity of 2,4,6,7-Tetrasubstituted-2H-Pyrazolo[4,3-c]Pyridines. Molecules 2021, 26, 6747. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhang, L.; Hou, L.; Chen, F.; Liu, A.; Ji, R.; Wang, Q.; Yuan, C.; Ge, Y. A Fluorescent Probe with a Large Stokes Shift for Sensing Sulfite in Dry White Wine Based on Pyrazolo[1,5-a]Pyridine Fluorophore. Tetrahedron Lett. 2021, 76, 153210. [Google Scholar] [CrossRef]
- Agheli, Z.; Pordel, M.; Beyramabadi, S.A. Synthesis, Characterization, Optical Properties, Computational Characterizations, QTAIM Analysis and Cyclic Voltammetry of New Organic Dyes for Dye-Sensitized Solar Cells. J. Mol. Struct. 2020, 1202, 127228. [Google Scholar] [CrossRef]
- Wang, B.; Su, F.; Jia, J.; Wu, F.; Zhang, S.-Y.; Ge, Y.-Q.; Wang, J.; Wang, J.-W. Synthesis of 5-Cyanopyrazolo[1,5-a]Pyridine Derivatives via Tandem Reaction and Their Optical Properties. Tetrahedron Lett. 2015, 56, 425–429. [Google Scholar] [CrossRef]
- Kim, H.; Jo, A.; Ha, J.; Lee, Y.; Hwang, Y.S.; Park, S.B. A Pyrazolo[1,5-a]Pyridine-Fused Pyrimidine Based Novel Fluorophore and Its Bioapplication to Probing Lipid Droplets. Chem. Comm. 2016, 52, 7822–7825. [Google Scholar] [CrossRef]
- Yan, P.; Duan, G.; Ji, R.; Ge, Y. A Simple and Efficient Synthesis of New Fluorophore 4-Hydroxy Pyrazolo[1,5-a]Pyridines through a Tandem Reaction. Tetrahedron Lett. 2018, 59, 2426–2429. [Google Scholar] [CrossRef]
- Abumelha, H.M.; Bayazeed, A.; Alaysuy, O.; Alsoliemy, A.; Alharbi, A.; Habeebullah, T.M.; El-Metwaly, N.M. Synthesis, Photophysical Properties and DFT Studies of 2-(3-Cyano-4-((2-(4,6-Dimethyl-5-Nitro-1H-Pyrazolo[3,4-b]Pyridin-3-Yl)Hydrazono)Methyl)-5,5-Dimethylfuran-2(5H)-Ylidene)Malononitrile Dye. J. Saudi Chem. Soc. 2022, 26, 101502. [Google Scholar] [CrossRef]
- Orrego-Hernández, J.; Lizarazo, C.; Cobo, J.; Portilla, J. Pyrazolo-Fused 4-Azafluorenones as Key Reagents for the Synthesis of Fluorescent Dicyanovinylidene-Substituted Derivatives. RSC Adv. 2019, 9, 27318–27323. [Google Scholar] [CrossRef]
- Krishnan, U.; Manickam, S.; Iyer, S.K. BF3 Detection by Pyrazolo-Pyridine Based Fluorescent Probe and Applications in Bioimaging and Paper Strip Analysis. J. Mol. Liq. 2023, 385, 122413. [Google Scholar] [CrossRef]
- Nam, N.L.; Grandberg, I.I.; Sorokin, V.I. Pyrazolopyrimidines Based on 5-Aminopyrazoles Unsubstituted at the Position 1. Chem. Heterocycl. Compd. 2002, 38, 1371–1374. [Google Scholar] [CrossRef]
- Hassanzadeh-Afruzi, F.; Amiri-Khamakani, Z.; Saeidirad, M.; Salehi, M.M.; Taheri-Ledari, R.; Maleki, A. Facile Synthesis of Pyrazolopyridine Pharmaceuticals under Mild Conditions Using an Algin-Functionalized Silica-Based Magnetic Nanocatalyst (Alg@SBA-15/Fe3O4). RSC Adv. 2023, 13, 10367–10378. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, H.A.; Saleh, T.S.; El-Zahabi, H.S.A. Facile Synthesis and In-Vitro Antitumor Activity of Some Pyrazolo[3,4-b]Pyridines and Pyrazolo[1,5-a]Pyrimidines Linked to a Thiazolo[3,2-a]Benzimidazole Moiety. Arch. Pharm. 2010, 343, 24–30. [Google Scholar] [CrossRef]
