Thiol-Epoxy Click Chemistry: The Synthesis of Vicinal Amino Alcohols Containing a 1,2,4-Triazole Ring
Abstract
:1. Introduction
2. Materials and Methods
- 4-Propyl-5-(thiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (1b). Yield 84%, white solid, m.p. 135 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 13.77 (s, 1H, NH), 7.63 (dd, J = 5.1, 1.1 Hz, 1Hthph), 7.52 (dd, J = 3.7, 1.1 Hz, 1Hthph), 7.18 (dd, J = 5.1, 3.7 Hz, 1Hthph), 4.19–4.03 (m, 2H, NCH2), 1.84–1.67 (m, 2H, CH2CH3), 0.97 (t, J = 7.4 Hz, 3H, CH2CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 167.4 (C=S), 145.2 (C=N), 128.4 (CH=), 127.8 (CH=), 127.5 (CH=), 126.8, 45.1 (NCH2), 21.1 (CH2), 10.6 (CH3). IRνmax = 3094; 3083; 3062; 3007; 2959; 2927; 2911; 2870; 2819; 2793; 2758; 2723; 2683; 2584; 2574; 1792; 1719; 1648; 1623; 1571; 1544; 1515; 1480; 1459; 1443; 1433; 1401; 1373; 1353; 1324; 1300; 1283; 1253; 1230; 1218; 1205; 1145; 1103; 1086; 1071; 1060; 1035; 1014; 951; 942; 895; 868; 854; 846; 824; 780; 759; 750; 742; 727; 705; 695; 669; 660; 655; 577; 568; 493; 434; 423 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C9H12N3S+ 226.0473; Found 226.0473.
- 5-(4-Bromophenyl)-4-cyclohexyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (1c). Yield 89%, white solid, m.p. 198 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 13.72 (s, 1H, NH), 7.74–7.58 (m, 2Harom), 7.46–7.35 (m, 2Harom), 4.39–4.17 (m, 1H, NCH), 2.38–1.91 (m, 2H, Cy), 1.86–1.67 (m, 4H, Cy), 1.67–1.53 (m, 1H, Cy), 1.37–1.19 (m, 2H, Cy), 1.16–0.99 (m, 1H, Cy). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 166.5 (C=S), 149.8 (C=N), 131.4 (2*CH=), 131.1 (2*CH=), 126.1, 124.3, 56.8 (NCH), 29.5 (2*CH2), 25.4 (2*CH2), 24.4 (CH2). IRνmax = 3091; 3069; 3059; 3025; 2980; 2931; 2894; 2863; 2854; 2824; 2779; 2747; 2689; 1600; 1575; 1544; 1500; 1474; 1450; 1442; 1409; 1383; 1340; 1307; 1289; 1281; 1256; 1242; 1188; 1151; 1141; 1116; 1097; 1085; 1066; 1057; 1010; 996; 970; 942; 925; 896; 855; 832; 819; 793; 782; 759; 728; 719; 706; 670; 666; 629; 604; 539; 509; 484; 461; 452; 432; 420; 414 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C14H1779BrN3S+ 338.0327; Found 338.0327.
- 5-(4-Bromophenyl)-4-phenethyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (1d). Yield 81%, white solid, m.p. 178 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 13.83 (s, 1H, NH), 7.61–7.54 (m, 2Harom), 7.31–7.25 (m, 2Harom), 7.20–7.11 (m, 3Harom), 7.04–6.98 (m, 2Harom), 4.27–4.17 (m, 2H, NCH2), 3.06–2.98 (m, 2H, CH2Ph). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 167.1 (C=S), 149.9 (C=N), 136.9, 131.4 (2*CH=), 129.9 (2*CH), 128.4 (2*CH=), 128.0 (2*CH=), 126.1, 125.0, 124.0, 45.0 (NCH2), 33.1 (CH2). IRνmax = 3120; 3084; 3042; 3030; 2984; 2953; 2937; 2908; 2868; 2841; 2770; 1604; 1558; 1503; 1473; 1443; 1404; 1393; 1372; 1352; 1333; 1322; 1275; 1200; 1189; 1177; 1139; 1104; 1078; 1061; 1031; 1023; 1010; 968; 944; 925; 900; 836; 829; 777; 762; 754; 748; 731; 719; 699; 675; 659; 623; 601; 555; 538; 493; 455; 445; 417; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C16H1579BrN3S+ 360.0170; Found 360.0170.
- 4-Allyl-5-(2-iodophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (1l). Yield 88%, white solid, m.p. 145 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 13.84 (s, 1H, NH), 7.96 (dd, J = 8.0, 1.1 Hz, 1Harom), 7.50 (td, J = 7.5, 1.1 Hz, 1Harom), 7.41 (dd, J = 7.7, 1.8 Hz, 1Harom), 7.28 (td, J = 7.7, 1.7 Hz, 1Harom), 5.69 (ddt, J = 16.1, 10.3, 5.7 Hz, 1H, CH=), 5.01 (dd, J = 10.3, 1.4 Hz, 1Ha, =CH2), 4.80 (dt, J = 17.1, 1.6 Hz, 1Hb, =CH2), 4.42 (dt, J = 6.0, 1.6 Hz, 2H, NCH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 166.7 (C=S), 151.3 (C=N), 138.8 (CH=), 131.8 (CH=), 131.5 (CH=), 130.5 (CH=), 130.4, 127.8 (CH=), 117.9 (=CH2), 98.9 (=CI), 45.7 (NCH2). IRνmax = 3083; 3058; 3037; 2967; 2923; 2910; 2850; 2836; 2754; 2650; 1644; 1624; 1596; 1561; 1528; 1498; 1459; 1442; 1425; 1395; 1354; 1331; 1293; 1262; 1250; 1197; 1159; 1147; 1099; 1077; 1018; 993; 982; 949; 914; 871; 779; 754; 728; 720; 709; 665; 641; 618; 602; 576; 526; 485; 465; 444; 421; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C11H11IN3S+ 343.9718; Found 343.9726.
- 4-Phenyl-5-(m-tolyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (1t). Yield 90%, white solid, m.p. 245 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 13.94 (s, 1H, NH), 7.52–7.43 (m, 3Harom), 7.30–7.23 (m, 2Harom), 7.18–7.07 (m, 3Harom), 6.99–6.92 (m, 1Harom), 2.25 (s, 3H, CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 168.5 (C=S), 149.7 (C=N), 137.4, 134.5, 130.3, 128.7 (CH=), 128.7 (2CH=), 128.3 (CH=), 128.2 (2*CH=), 127.7 (CH=), 125.6, 124.7 (CH=), 20.7 (CH3). IRνmax =3107; 3085; 3058; 3031; 2995; 2928; 2823; 2770; 2752; 1591; 1551; 1496; 1488; 1459; 1438; 1402; 1383; 1334; 1313; 1285; 1274; 1243; 1208; 1175; 1130; 1098; 1083; 1074; 1037; 1003; 977; 919; 885; 851; 797; 773; 737; 717; 701; 692; 669; 660; 621; 614; 545; 525; 514; 481; 442; 427 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C15H14N3S+ 268.0909; Found 268.0931.
- Dimethyl 2,2′-(((2,5-dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl)) diacetate (ac).