- Ghaedi, A.; Bardajee, G.R.; Mirshokrayi, A.; Mahdavi, M.; Shafiee, A.; Akbarzadeh, T. Facile, Novel and Efficient Synthesis of New Pyrazolo[3,4-b]Pyridine Products from Condensation of Pyrazole-5-Amine Derivatives and Activated Carbonyl Groups. RSC Adv. 2015, 5, 89652–89658. [Google Scholar] [CrossRef]
- Tigreros, A.; Portilla, J. Ecological and Economic Efforts in the Development of Molecular Sensors for the Optical Detection of Cyanide Ions. Eur. J. Org. Chem. 2022, 2022, e202200249. [Google Scholar] [CrossRef]
- Deore, R.; Dingore, K.; Jachak, M. An Efficient Synthesis and Photophysical Properties of 1H-Pyrazolo[3,4-b]Pyridine and Pyrazolo[3,4-b][1,8]Naphthyridines. J. Fluoresc. 2015, 25, 1549–1557. [Google Scholar] [CrossRef]
- Supranovich, V.I.; Vorob’ev, A.Y.; Borodkin, G.I.; Gatilov, Y.V.; Shubin, V.G. Study on Selectivity in the Reaction of 2-Substituted Pyridinium-N-Imines with Dimethyl Acetylenedicarboxylate. Tetrahedron Lett. 2016, 57, 1093–1096. [Google Scholar] [CrossRef]
- Miliutina, M.; Janke, J.; Chirkina, E.; Hassan, S.; Ejaz, S.A.; Khan, S.U.; Iqbal, J.; Friedrich, A.; Lochbrunner, S.; Ivanov, A.; et al. Domino Reactions of Chromone-3-carboxylic Acids with Aminoheterocycles: Synthesis of Heteroannulated Pyrido[2,3-c]Coumarins and Their Optical and Biological Activity. Eur. J. Org. Chem. 2017, 2017, 7148–7159. [Google Scholar] [CrossRef]
- Charris-Molina, A.; Castillo, J.C.; Macías, M.; Portilla, J. One-Step Synthesis of Fully Functionalized Pyrazolo[3,4-b]Pyridines via Isobenzofuranone Ring Opening. J. Org. Chem. 2017, 82, 12674–12681. [Google Scholar] [CrossRef]
- Manickam, S.; Balijapalli, U.; Sawminathan, S.; Samuelrajamani, P.; Kamaraj, S.; Shanmugam, V.; Ramalingam, S.; Iyer, S.K. One-Pot Synthesis and Photophysical Studies of Styryl-Based Benzo[f]Pyrazolo[3,4-b]Quinoline and Indeno[2,1-b]Pyrazolo[4,3-e]Pyridines. Eur. J. Org. Chem. 2018, 2018, 6204–6216. [Google Scholar] [CrossRef]
- Alizadeh, A.; Farajpour, B.; Mohammadi, S.S.; Sedghi, M.; Naderi-Manesh, H.; Janiak, C.; Knedel, T. Design and Synthesis of Coumarin-Based Pyrazolopyridines as Biocompatible Fluorescence Dyes for Live-Cell Imaging. ChemistrySelect 2020, 5, 9362–9369. [Google Scholar] [CrossRef]
- Ma, W.; Wang, Y.; Gao, J.; Sun, R.; Ge, J.-F. Synthesis and Optical Properties of Bispyrazolopyridine Derivatives. Dyes Pigm. 2020, 181, 108569. [Google Scholar] [CrossRef]