- Method A: 0.48 g (21 mmol) of sodium was dissolved in 25 mL of methanol, then 4.16 g (21 mmol) of (2,5-dimethyl-1,4-phenylene)dimethanethiol was added and the mixture was stirred at r.t. for 30min. Then 1.09 g (10 mmol, 0.95 mL) of ethyl chloroformate and 25 mL of methanol were added to the mixture and refluxed for 4h. The resulting mixture was left overnight, and the precipitate was filtered, washed with water, and dried. Yield 84%.
- Method B: 0.48 g (21 mmol) sodium was dissolved in 25 mL of methanol, then 2.22 g (21 mmol, 1.88 mL) methyl 2-mercaptoacetate was added and the mixture was stirred at r.t. for 30min. Then 2.03 g (10 mmol) of 1,4-bis(chloromethyl)-2,5-dimethylbenzene and 25 mL of methanol were added to the mixture and refluxed for w4h. The resulting mixture was left overnight, and the precipitate was filtered, washed with water, and dried. Yield 89%. White solid, m.p. 100 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 6.99 (s, 2Harom), 3.75 (s, 4H, CH2CO), 3.69 (s, 6H, OCH3), 3.11 (s, 4H, SCH2Ar), 2.32 (s, 6H, ArCH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 169.5 (2*C=O), 133.4 (2*C), 133.3 (2*C), 131.8 (2*CH=), 51.4 (2*OCH3), 33.4 (2*SCH2), 31.8 (2*SCH2), 17.9 (2*CH3). IRνmax = 3428; 3032; 3004; 2973; 2950; 2918; 2894; 2862; 2727; 1723; 1680; 1506; 1436; 1428; 1409; 1393; 1372; 1291; 1215; 1144; 1113; 1038; 1005; 937; 908; 867; 828; 795; 719; 700; 595; 580; 466; 424 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C16H23O4S2+ 343.1038; Found 343.1048.
- 2,2′-(((2,5-Dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl))di(acetohydrazide) (ad). The mixture of 3.42 g dimethyl 2,2′-(((2,5-dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl)) diacetate and 8 mL hydrazine hydrate in 10 mL of ethanol was stirred for 1h at r.t., then refluxed for 3h. The resulting mixture was left overnight, and the precipitate was filtered, washed with ethanol and water, and dried. Yield 95%, white solid, m.p. 179 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 9.07 (br.s., 2H, NH), 7.03 (s, 2Harom), 4.11 (br.s., 4H, NH2), 3.77 (s, 4H, CH2CO), 2.96 (s, 4H, SCH2Ar), 2.30 (s, 6H, ArCH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 168.3 (2*C=O), 134.0 (2*C), 133.3 (2*C), 131.7 (2*CH), 33.6 (2*SCH2), 32.1 (2*SCH2), 18.0 (2*CH3). IRνmax = 3329; 3307; 3255; 3207; 3141; 3016; 2991; 2964; 2953; 2934; 2914; 2847; 1654; 1623; 1501; 1458; 1434; 1396; 1377; 1325; 1296; 1240; 1218; 1179; 1127; 1117; 1034; 987; 920; 889; 854; 802; 780; 706; 696; 659; 583; 537; 463 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C14H23N4O4S2+ 343.1263; Found 343.1263.
- 2,2′-(2,2′-(((2,5-Dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl))bis(acetyl))bis(N-phenylhydrazine-1-carbothioamide) (ae). The mixture of 1.026 g (3 mmol) 2,2′-(((2,5-dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl))di(acetohydrazide) and 0.81 g (6 mmol) phenyl isothiocyanate in 5 mL ethanol was stirred at r.t for 1h, then was refluxed for 2h. The resulting mixture was left overnight, and the precipitate was filtered, washed with ethanol, and dried. Yield 91%, white solid, m.p 210 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 10.03 (br.s., 2H, NH), 9.68–9.32 (m, 4H, NH), 7.55 (d, J = 8.0 Hz, 4Harom), 7.29 (t, J = 7.8 Hz, 4Harom), 7.15–7.02 (m, 4Harom), 3.83 (s, 4H, CH2CO), 3.14 (s, 4H, SCH2Ar), 2.33 (s, 6H, CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) 180.3(2*C), 138.9 (2*C), 133.8 (2*C), 133.3 (2*CH), 131.8 (2*CH=), 127.6 (4*CH=), 124.1 (br, 6*CH), 33.5 (2*SCH2), 32.3 (2*SCH2), 18.1 (2*CH3). IRνmax = 3303; 3222; 3166; 3067; 3005; 2970; 2923; 2861; 1680; 1654; 1624; 1605; 1560; 1536; 1499; 1477; 1446; 1420; 1363; 1328; 1314; 1294; 1255; 1239; 1222; 1205; 1194; 1164; 1156; 1142; 1082; 1032; 997; 970; 929; 907; 897; 876; 838; 797; 753; 747; 731; 711; 691; 574; 503; 465 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C28H33N6O2S4+ 613.1548; Found 613.1545.
- 5,5′-((((2,5-Dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl))bis(methylene))bis(4-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione) (1w). The mixture of 1.23 g (2 mmol) 2,2′-(2,2′-(((2,5-dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl))bis(acetyl))bis(N-phenylhydrazine-1-carbothioamide) and 0.35 g (6 mmol) KOH in 5 mL of water was refluxed for 4h. The resulting mixture was acidified with 6M HCl, and the precipitate was filtered and washed with water before being dried. Yield 88%, white solid, m.p. 270 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 13.72 (s, 2H, NH), 7.57–7.46 (m, 6Harom), 7.37–7.29 (m, 4Harom), 6.91 (s, 2Harom), 3.62 (s, 4H, CH2CNN), 3.42 (s, 4H, SCH2Ar), 2.21 (s, 6H, CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 168.2 (2*C=S), 148.6 (2*C=N), 133.4 (2*C), 133.2 (2*C), 133.2 (2*C), 131.6 (2*CH=), 128.9 (2*CH=), 128.7 (4*CH=), 128.0 (4*CH=), 32.8 (2*SCH2), 24.6 (2*SCH2), 17.9 (2*CH3). IRνmax = 3103; 3036; 2929; 1591; 1567; 1498; 1491; 1454; 1416; 1397.99; 1333; 1277; 1233; 1165; 1092; 1069; 1038; 1014; 921; 888; 844; 801; 785; 759; 743; 709; 692; 672; 613; 553; 504; 457 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C28H29N6S4+ 577.1337; Found 577.1335.
- General procedure for synthesis of 1-((4,5-disubstituted-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ols. A mixture of the corresponding triazole (2 mmol) and 1-(oxiran-2-ylmethyl)piperidine (2.2 mmol, 310 mg) was stirred at 50 °C 4 h. Then the mixture was cooled down to r.t. and purified with flash chromatography (eluent: C6H6:MeOH:Et3N 50:1:1).