- Vidali, V.P.; Nigianni, G.; Athanassopoulou, G.D.; Canko, A.; Mavroidi, B.; Matiadis, D.; Pelecanou, M.; Sagnou, M. Synthesis of Novel Pyrazolo[3,4-b]Pyridines with Affinity for β-Amyloid Plaques. Molbank 2022, 2022, M1343. [Google Scholar] [CrossRef]
- Shuvalov, V.Y.; Vlasova, E.Y.; Zheleznova, T.Y.; Fisyuk, A.S. New One-Pot Synthesis of 4-Arylpyrazolo[3,4-b]Pyridin-6-Ones Based on 5-Aminopyrazoles and Azlactones. Beilstein J. Org. Chem. 2023, 19, 1155–1160. [Google Scholar] [CrossRef] [PubMed]
- Kolbus, A.; Uchacz, T.; Danel, A.; Gałczyńska, K.; Moskwa, P.; Kolek, P. Fluorescent Sensor Based on 1H-Pyrazolo[3,4-b]Quinoline Derivative for Detecting Zn2+ Cations. Molecules 2024, 29, 823. [Google Scholar] [CrossRef]
- Kolbus, A.; Danel, A.; Moskwa, P.; Szary, K.; Uchacz, T. Pyrazoloquinoline-Based Fluorescent Sensor for the Detection of Pb2+, Zn2+ and the Realization of an OR-Type Optical Logic Gate. Dyes Pigm. 2024, 223, 111956. [Google Scholar] [CrossRef]
- Redon, S.; Vanelle, P. Simple and Green Synthesis of 3-acyl-pyrazolo[1,5-a]Pyridines: [3+2] through Cycloaddition of N-aminopyridines on Enaminones. J. Heterocycl. Chem. 2024, 61, 1200–1205. [Google Scholar] [CrossRef]
- Al-Azmi, A. Pyrazolo[1,5-a]Pyrimidines: A Close Look into Their Synthesis and Applications. Curr. Org. Chem. 2019, 23, 721–743. [Google Scholar] [CrossRef]
- Salem, M.A.; Helal, M.H.; Gouda, M.A.; Abd EL-Gawad, H.H.; Shehab, M.A.M.; El-Khalafawy, A. Recent Synthetic Methodologies for Pyrazolo[1,5-a]Pyrimidine. Synth. Commun. 2019, 49, 1750–1776. [Google Scholar] [CrossRef]
- Ghelani, S.M.; Naliapara, Y.T. Design, Multicomponent Synthesis and Characterization of Diversely Substituted Pyrazolo[1,5-a]Pyrimidine Derivatives. J. Heterocycl. Chem. 2016, 53, 1843–1851. [Google Scholar] [CrossRef]
- Cherukupalli, S.; Karpoormath, R.; Chandrasekaran, B.; Hampannavar, G.A.; Thapliyal, N.; Palakollu, V.N. An Insight on Synthetic and Medicinal Aspects of Pyrazolo[1,5-a]Pyrimidine Scaffold. Eur. J. Med. Chem. 2017, 126, 298–352. [Google Scholar] [CrossRef] [PubMed]
- George, C.F.P. Pyrazolopyrimidines. Lancet 2001, 358, 1623–1626. [Google Scholar] [CrossRef] [PubMed]
- Elnagdi, M.H.; Elmoghayar, M.R.H.; Elgemeie, G.E.H. Chemistry of Pyrazolopyrimidines. In Advances Heterocyclic Chemistry; Katritzky, A.R., Ed.; Elsevier: Amsterdam, The Netherlands, 1987; Volume 41, pp. 319–376. [Google Scholar]
- Yang, X.-Z.; Sun, R.; Guo, X.; Wei, X.-R.; Gao, J.; Xu, Y.-J.; Ge, J.-F. The Application of Bioactive Pyrazolopyrimidine Unit for the Construction of Fluorescent Biomarkers. Dyes Pigm. 2020, 173, 107878. [Google Scholar] [CrossRef]
- Cherukupalli, S.; Hampannavar, G.A.; Chinnam, S.; Chandrasekaran, B.; Sayyad, N.; Kayamba, F.; Reddy Aleti, R.; Karpoormath, R. An Appraisal on Synthetic and Pharmaceutical Perspectives of Pyrazolo[4,3-d]Pyrimidine Scaffold. Bioorg. Med. Chem. 2018, 26, 309–339. [Google Scholar] [CrossRef]