- 1-((5-Isobutyl-4-propyl-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3a). Yield 68%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 4.74 (br.s., 1H, OH), 3.90–3.80 (m, 1H, CHOH), 3.80–3.72 (m, 2H, NCH2CH2CH3), 3.30 (dd, J = 13.2, 4.2 Hz, 1Ha, SCH2), 3.08 (dd, J = 13.2, 6.7 Hz, 1Hb, SCH2), 2.49 (d, J = 7.1 Hz, 2H, CH2CH(CH3)2), 2.46–2.33 (m, 4H, N(CH2CH2)2CH2), 2.31 (dd, J = 6.4, 1.8 Hz, 2H, NCH2CH), 2.16–2.05 (m, 1H, CH(CH3)2), 1.72–1.61 (m, 2H), 1.56–1.44 (m, 4H, N(CH2CH2)2CH2), 1.42–1.30 (m, 2H, N(CH2CH2)2CH2), 0.97 (d, J = 6.7 Hz, 6H, CH(CH3)2), 0.91 (t, J = 7.4 Hz, 3H, CH2CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.6 (SC=N), 149.3 (C=N), 66.8 (OCH), 63.3 (NCH2), 54.6 (2*NCH2), 44.4 (NCH2), 38.2 (SCH2), 33.2 (CH2), 26.5 (CH), 25.5 (2*CH2), 23.8 (CH2), 22.8 (CH2), 22.1 (2*CH3), 10.6 (CH3). IRνmax = 3259; 2932; 2871; 2853; 2796; 2757; 1514; 1465; 1442; 1428; 1398; 1384; 1367; 1352; 1342; 1301; 1280; 1245; 1225; 1202; 1168; 1157; 1117; 1089; 1040; 995; 963; 925; 898; 862; 804; 788; 746; 688; 656; 614; 593; 556; 515; 477; 470; 445; 430; 424; 416; 408 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C17H33N4OS+ 341.2375; Found 341.2388.
- 1-(Piperidin-1-yl)-3-((4-propyl-5-(thiophen-2-yl)-4H-1,2,4-triazol-3-yl)thio)propan-2-ol (3b). Yield 85%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.58 (dd, J = 5.1, 1.2 Hz, 1Hthph), 7.45 (dd, J = 3.7, 1.2 Hz, 1Hthph), 7.16 (ddd, J = 5.0, 3.6, 1.2 Hz, 1Hthph), 4.70 (br.s., 1H, OH), 4.06 (dd, J = 8.6, 6.8 Hz, 2H, NCH2CH2CH3), 4.00–3.87 (m, 1H, CHOH), 3.44 (dd, J = 13.2, 4.2 Hz, 1Ha, SCH2), 3.27–3.14 (m, 1Hb, SCH2), 2.42 (br.t., J = 5.1 Hz, 4H, N(CH2CH2)2CH2), 2.37 (dd, J = 6.4, 1.2 Hz, 2H, NCH2CHOH), 1.82–1.69 (m, 2H, NCH2CH2CH3), 1.59–1.49 (m, 4H, N(CH2CH2)2CH2), 1.46–1.36 (m, 2H, N(CH2CH2)2CH2), 0.95 (t, J = 7.4 Hz, 3H, CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 151.4 (SC=N), 149.0 (C=N), 128.0, 127.6 (CH=), 127.3 (CH=), 126.6 (CH=), 66.6 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 45.6 (NCH2), 38.4 (SCH2), 25.6 (2*CH2), 23.9 (CH2), 22.6 (CH2), 10.5 (CH3). IRνmax = 3298; 3100; 3078; 2931; 2876; 2852; 2797; 2757; 1653; 1565; 1468; 1459; 1432; 1417; 1387; 1366; 1352; 1335; 1301; 1278; 1250; 1233; 1210; 1156; 1141; 1116; 1086; 1039; 995; 962; 943; 897; 850; 787; 711; 649; 583; 544; 506; 491; 478; 461; 444; 421 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C17H27N4OS2+ 367.1626; Found 367.1648.
- 1-((5-(4-Bromophenyl)-4-cyclohexyl-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3c). Yield 87%, white solid, m.p. 109 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.70–7.55 (m, 2Harom), 7.46–7.33 (m, 2Harom), 4.73 (br.s., 1H, OH), 4.02–3.85 (m, 2H, 1H CHOH, 1H NCH), 3.47 (dd, J = 13.2, 4.3 Hz, 1Ha, SCH2), 3.25 (dd, J = 13.2, 6.7 Hz, 1Hb, SCH2), 2.42 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.36 (dd, J = 6.4, 1.5 Hz, 2H, NCH2CHOH), 2.19–2.02 (m, 2H, Cy), 1.89–1.74 (m, 4H, Cy), 1.68–1.58 (m, 1H, Cy), 1.57–1.47 (m, 4H, N(CH2CH2)2CH2), 1.43–1.34 (m, 2H, N(CH2CH2)2CH2), 1.33–1.09 (m, 3H, Cy). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.8 (SC=N), 150.1 (C=N), 131.4 (2*CH), 130.7 (2*CH), 126.8, 123.5, 66.6 (OCH), 63.5 (NCH2), 56.2 (NCH), 54.6 (2*NCH2), 38.3 (SCH2), 30.6 (2*CH2), 25.6 (2*CH2), 25.2 (2*CH2), 24.3 (CH2), 23.9 (CH2). IRνmax = 3186; 3062; 3037; 2931; 2857; 2797; 2782; 2758; 2745; 2694; 2669; 1596; 1567; 1465; 1440; 1411; 1390; 1362; 1345; 1289; 1273; 1258; 1213; 1201; 1184; 1158; 1146; 1129; 1105; 1062; 1041; 1026; 1011; 999; 971; 948; 928; 901; 893; 870; 855; 838; 823; 789; 765; 752; 731; 713; 690; 626; 593; 561; 531; 515; 483; 457; 443; 434; 421; 406 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C22H3279BrN4OS+ 479.1480; Found 479.1489.
- 1-((5-(4-Bromophenyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3d). Yield 78%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.62–7.54 (m, 2Harom), 7.35–7.31 (m, 2Harom), 7.21–7.14 (m, 3Harom), 6.97–6.91 (m, 2Harom), 4.73 (br.s., 1H, OH), 4.21 (t, J = 7.4 Hz, 2H, NCH2CH2Ph), 4.00–3.90 (m, 1H, CHOH), 3.45 (dd, J = 13.2, 4.2 Hz, 1Ha, SCH2), 3.21 (dd, J = 13.1, 6.9 Hz, 1Hb, SCH2), 2.93 (t, J = 7.4 Hz, 2H, CH2Ph), 2.44 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.39 (dd, J = 6.5, 1.5 Hz, 2H, NCH2CHOH), 1.61–1.50 (m, 4H, N(CH2CH2)2CH2), 1.48–1.38 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.5 (SC=N), 151.3 (C=N), 136.2, 131.3 (2*CH=), 129.8 (2*CH=), 128.3 (2*CH=), 128.1 (2*CH=), 126.3 (CH=), 126.2, 123.3, 66.6 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 45.3 (NCH2), 38.4 (SCH2), 35.0 (CH2Ph), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3283; 3087; 3063; 3027; 3001; 2932; 2852; 2798; 2757; 1599; 1567; 1496; 1455; 1432; 1386; 1354; 1334; 1301; 1276; 1241; 1207; 1177; 1156; 1115; 1092; 1068; 1039; 1007; 996; 971; 931; 891; 861; 828; 787; 765; 750; 728; 720; 698; 679; 626; 578; 549; 523; 496; 477; 453; 438; 431; 426; 419; 410 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C24H3079BrN4OS+ 501.1324; Found 501.1328.