- Squarcialupi, L.; Catarzi, D.; Varano, F.; Betti, M.; Falsini, M.; Vincenzi, F.; Ravani, A.; Ciancetta, A.; Varani, K.; Moro, S.; et al. Structural Refinement of Pyrazolo[4,3-d]Pyrimidine Derivatives to Obtain Highly Potent and Selective Antagonists for the Human A3 Adenosine Receptor. Eur. J. Med. Chem. 2016, 108, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.; Quadery, T.M.; Bai, R.; Luckett-Chastain, L.R.; Hamel, E.; Ihnat, M.A.; Gangjee, A. Novel Pyrazolo[4,3-d]Pyrimidine Microtubule Targeting Agents (MTAs): Synthesis, Structure–Activity Relationship, in Vitro and in Vivo Evaluation as Antitumor Agents. Bioorg. Med. Chem. Lett. 2021, 41, 127923. [Google Scholar] [CrossRef]
- Hafez, H.N.; El-Gazzar, A.-R.B.A.; Al-Hussain, S.A. Novel Pyrazole Derivatives with Oxa/Thiadiazolyl, Pyrazolyl Moieties and Pyrazolo[4,3-d]Pyrimidine Derivatives as Potential Antimicrobial and Anticancer Agents. Bioorg. Med. Chem. Lett. 2016, 26, 2428–2433. [Google Scholar] [CrossRef]
- Wang, B.S.; Huang, X.; Chen, L.Z.; Liu, M.M.; Shi, J.B. Design and Synthesis of Novel Pyrazolo[4,3- d ]Pyrimidines as Potential Therapeutic Agents for Acute Lung Injury. J. Enzyme Inhib. Med. Chem. 2019, 34, 1121–1130. [Google Scholar] [CrossRef]
- Abdellatif, K.R.A.; Bakr, R.B. New Advances in Synthesis and Clinical Aspects of Pyrazolo[3,4-d]Pyrimidine Scaffolds. Bioorg. Chem. 2018, 78, 341–357. [Google Scholar] [CrossRef]
- Abdelgawad, M.A.; Bakr, R.B.; Alkhoja, O.A.; Mohamed, W.R. Design, Synthesis and Antitumor Activity of Novel Pyrazolo[3,4-d]Pyrimidine Derivatives as EGFR-TK Inhibitors. Bioorg. Chem. 2016, 66, 88–96. [Google Scholar] [CrossRef]
- Nassar, I.F.; Atta-Allah, S.R.; Elgazwy, A.-S.S.H. A Convenient Synthesis and Molecular Modeling Study of Novel Pyrazolo[3,4-d]Pyrimidine and Pyrazole Derivatives as Anti-Tumor Agents. J. Enzyme Inhib. Med. Chem. 2015, 30, 396–405. [Google Scholar] [CrossRef] [PubMed]
- El-Morsy, A.M.; El-Sayed, M.S.; Abulkhair, H.S. Synthesis, Characterization and In Vitro Antitumor Evaluation of New Pyrazolo[3,4-d]Pyrimidine Derivatives. Open J. Med. Chem. 2017, 7, 1–17. [Google Scholar] [CrossRef]
- Reddy, B.N.; Ruddarraju, R.R.; Kiran, G.; Pathak, M.; Reddy, A.R.N. Novel Pyrazolo[3,4-d]Pyrimidine-Containing Amide Derivatives: Synthesis, Molecular Docking, In Vitro and In Vivo Antidiabetic Activity. ChemistrySelect 2019, 4, 10072–10078. [Google Scholar] [CrossRef]
- Atatreh, N.; Youssef, A.M.; Ghattas, M.A.; Al Sorkhy, M.; Alrawashdeh, S.; Al-Harbi, K.B.; El-Ashmawy, I.M.; Almundarij, T.I.; Abdelghani, A.A.; Abd-El-Aziz, A.S. Anti-Inflammatory Drug Approach: Synthesis and Biological Evaluation of Novel Pyrazolo[3,4-d]Pyrimidine Compounds. Bioorg. Chem. 2019, 86, 393–400. [Google Scholar] [CrossRef]
- Gilles, P.; Kashyap, R.S.; Freitas, M.J.; Ceusters, S.; Van Asch, K.; Janssens, A.; De Jonghe, S.; Persoons, L.; Cobbaut, M.; Daelemans, D.; et al. Design, Synthesis and Biological Evaluation of Pyrazolo[3,4-d]Pyrimidine-Based Protein Kinase D Inhibitors. Eur. J. Med. Chem. 2020, 205, 112638. [Google Scholar] [CrossRef]
- Ballesteros-Casallas, A.; Paulino, M.; Vidossich, P.; Melo, C.; Jiménez, E.; Castillo, J.-C.; Portilla, J.; Miscione, G. Pietro Synthesis of 2,7-Diarylpyrazolo [1,5-a] Pyrimidine Derivatives with Antitumor Activity. Theoretical Identification of Targets. Eur. J. Med. Chem. Rep. 2022, 4, 100028. [Google Scholar] [CrossRef]
- Dwyer, M.P.; Keertikar, K.; Paruch, K.; Alvarez, C.; Labroli, M.; Poker, C.; Fischmann, T.O.; Mayer-Ezell, R.; Bond, R.; Wang, Y.; et al. Discovery of Pyrazolo[1,5-a]Pyrimidine-Based Pim Inhibitors: A Template-Based Approach. Bioorg. Med. Chem. Lett. 2013, 23, 6178–6182. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhou, Y.; Zhang, Q.; Han, T.; Tang, C.; Fan, W. Pyrazolo[1,5-a]Pyrimidine Based Trk Inhibitors: Design, Synthesis, Biological Activity Evaluation. Bioorg. Med. Chem. Lett. 2021, 31, 127712. [Google Scholar] [CrossRef]
- Ismail, N.S.M.; Ali, G.M.E.; Ibrahim, D.A.; Elmetwali, A.M. Medicinal Attributes of Pyrazolo[1,5-a]Pyrimidine Based Scaffold Derivatives Targeting Kinases as Anticancer Agents. Futur. J. Pharm. Sci. 2016, 2, 60–70. [Google Scholar] [CrossRef]
- Phillipson, L.J.; Segal, D.H.; Nero, T.L.; Parker, M.W.; Wan, S.S.; De Silva, M.; Guthridge, M.A.; Wei, A.H.; Burns, C.J. Discovery and SAR of Novel Pyrazolo[1,5-a]Pyrimidines as Inhibitors of CDK9. Bioorg. Med. Chem. 2015, 23, 6280–6296. [Google Scholar] [CrossRef]
- Naik, N.S.; Shastri, L.A.; Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Joshi, S.D.; Sunagar, V. Synthesis of Novel Aryl and Coumarin Substituted Pyrazolo[1,5-a]Pyrimidine Derivatives as Potent Anti-Inflammatory and Anticancer Agents. Chem. Comm. 2020, 30, 100550. [Google Scholar] [CrossRef]
- Deshmukh, S.; Dingore, K.; Gaikwad, V.; Jachak, M. An Efficient Synthesis of Pyrazolo[1,5-a]Pyrimidines and Evaluation of Their Antimicrobial Activity. J. Chem. Sci. 2016, 128, 1459–1468. [Google Scholar] [CrossRef]
- Gregg, B.T.; Tymoshenko, D.O.; Razzano, D.A.; Johnson, M.R. Pyrazolo[1,5-a]Pyrimidines. Identification of the Privileged Structure and Combinatorial Synthesis of 3-(Hetero)Arylpyrazolo[1,5-a]Pyrimidine-6- Carboxamides. J. Comb. Chem. 2007, 9, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Damont, A.; Médran-Navarrete, V.; Cacheux, F.; Kuhnast, B.; Pottier, G.; Bernards, N.; Marguet, F.; Puech, F.; Boisgard, R.; Dollé, F. Novel Pyrazolo[1,5-a]Pyrimidines as Translocator Protein 18 KDa (TSPO) Ligands: Synthesis, in Vitro Biological Evaluation, [18F]-Labeling, and in Vivo Neuroinflammation PET Images. J. Med. Chem. 2015, 58, 7449–7464. [Google Scholar] [CrossRef]