- 1-((4-Phenethyl-5-(thiophen-2-yl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3e). Yield 92%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.58 (dd, J = 5.1, 1.1 Hz, 1Harom), 7.36 (dd, J = 3.7, 1.1 Hz, 1Harom), 7.28–7.14 (m, 4Harom), 7.12–7.06 (m, 2Harom), 4.68 (br.s., 1H, OH), 4.38–4.21 (m, 2H, CH2CH2Ph), 3.98–3.85 (m, 1H, CHOH), 3.40 (dd, J = 13.2, 4.2 Hz, 1Ha, SCH2), 3.16 (dd, J = 13.2, 6.8 Hz, 1Hb, SCH2), 3.01 (t, J = 7.8 Hz, 2H, CH2Ph), 2.43 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.37 (dd, J = 6.3, 0.9 Hz, 2H, NCH2CHOH), 1.60–1.50 (m, 4H, N(CH2CH2)2CH2), 1.46–1.37 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 151.4, 149.0, 136.2, 128.3 (2*CH=), 128.2 (2*CH=), 127.7 (CH=), 127.3 (CH=), 126.9 (CH=), 126.4 (CH=), 66.6 (OCH), 63.4 (NCH2), 54.6 (NCH2), 45.4 (NCH2), 38.6 (SCH2), 35.1 (CH2Ph), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3303; 3103; 3086; 3065; 3027; 3002; 2931; 2851; 2797; 2758; 1604; 1584; 1565; 1496; 1474; 1454; 1431; 1417; 1387; 1354; 1333; 1301; 1277; 1255; 1240; 1225; 1211; 1176; 1156; 1115; 1086; 1040; 995; 962; 943; 907; 892; 851; 809; 787; 764; 749; 697; 649; 643; 620; 571; 539; 495; 479; 430; 420; 407 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C22H29N4OS2+ 429.1783; Found 429.1796.
- 1-((4-Phenyl-5-(m-tolyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3f). Yield 83%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 5.88 (ddt, J = 17.2, 10.1, 4.9 Hz, 1H, CH=), 5.20 (dq, J = 10.4, 1.5 Hz, 1Ha, =CH2), 4.92 (dq, J = 17.1, 1.6 Hz, 1Hb, =CH2), 4.71 (br.s., 1H, OH), 4.53 (dt, J = 5.0, 1.9 Hz, 2H, NCH2 in Allyl), 3.92–3.80 (m, 1H, CHOH), 3.29 (dd, J = 13.2, 4.2 Hz, 1Ha, SCH2), 3.07 (dd, J = 13.2, 6.8 Hz, 1Hb, SCH2), 2.60 (t, J = 7.5 Hz, 2H, CH2CH2CH3), 2.40 (br.t, J = 5.2 Hz, 4H, N(CH2CH2)2CH2), 2.37–2.27 (m, 2H, NCH2CHOH), 1.82–1.69 (m, 2H, CH2CH2CH3), 1.58–1.47 (m, 4H, N(CH2CH2)2CH2), 1.45–1.35 (m, 2H, N(CH2CH2)2CH2), 1.01 (t, J = 7.4 Hz, 3H, CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 154.4 (SC=N), 149.5 (C=N), 131.7 (CH=CH2), 116.6 (=CH2), 66.7 (OCH), 63.3 (NCH2), 54.5 (2*NCH2), 45.0 (NCH2), 38.5 (SCH2), 26.2 (CH2), 25.5 (2*CH2), 23.8 (CH2), 19.7 (CH2), 13.4 (CH3). IRνmax = 3246; 3086; 2932; 2873; 2853; 2796; 2757; 1645; 1519; 1461; 1441; 1431; 1411; 1400; 1375; 1352; 1332; 1300; 1280; 1256; 1242; 1216; 1196; 1156; 1116; 1089; 1040; 994; 963; 915; 892; 862; 813; 787; 739; 685; 664; 615; 553; 479; 463; 443; 421; 411 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C16H29N4OS+ 325.2062; Found 325.2083.
- 1-((4-Allyl-5-benzyl-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3g). Yield 68%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.31–7.15 (m, 5Harom), 5.62 (ddt, J = 17.2, 10.3, 5.2 Hz, 1H, CH=), 5.09 (dt, J = 10.4, 1.3 Hz, 1Ha, =CH2), 4.87 (m, 2H, 1H, OH, 1Hb, =CH2), 4.41 (dt, J = 5.3, 1.7 Hz, 2H, NCH2 in Allyl), 4.09 (s, 2H, PhCH2), 3.95–3.82 (m, 1H, CHOH), 3.31 (dd, J = 13.2, 4.3 Hz, 1Ha, SCH2), 3.10 (dd, J = 13.2, 6.7 Hz, 1Hb, SCH2), 2.57–2.31 (m, 6H, NCH2), 1.62–1.47 (m, 4H, N(CH2CH2)2CH2), 1.47–1.37 (m, 2H N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.3 (SC=N), 150.4 (C=N), 135.4, 131.0 (CH=CH2), 128.1 (2*CH), 128.1 (2*CH), 126.3 (CH=), 117.2 (=CH2), 66.5 (OCH), 63.1 (NCH2), 54.4 (2*NCH2), 45.3 (NCH2), 38.4 (SCH2), 30.6 (CH2Ph), 25.3 (2*CH2), 23.6 (CH2). IRνmax = 3258; 3086; 3063; 3029; 2932; 2852; 2796; 2759; 1645; 1604; 1518; 1496; 1464; 1453; 1441; 1420; 1393; 1374; 1353; 1329; 1301; 1279; 1243; 1203; 1156; 1116; 1088; 1076; 1039; 994; 962; 928; 916; 862; 787; 752; 726; 697; 681; 616; 573; 554; 494; 479; 446; 425; 402 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C20H29N4OS+ 373.2062; Found 373.2090.
- 1-((4-Allyl-5-((4-chloro-2-methylphenoxy)methyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3h). Yield 93%, colorless oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.17–7.05 (m, 3Harom), 5.89 (ddt, J = 17.0, 10.4, 5.2 Hz, 1H, CH=), 5.24–5.15 (m, 3H, 1Ha, =CH2, 2H OCH2), 5.00 (dq, J = 17.1, 1.4 Hz, 1Hb, =CH2), 4.80–4.55 (m, 3H, 2H NCH2 in Allyl, 1H OH), 3.96–3.85 (m, 1H, CHOH), 3.39 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.16 (dd, J = 13.1, 6.9 Hz, 1Hb, SCH2), 2.42 (br.t., J = 5.1 Hz, 4H, N(CH2CH2)2CH2), 2.38–2.34 (m, 2H, NCH2CHOH) 2.16 (s, 3H, CH3), 1.58–1.50 (m, 4H, N(CH2CH2)2CH2), 1.45–1.38 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 154.1 (SC=N), 152.0, 150.6, 131.2 (CH=CH2), 129.8 (CH=), 127.8, 126.0 (CH=), 125.0, 117.5 (=CH2), 112.6 (CH=), 66.5 (OCH), 63.3 (NCH2), 60.1 (OCH2), 54.5 (2*NCH2), 45.7 (NCH2), 38.3 (SCH2), 25.5 (2*CH2), 23.8 (CH2), 15.7 (CH3). IRνmax = 3299; 3086; 2933; 2853; 2798; 2758; 1645; 1598; 1490; 1467; 1440; 1419; 1396; 1330; 1296; 1277; 1240; 1225; 1186; 1155; 1133; 1089; 1071; 1039; 1014; 994; 963; 930; 920; 878; 838; 804; 787; 747; 688; 654; 641; 590; 554; 514; 482; 468; 461; 441; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C21H30ClN4O2S+ 437.1778; Found 437.1794.