- García-Olave, M.; Tigreros, A.; Iglesias, B.A.; Portilla, J. Synthesis and Photophysical Properties of Pyrazolo[1,5-a]Pyrimidines Containing D−π−A Architecture Similar to Prodan. J. Mol. Struct. 2024, 1317, 139142. [Google Scholar] [CrossRef]
- Abdelazeem, A.H.; Abdelatef, S.A.; El-Saadi, M.T.; Omar, H.A.; Khan, S.I.; McCurdy, C.R.; El-Moghazy, S.M. Novel Pyrazolopyrimidine Derivatives Targeting COXs and INOS Enzymes; Design, Synthesis and Biological Evaluation as Potential Anti-Inflammatory Agents. Eur. J. Pharm. Sci. 2014, 62, 197–211. [Google Scholar] [CrossRef]
- Stefanello, F.S.; Kappenberg, Y.G.; Luz, F.M.; Araújo, J.N.; Zanatta, N.; Martins, M.A.P.; Iglesias, B.A.; Bonacorso, H.G. Thermal and Oxidative Syntheses, Structure, and Optical Properties of 2,6,8-Trisubstituted 1,2,3-Triazolo[4′,5′:3,4]Pyrazolo[1,5-a]Pyrimidin-2-Ium-1(3)-Ides. J. Mol. Struct. 2023, 1293, 136220. [Google Scholar] [CrossRef]
- Tigreros, A.; Castillo, J.C.; Portilla, J. Cyanide Chemosensors Based on 3-Dicyanovinylpyrazolo[1,5-a]Pyrimidines: Effects of Peripheral 4-Anisyl Group Substitution on the Photophysical Properties. Talanta 2020, 215, 120905. [Google Scholar] [CrossRef]
- Tigreros, A.; Rosero, H.A.; Castillo, J.C.; Portilla, J. Integrated Pyrazolo[1,5-a]Pyrimidine–Hemicyanine System as a Colorimetric and Fluorometric Chemosensor for Cyanide Recognition in Water. Talanta 2019, 196, 395–401. [Google Scholar] [CrossRef]
- Tigreros, A.; Macías, M.; Portilla, J. Photophysical and Crystallographic Study of Three Integrated Pyrazolo[1,5-a]Pyrimidine–Triphenylamine Systems. Dyes Pigm. 2021, 184, 108730. [Google Scholar] [CrossRef]
- Stefanello, F.S.; Kappenberg, Y.G.; Araújo, J.N.; Dozza, B.; Nogara, P.A.; Rocha, J.B.T.; Zanatta, N.; Martins, M.A.P.; Bonacorso, H.G.; Iglesias, B.A. Bromo-Substituted Diazenyl-pyrazolo[1,5-a]Pyrimidin-2-amines: Sonogashira Cross-Coupling Reaction, Photophysical Properties, Bio-interaction and HSA Light-Up Sensor. ChemBioChem 2022, 23, e202200248. [Google Scholar] [CrossRef]
- Mohammed, S.; Vishwakarma, R.A.; Bharate, S.B. Iodine Catalyzed Oxidative Synthesis of Quinazolin-4(3H-Ones and Pyrazolo[4,3-d]Pyrimidin-7(6H)-Ones via Amination of Sp3 C–H Bond. J. Org. Chem. 2015, 80, 6915–6921. [Google Scholar] [CrossRef] [PubMed]
- Şener, N.; Erişkin, S.; Yavuz, S.; Şener, İ. Synthesis, Characterization, Solvatochromic Properties, and Antimicrobial-radical Scavenging Activities of New Diazo Dyes Derived from Pyrazolo[1,5-a]Pyrimidine. J. Heterocycl. Chem. 2017, 54, 3538–3548. [Google Scholar] [CrossRef]