- 1-((4-Allyl-5-((2,4-dichlorophenoxy)methyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3i). Yield 68%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.38–7.32 (m, 2Harom), 7.26 (dd, J = 8.9, 2.6 Hz, 1Harom), 5.93 (ddt, J = 17.2, 10.6, 5.5 Hz, 1H, CH=), 5.31 (s, 2H, OCH2), 5.21 (dq, J = 10.3, 1.3 Hz, 1Ha, =CH2), 5.07 (dq, J = 17.0, 1.5 Hz, 1Hb, =CH2), 4.79–4.57 (m, 3H, 1H OH, 2H NCH2 in Allyl), 3.96–3.85 (m, 1H, CHOH), 3.39 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.16 (dd, J = 13.1, 6.8 Hz, 1Hb, SCH2), 2.41 (br.t., 4H, N(CH2CH2)2CH2), 2.35 (d, J = 6.4 Hz, 2H, NCH2CHOH), 1.57–1.50 (m, 4H, N(CH2CH2)2CH2), 1.45–1.37 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 152.2, 151.6, 150.0, 131.0 (CH=CH2), 129.1 (CH=), 127.4 (CH=), 125.6, 122.7, 117.9 (=CH2), 115.1 (CH=), 66.5 (OCH), 63.3 (NCH2), 60.9 (OCH2), 54.6 (2*NCH2), 45.9 (NCH2), 38.3 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3248; 3082; 3029; 2934; 2886; 2854; 2796; 2758; 1643; 1587; 1575; 1528; 1481; 1469; 1456; 1442; 1418; 1390; 1355; 1329; 1285; 1266; 1245; 1233; 1204; 1154; 1115; 1105; 1093; 1060; 1041; 1006; 995; 963; 933; 915; 891; 863; 834; 816; 804; 786; 723; 698; 687; 651; 642; 593; 555; 508; 491; 486; 468; 441; 422; 410 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C20H27Cl2N4O2S+ 457.1232; Found 457.1252.
- 1-((4-Phenethyl-5-(thiophen-2-yl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3j). Yield 87%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.52–7.46 (m, 2Harom), 7.28 (d, J = 7.9 Hz, 2Harom), 5.95 (ddt, J = 17.2, 10.5, 4.6 Hz, 1H, CH=), 5.31–5.18 (m, 1Ha, =CH2), 5.00–4.88 (m, 1Hb, =CH2), 4.71 (br.s., 1H, OH), 4.60 (dt, J = 4.3, 1.9 Hz, 2H, NCH2 in Allyl), 3.98–3.87 (m, 1H, CHOH), 3.41 (dd, J = 13.2, 4.3 Hz, 1Ha, SCH2), 3.18 (dd, J = 13.2, 6.8 Hz, 1Hb, SCH2), 2.47–2.38 (m, 7H, 4H, N(CH2CH2)2CH2, 3H CH3), 2.37 (dd, J = 6.4, 2.1 Hz, 2H, NCH2CHOH), 1.60–1.49 (m, 4H, N(CH2CH2)2CH2), 1.45–1.37 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 154.5(SC=N), 151.3 (C=N), 139.0, 131.8 (CH=CH2), 128.9 (2*CH=), 127.7 (2*CH=), 124.1, 117.0 (=CH2), 66.6 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 46.1 (NCH2), 38.4 (SCH2), 25.5 (2*CH2), 23.8 (CH2), 20.8 (CH3). IRνmax = 3275; 3085; 3026; 293; 2852; 2796; 2757; 1645; 1617; 1574; 1479; 1453; 1431; 1386; 1353; 1331; 1301; 1280; 1256; 1201; 1186; 1156; 1115; 1088; 1039; 1022; 994; 984; 963; 916; 892; 862; 822; 787; 762; 727; 685; 640; 627; 579; 553; 531; 491; 439; 431; 414; 406 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C20H29N4OS+ 373.2062; Found 373.2068.
- 1-((4-Allyl-5-(2-bromophenyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3k). Yield 81%, colorless oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.72–7.67 (m, 1Harom), 7.49–7.37 (m, 3Harom), 5.69 (ddt, J = 17.2, 10.4, 5.3 Hz, 1H, CH=), 5.07 (dt, J = 10.2, 1.3 Hz, 1Ha, =CH2), 4.83 (dq, J = 17.0, 1.5 Hz, 1Hb, =CH2), 4.69 (br.s., 1H, OH), 4.43–4.30 (m, 2H, NCH2 in Allyl), 3.96–3.86 (m, 1H, CHOH), 3.38 (dd, J = 13.1, 4.4 Hz, 1Ha, SCH2), 3.17 (dd, J = 13.1, 6.8 Hz, 1Hb, SCH2), 2.51–2.28 (m, 6H, NCH2), 1.58–1.48 (m, 4H, N(CH2CH2)2CH2), 1.44–1.34 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.2 (SC=N), 150.8 (C=N), 132.4 (CH=), 132.2 (CH=), 131.6 (CH=CH2), 130.9 (CH=), 128.7, 127.2 (CH=), 123.3, 117.6 (=CH2), 66.5 (OCH), 63.3 (NCH2), 54.5 (2*NCH2), 45.9 (NCH2), 38.5 (SCH2), 25.4 (2*CH2), 23.8 (CH2). IRνmax = 3296; 3085; 3064; 3019; 2931; 2851; 2798; 2758; 2701; 1645; 1597; 1564; 1528; 1447; 1429; 1387; 1352; 1328; 1301; 1277; 1246; 1204; 1156; 1115; 1088; 1040; 1027; 994; 982; 962; 916; 892; 862; 769; 726; 713; 684; 648; 588; 567; 553; 511; 471; 451; 423; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C19H2679BrN4OS+ 437.1011; Found 437.1019.
- 1-((4-Allyl-5-(2-iodophenyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3l). Yield 72%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.98 (dd, J = 8.0, 1.1 Hz, 1Harom), 7.51 (td, J = 7.5, 1.2 Hz, 1Harom), 7.39 (dd, J = 7.6, 1.7 Hz, 1Harom), 7.28 (td, J = 7.7, 1.8 Hz, 2Harom), 5.73 (ddt, J = 17.1, 10.5, 5.3 Hz, 1H, CH=), 5.12 (dq, J = 10.4, 1.3 Hz, 1Ha, =CH2), 4.88 (dq, J = 17.0, 1.5 Hz, 1Hb, =CH2), 4.69 (br.s., 1H, OH), 4.46–4.29 (m, 2H, NCH2 in Allyl), 3.99–3.86 (m, 1H, CHOH), 3.42 (dd, J = 13.1, 4.4 Hz, 1Ha, SCH2), 3.20 (dd, J = 13.1, 6.8 Hz, 1Hb, SCH2), 2.43 (br.t., J = 4.8 Hz, 4H, N(CH2CH2)2CH2), 2.38 (dd, J = 6.4, 2.1 Hz, 2H, NCH2CHOH), 1.60–1.49 (m, 4H, N(CH2CH2)2CH2), 1.47–1.37 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 155.3 (SC=N), 150.8 (C=N), 138.7 (CH=), 132.7, 131.4 (CH=CH2), 131.3 (CH=), 130.9 (CH=), 127.5 (CH=), 117.7 (=CH2), 99.1 (=CI), 66.6 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 46.0 (NCH2), 38.6 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3293; 3086; 3059; 3033; 2983; 2931; 2851; 2796; 2758; 1645; 1590; 1560; 1525; 1442; 1428; 1387; 1352; 1328; 1301; 1273; 1246; 1203; 1156; 1115; 1088; 1039; 1017; 994; 981; 962; 916; 891; 862; 769; 721; 706; 680; 641; 587; 553; 509; 469; 460; 444; 422; 418 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C19H26IN4OS+ 485.0872; Found 485.0896.
- 1-((4-Allyl-5-(2-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3m). Yield 89%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 8.25–8.14 (m, 1Harom), 7.91–7.76 (m, 2Harom), 7.70–7.59 (m, 1Harom), 5.77 (ddt, J = 17.1, 10.5, 5.4 Hz, 1H, CH=), 5.14 (dt, J = 10.3, 1.3 Hz, 1Ha, =CH2), 4.97 (dq, J = 17.1, 1.5 Hz, 1Hb, =CH2), 4.68 (br.s., 1H, OH), 4.52–4.37 (m, 2H, NCH2 in Allyl), 3.98–3.86 (m, 1H, CHOH), 3.44 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.20 (dd, J = 13.1, 6.9 Hz, 1Hb, SCH2), 2.43 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.41–2.33 (m, 2H, NCH2CHOH), 1.62–1.49 (m, 4H, N(CH2CH2)2CH2), 1.47–1.38 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 151.3, 150.8, 148.4, 133.1 (CH=), 132.2 (CH=), 131.3 (CH=CH2), 131.0 (CH=), 124.4 (CH=), 121.9, 117.8 (=CH2), 66.5 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 46.1 (NCH2), 38.6 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3293; 3085; 2933; 2852; 2799; 2759; 1645; 1617; 1575; 1528; 1452; 1441; 1432; 1420; 1388; 1344; 1301; 1279; 1253; 1204; 1156; 1115; 1088; 1071; 1039; 993; 983; 963; 930; 891; 853; 786; 751; 728; 717; 697; 652; 590; 559; 534; 511; 479; 460; 442; 423; 576; 526; 485; 465; 444; 421; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C19H26N5O3S+ 404.1756; Found 404.1772.
- 1-((4-Allyl-5-(furan-2-yl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3n). Yield 91%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.70 (d, J = 1.8 Hz, 1Hfur), 6.95 (d, J = 3.5 Hz, 1Hfur), 6.59 (dd, J = 3.5, 1.9 Hz, 1Hfur), 5.94 (ddt, J = 17.2, 10.3, 5.1 Hz, 1H, CH=), 5.26–5.13 (m, 1Ha, =CH2), 5.00 (dd, J = 17.2, 2.2 Hz, 1Hb, =CH2), 4.81 (dt, J = 5.2, 1.8 Hz, 2H, NCH2 in Allyl), 4.67 (br.s., 1H, OH), 3.97–3.85 (m, 1H, CHOH), 3.40 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.17 (dd, J = 13.1, 6.9 Hz, 1Hb, SCH2), 2.42 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.36 (dd, J = 6.3, 1.5 Hz, 2H, NCH2CHOH), 1.58–1.49 (m, 4H, N(CH2CH2)2CH2), 1.44–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 151.2 (SC=N), 146.5 (C=N), 143.5 (CH=), 141.7, 131.5 (CH=CH2), 117.2 (=CH2), 111.2 (CH=), 110.8 (CH=), 66.5 (OCH), 63.3 (NCH2), 54.6 (2*NCH2), 46.4 (NCH2), 38.6 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3293; 3148; 3121; 3089; 2983; 2932; 2852; 2798; 2759; 2697; 1645; 1612; 1515; 1467; 1441; 1429; 1421; 1379; 1353; 1332; 1301; 1279; 1258; 1224; 1206; 1158; 1115; 1088; 1070; 1039; 1016; 993; 962; 916; 902; 885; 862; 822; 785; 743; 712; 684; 648; 593; 546; 497; 476; 444; 429; 414; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C17H25N4O2S+ 349.1698; Found 349.1708.
- 1-((4-Allyl-5-(5-bromofuran-2-yl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3o). Yield 80%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.01–6.92 (m, 1Hfur), 6.64–6.55 (m, 1Hfur), 5.94 (ddt, J = 17.3, 10.3, 5.1 Hz, 1H, CH=), 5.28–5.18 (m, 1Ha, =CH2), 5.09–4.98 (m, 1Hb, =CH2), 4.83–4.72 (m, 2H, NCH2 in Allyl), 4.61 (br.s., 1H, OH), 3.96–3.83 (m, 1H, CHOH), 3.41 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.17 (dd, J = 13.1, 6.8 Hz, 1Hb, SCH2), 2.41 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.35 (d, J = 6.4 Hz, 2H, NCH2CHOH), 1.59–1.49 (m, 4H, N(CH2CH2)2CH2), 1.46–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 151.6 (SC=N), 145.6 (C=N), 143.6, 131.2 (CH=CH2), 122.9, 117.5 (=CH2), 113.2 (2*CH=), 66.5 (OCH), 63.3 (NCH2), 54.6 (2*NCH2), 46.4 (NCH2), 38.6 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3309; 3140; 3121; 3088; 2984; 2932; 2852; 2796; 2757; 1645; 1614; 1515; 1466; 1441; 1427; 1420; 1379; 1353; 1331; 1301; 1278; 1256; 1205; 1156; 1115; 1092; 1039; 1012; 994; 962; 929; 892; 862; 786; 763; 709; 685; 649; 588; 549; 535; 510; 477; 460; 434; 414; 409; 403 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C17H2479BrN4O2S+ 427.0803; Found 427.0818.