- Castillo, J.-C.; Tigreros, A.; Portilla, J. 3-Formylpyrazolo[1,5-a]Pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. J. Org. Chem. 2018, 83, 10887–10897. [Google Scholar] [CrossRef] [PubMed]
- Singsardar, M.; Sarkar, R.; Majhi, K.; Sinha, S.; Hajra, A. Brønsted Acidic Ionic Liquid-Catalyzed Regioselective Synthesis of Pyrazolopyrimidines and Their Photophysical Properties. ChemistrySelect 2018, 3, 1404–1410. [Google Scholar] [CrossRef]
- Tigreros, A.; Aranzazu, S.-L.; Bravo, N.-F.; Zapata-Rivera, J.; Portilla, J. Pyrazolo[1,5-a]Pyrimidines Based Fluorophores: A Comprehensive Theoretical-Experimental Study. RSC Adv. 2020, 10, 39542–39552. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Y.; Lv, L.; Li, Z. Regioselective Synthesis of Emission Color-Tunable Pyrazolo[1,5-a]Pyrimidines with β,β-Difluoro Peroxides as 1,3-Bis-Electrophiles. Adv. Synth. Catal. 2021, 363, 3233–3239. [Google Scholar] [CrossRef]
- Squarcialupi, L.; Betti, M.; Catarzi, D.; Varano, F.; Falsini, M.; Ravani, A.; Pasquini, S.; Vincenzi, F.; Salmaso, V.; Sturlese, M.; et al. The Role of 5-Arylalkylamino- and 5-Piperazino- Moieties on the 7-Aminopyrazolo[4,3-d]Pyrimidine Core in Affecting Adenosine A1 and A2 Receptor Affinity and Selectivity Profiles. J. Enzyme Inhib. Med. Chem. 2017, 32, 248–263. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, S.; Li, Z.; Fu, Y.; Wang, G.; Zhang, J.; Wu, X. Design, Synthesis, Biological Evaluation and Molecular Modeling of Novel 1H-Pyrazolo[3,4-d]Pyrimidine Derivatives as BRAFV600E and VEGFR-2 Dual Inhibitors. Eur. J. Med. Chem. 2018, 155, 210–228. [Google Scholar] [CrossRef]
- Shi, J.B.; Chen, L.Z.; Wang, B.S.; Huang, X.; Jiao, M.M.; Liu, M.M.; Tang, W.J.; Liu, X.H. Novel Pyrazolo[4,3-d]Pyrimidine as Potent and Orally Active Inducible Nitric Oxide Synthase (INOS) Dimerization Inhibitor with Efficacy in Rheumatoid Arthritis Mouse Model. J. Med. Chem. 2019, 62, 4013–4031. [Google Scholar] [CrossRef]
- Hassaneen, H.M.; Saleh, F.M.; Abdallah, T.A.; Mohamed, Y.S.; Awad, E.M. Synthesis, Reactions, and Antimicrobial Activity of Some Novel Pyrazolo[3,4-d]Pyrimidine, Pyrazolo[4,3-e][1,2,4]Triazolo[1,5-c]Pyrimidine, and Pyrazolo[4,3-e][1,2,4]Triazolo[3,4-c]Pyrimidine Derivatives. J. Heterocycl. Chem. 2020, 57, 892–912. [Google Scholar] [CrossRef]
- Stefanello, F.S.; Kappenberg, Y.G.; Araújo, J.N.; Franceschini, S.Z.; Martins, M.A.P.; Zanatta, N.; Iglesias, B.A.; Bonacorso, H.G. Trifluoromethyl-Substituted Aryldiazenyl-Pyrazolo[1,5-a]Pyrimidin-2-Amines: Regioselective Synthesis, Structure, and Optical Properties. J. Fluor. Chem. 2022, 255–256, 109967. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, Y.; Wang, L.; Wu, T.; Yin, W.; Wang, J.; Xue, Y.; Qin, Q.; Sun, Y.; Yang, H.; et al. Design, Synthesis, and Biological Evaluation of Novel Pyrazolo [3,4-d]Pyrimidine Derivatives as Potent PLK4 Inhibitors for the Treatment of TRIM37-Amplified Breast Cancer. Eur. J. Med. Chem. 2022, 238, 114424. [Google Scholar] [CrossRef]