- 1-((4-Allyl-5-(pyridin-3-yl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3p). Yield 80%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 8.80 (d, J = 2.2 Hz, 1Hpyr), 8.66 (dd, J = 4.9, 1.7 Hz, 1Hpyr), 8.01 (dt, J = 8.0, 2.0 Hz, 1Hpyr), 7.48 (dd, J = 7.9, 4.8 Hz, 1Hpyr), 6.04–5.89 (m, 1H, CH=), 5.27 (dd, J = 10.5, 2.0 Hz, 1Ha, =CH2), 4.94 (dd, J = 17.2, 2.1 Hz, 1Hb, =CH2), 4.81–4.47 (m, 3H, 1H OH, 2H NCH2 in Allyl), 3.99–3.86 (m, 1H, CHOH), 3.44 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.20 (dd, J = 13.1, 6.9 Hz, 1Hb, SCH2), 2.43 (br.t., J = 5.0 Hz, 4H, N(CH2CH2)2CH2), 2.37 (dd, J = 6.4, 1.5 Hz, 2H, NCH2CHOH), 1.59–1.49 (m, 4H, N(CH2CH2)2CH2), 1.46–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 152.3, 152.1, 150.1 (CH=N), 148.1 (CH=N), 135.0 (CH=), 131.7 (CH=CH2), 123.2, 123.1 (CH=), 117.1 (=CH2), 66.6 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 46.3 (NCH2), 38.5 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3291; 3086; 3072; 3035; 2982; 2932; 2852; 2797; 2760; 1645; 1599; 1571; 1514; 1453; 1432; 1413; 1386; 1352; 1329; 1301; 1279; 1258; 1241; 1201; 1192; 1156; 1115; 1088; 1039; 1025; 994; 982; 963; 918; 891; 862; 812; 786; 765; 709; 687; 651; 620; 590; 552; 505; 479; 438; 424 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C18H26N5OS+ 360.1858; Found 360.1876.
- 1-((4-Allyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3q). Yield 89%, m.p. 86 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 8.77–8.60 (m, 2Hpyr), 7.71–7.52 (m, 2Hpyr), 5.99 (ddt, J = 17.2, 10.5, 4.5 Hz, 1H, CH=), 5.34–5.23 (m, 1Ha, =CH2), 5.01–4.90 (m, 1Hb, =CH2), 4.79–4.58 (m, 3H, 2H NCH2 in Allyl, 1H OH), 3.99–3.86 (m, 1H, CHOH), 3.45 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.20 (dd, J = 13.1, 6.9 Hz, 1Hb, SCH2), 2.49–2.25 (m, 6H, NCH2), 1.60–1.47 (m, 4H, N(CH2CH2)2CH2), 1.46–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.0, 152.3, 149.8 (2*CH=N), 134.1, 131.6 (CH=CH2), 121.4 (2*CH=), 117.2 (=CH2), 66.5 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 46.4 (NCH2), 38.4 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3190; 3085; 3046; 2986; 2970; 2929; 2917; 2850; 2806; 2775; 2755; 2731; 2669; 2553; 2520; 1644; 1605; 1557; 1515; 1452; 1428; 1411; 1379; 1367; 1326; 1312; 1302; 1284; 1256; 1236; 1222; 1201; 1186; 1154; 1116; 1087; 1066; 1050; 1039; 1016; 998; 989; 962; 926; 871; 858; 826; 790; 762; 728; 706; 699; 659; 583; 575; 558; 536; 511; 479; 458; 448; 423; 408; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C18H26N5OS+ 360.1858; Found 360.1862.
- 1-((4-Phenyl-5-propyl-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3r). Yield 63%, colorless oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.58–7.45 (m, 3Harom), 7.36–7.28 (m, 2Harom), 4.63 (br.s., 1H, OH), 3.91–3.77 (m, 1H, CH), 3.28 (dd, J = 13.2, 4.4 Hz, 1Ha, SCH2), 3.04 (dd, J = 13.2, 6.7 Hz, 1Hb, SCH2), 2.49–2.44 (m, 2H, CH2CH2CH3), 2.38 (br.t., J = 5.2 Hz, 4H, N(CH2CH2)2CH2), 2.29 (dd, J = 6.7, 2.4 Hz, 2H, NCH2CHOH), 1.62–1.53 (m, 2H, CH2CH2CH3), 1.53–1.45 (m, 4H, N(CH2CH2)2CH2), 1.41–1.32 (m, 2H, N(CH2CH2)2CH2), 0.87 (t, J = 7.4 Hz, 3H, CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 154.5 (SC=N), 150.3 (C=N), 133.2 (=CH), 129.3 (2*CH=), 129.2, 126.9 (2*CH=), 66.5 (OCH), 63.3 (NCH2), 54.5 (2*NCH2), 37.4 (SCH2), 26.4 (CH2), 25.4 (2*CH2), 23.7 (CH2), 19.7 (CH2), 13.3 (CH3). IRνmax = 3282; 3063; 2931; 2872; 2852; 2797; 2758; 1597; 1589; 1522; 1498; 1442; 1431; 1397; 1352; 1328; 1300; 1276; 1156; 1116; 1088; 1075; 1039; 1009; 995; 963; 891; 862; 809; 786; 771; 742; 696; 614; 603; 563; 500; 480; 471; 445; 420; 412; 406 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C19H29N4OS+ 361.2062; Found 361.2073.
- 1-((4,5-Diphenyl-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3s). Yield 83%, white solid, m.p. 97 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.59–7.45 (m, 3Harom), 7.37–7.24 (m, 7Harom), 4.68 (br.s., 1H, OH), 4.01–3.87 (m, 1H, CHOH), 3.43 (dd, J = 13.1, 4.4 Hz, 1Ha, SCH2), 3.18 (dd, J = 13.2, 6.8 Hz, 1Hb, SCH2), 2.44 (br.t., J = 5.4 Hz, 4H, N(CH2CH2)2CH2), 2.39–2.31 (m, 2H, NCH2CHOH), 1.61–1.49 (m, 4H, N(CH2CH2)2CH2), 1.46–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.6, 152.4, 134.0, 129.3 (2*CH=), 128.9 (CH=), 127.9 (2*CH=), 127.4 (2*CH=), 127.1 (2*CH=), 126.6, 66.4 (OCH), 63.3 (NCH2), 54.5 (2*NCH2), 37.4 (SCH2), 25.4 (2*CH2), 23.7 (CH2). IRνmax = 3451; 3104; 3086; 3050; 3012; 2934; 2918; 2855; 2787; 2758; 2736; 2697; 2648; 1596; 1498; 1473; 1457; 1446; 1426; 1378; 1357; 1330; 1305; 1283; 1272; 1257; 1246; 1214; 1177; 1154; 1119; 1096; 1073; 1043; 1032; 1007; 995; 971; 922; 906; 889; 862; 849; 834; 809; 792; 772; 730; 710; 694; 620; 614; 603; 584; 558; 514; 504; 482; 465; 426; 406 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C22H27N4OS+ 395.1906; Found 395.1912.
- 1-((4-Phenyl-5-(m-tolyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3t). Yield 90%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.57–7.46 (m, 3Harom), 7.33–7.29 (m, 3Harom), 7.14–7.08 (m, 2Harom), 7.04–6.99 (m, 1Harom), 4.63 (br.s., 1H, OH), 4.01–3.87 (m, 1H, CHOH), 3.43 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.18 (dd, J = 13.1, 6.8 Hz, 1Hb, SCH2), 2.42 (br.t, 4H, N(CH2CH2)2CH2), 2.37–2.31 (m, 2H, NCH2CHOH), 2.28 (s, 3H, CH3), 1.59–1.49 (m, 4H, N(CH2CH2)2CH2), 1.45–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.6, 152.2, 137.2, 134.0, 129.6 (CH=), 129.3 (2*CH=), 129.1 (CH=), 128.2 (CH=), 127.7 (2*CH=), 126.4, 124.4 (CH=), 66.5 (OCH), 63.4 (NCH2), 54.5 (2*NCH2), 37.5 (SCH2), 25.5 (2*CH2), 23.8 (CH2), 20.8 (CH3). IRνmax = 3304; 3060; 3036; 2931; 2851; 2797; 2757; 1608; 1596; 1497; 1485; 1465; 1453; 1432; 1376; 1324; 1303; 1268; 1243; 1210; 1156; 1116; 1088; 1073; 1039; 1010; 995; 963; 911; 887; 861; 850; 788; 769; 718; 692; 681; 668; 608; 545; 525; 503; 481; 442; 430; 419; 410 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C23H29N4OS+ 409.2062; Found 409.2082.