- Tigreros, A.; Aranzazu, S.-L.; Ríos, M.-C.; Portilla, J. Pyrazolo[1,5-a]Pyrimidine–Dioxaborinine Hybrid Dyes: Synthesis and Substituent Effect in the Photophysical Properties. Eur. J. Org. Chem. 2023, 26, e202300089. [Google Scholar] [CrossRef]
- Aranzazu, S.L.; Tigreros, A.; Arias-Gómez, A.; Zapata-Rivera, J.; Portilla, J. BF3-Mediated Acetylation of Pyrazolo[1,5-a]Pyrimidines and Other π-Excedent (N-Hetero)Arenes. J. Org. Chem. 2022, 87, 9839–9850. [Google Scholar] [CrossRef]
- Mahnashi, M.; Alshahrani, M.M.; Al Ali, A.; Asiri, A.; Abou-Salim, M.A. Novel Glu-Based Pyrazolo[3,4-d]Pyrimidine Analogues: Design, Synthesis and Biological Evaluation as DHFR and TS Dual Inhibitors. Enzym. Inhib. Med. Chem. 2023, 38, 2203879. [Google Scholar] [CrossRef]
- Stefanello, F.S.; Kappenberg, Y.G.; Araújo, J.N.; Gritzenco, F.; Luz, F.M.; Martins, M.A.P.; Zanatta, N.; Iglesias, B.A.; Bonacorso, H.G. 3,7-Bis(Trifluoromethyl)-2-Methylpyrazolo[1,5-a]Pyrimidines: Sequential Synthesis via Iodination (NIS)/Trifluoromethylation (MFSDA) Reactions and Photoluminescent Behavior. J. Mol. Struct. 2024, 1311, 138350. [Google Scholar] [CrossRef]
- Niko, Y.; Kawauchi, S.; Konishi, G. Solvatochromic Pyrene Analogues of Prodan Exhibiting Extremely High Fluorescence Quantum Yields in Apolar and Polar Solvents. Chem. Eur. J. 2013, 19, 9760–9765. [Google Scholar] [CrossRef]
- Chung, C.-Y.; Li, S.-M.; Zeng, W.-Z.; Uramaru, N.; Huang, G.-J.; Juang, S.-H.; Wong, F.F. Synthesis, Design, and Antiproliferative Evaluation of 6-(N-Substituted-Methyl)Pyrazolo[3,4-d]Pyrimidines as the Potent Anti-Leukemia Agents. Bioorg. Chem. 2024, 148, 107424. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz, S.; Portilla, J. Pyrazolopyridines and Pyrazolopyrimidines as Functional Dipolar Scaffolds: An Approach Regarding Synthesis and Photophysics. Chemistry 2025, 7, 106. https://doi.org/10.3390/chemistry7040106
Cruz S, Portilla J. Pyrazolopyridines and Pyrazolopyrimidines as Functional Dipolar Scaffolds: An Approach Regarding Synthesis and Photophysics. Chemistry. 2025; 7(4):106. https://doi.org/10.3390/chemistry7040106
Chicago/Turabian StyleCruz, Silvia, and Jaime Portilla. 2025. "Pyrazolopyridines and Pyrazolopyrimidines as Functional Dipolar Scaffolds: An Approach Regarding Synthesis and Photophysics" Chemistry 7, no. 4: 106. https://doi.org/10.3390/chemistry7040106
APA StyleCruz, S., & Portilla, J. (2025). Pyrazolopyridines and Pyrazolopyrimidines as Functional Dipolar Scaffolds: An Approach Regarding Synthesis and Photophysics. Chemistry, 7(4), 106. https://doi.org/10.3390/chemistry7040106