- 1-((4-Phenyl-5-(p-tolyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3u). Yield 85%, white solid, m.p. 115 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.56–7.46 (m, 3Harom), 7.34–7.26 (m, 2Harom), 7.26–7.18 (m, 2Harom), 7.11–7.03 (m, 2Harom), 4.60 (br.s., 1H, OH), 3.98–3.85 (m, 1H, CHOH), 3.41 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.16 (dd, J = 13.1, 6.8 Hz, 1Hb, SCH2), 2.41 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.36–2.25 (m, 5H, 2H NCH2CH, 3H CH3), 1.59–1.47 (m, 4H, N(CH2CH2)2CH2), 1.45–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.6, 152.1, 138.6, 134.1, 129.3 (2*CH=), 129.1 (CH=), 128.5 (2*CH=), 127.4 (2*CH=), 127.1 (2*CH=) 123.7, 66.5 (OCH), 63.4 (NCH2), 54.5 (2*NCH2), 37.4 (SCH2), 25.5 (2*CH2), 23.8 (CH2), 20.7 (CH3). IRνmax = 3410; 3100; 3070; 3049; 2932; 2920; 2858; 2804; 2760; 2665; 1614; 1593; 1495; 1480; 1430; 1404; 1375; 1357; 1336; 1323; 1305; 1284; 1264; 1243; 1228; 1206; 1186; 1158; 1152; 1121; 1107; 1081; 1062; 1040; 1021; 1012; 1006; 992; 970; 948; 917; 891; 868; 847; 823; 799; 782; 769; 749; 726; 708; 694; 646; 633; 613; 584; 553; 526; 515; 499; 484; 479; 444; 424; 407 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C23H29N4OS+ 409.2062; Found 409.2062.
- 5-Benzyl-2-(2-(5-((2-hydroxy-3-(piperidin-1-yl)propyl)thio)-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)-4-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (3v). Yield 68%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.61–7.52 (m, 3Harom), 7.48–7.40 (m, 5Harom), 7.21–7.09 (m, 5Harom), 6.93–6.85 (m, 2Harom), 4.62 (br.s., 1H, OH), 4.44 (t, J = 7.3 Hz, 2H, NNCH2), 3.92–3.86 (m, 1H, CHOH), 3.83 (s, 2H, CH2Ph), 3.34 (dd, J = 13.2, 4.3 Hz, 1Ha, SCH2), 3.16–3.06 (m, 3H, 1Hb, SCH2, 2H NNCH2CH2), 2.39 (br.t., J = 5.1 Hz, 4H, N(CH2CH2)2CH2), 2.31 (d, J = 6.4 Hz, 2H, NCH2CHOH), 1.57–1.47 (m, 4H, N(CH2CH2)2CH2), 1.45–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 167.4, 151.5, 151.0, 149.3, 133.7, 133.6, 132.9, 129.4, 129.3, 128.9, 128.7, 128.2, 127.9, 127.7, 127.0, 126.4, 66.5 (OCH), 63.4 (NCH2), 54.5 (2*NCH2), 45.5 (NCH2), 37.6 (SCH2), 31.2 (CH2), 25.5 (2*CH2), 23.8 (CH2), 23.3 (CH). IRνmax = 3364; 3088; 3063; 3033; 2933; 2852; 2799; 2758; 1597; 1568; 1523; 1497; 1478; 1455; 1442; 1415; 1345; 1334; 1295; 1257; 1214; 1156; 1116; 1073; 1038; 1016; 995; 963; 919; 891; 862; 768; 723; 694; 679; 639; 614; 566; 533; 504; 477; 458; 437; 419 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C33H38N7OS2+ 612.2579; Found 612.2579.
- 3,3′-((((((2,5-Dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl))bis(methylene))bis(4-phenyl-4H-1,2,4-triazole-5,3-diyl))bis(sulfanediyl))bis(1-(piperidin-1-yl)propan-2-ol) (3w). Yield 73%, white solid, m.p. 186 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.59–7.46 (m, 6Harom), 7.39–7.28 (m, 4Harom), 7.00 (s, 2Harom), 4.58 (br.s., 2H, OH), 3.94–3.83 (m, 2H, CHOH), 3.65 (s, 4H, CH2CNN), 3.53 (s, 4H, SCH2Ar), 3.38 (dd, J = 13.1, 4.3 Hz, 2Ha, SCH2CHOH), 3.12 (dd, J = 13.1, 6.8 Hz, 2Hb, SCH2CHOH), 2.40 (br.t., J = 5.3 Hz, 8H, N(CH2CH2)2CH2), 2.32 (d, J = 6.4 Hz, 4H, NCH2CHOH), 2.22 (s, 6H, CH3), 1.61–1.46 (m, 8H, N(CH2CH2)2CH2), 1.46–1.32 (m, 4H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 152.3 (2*N=CCH2), 151.5 (2*N=CS), 133.7 (2*C=CCH3), 133.2 (2*C=CCH2), 132.7 (2*NC=CH), 131.7 (2*CH=CCH3), 129.5 (2*CH=), 129.3 (4*CH=), 126.9 (4*CH=CN), 66.4 (2*OCH), 63.5 (2*NCH2CH), 54.5 (4*NCH2), 37.6 (2*SCH2CH), 32.6 (2*SCH2(C6H2)), 25.4 (4*NCH2), 24.0 (2*SCH2(C2N3)), 23.8 (2*CH2), 17.9 (2*CH3). IRνmax = 3448; 3070; 3055; 2961; 2949; 2921; 2852; 2803; 2759; 2736; 1496; 1445; 1435; 1409; 1403; 1388; 1374; 1355; 1326; 1321; 1303; 1279; 1253; 1239; 1223; 1172; 1152; 1116; 1090; 1070; 1045; 1029; 1008; 991; 964; 923; 916; 891; 860; 843; 834; 797; 781; 748; 703; 689; 664; 616; 582; 555; 487; 462; 426 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C44H59N8O2S4+ 859.3644; Found 859.3639.
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, Z.; Dai, B.; Yu, Y.; Cao, K. Thiol-epoxy click chemistry and its applications in macromolecular materials. Prog. Chem. 2016, 28, 1062–1069. [Google Scholar] [CrossRef]
- Khan, A. Thiol-epoxy ‘click’ chemistry: A focus on molecular attributes in the context of polymer chemistry. Chem. Commun. 2023, 59, 11028–11044. [Google Scholar] [CrossRef]
- Stuparu, M.C.; Khan, A. Poly(ß-hydroxy thioether)s: Synthesis through thiol-epoxy ‘click’ reaction and post-polymerization modification to main-chain polysulfonium salts. J. Macromol. Sci. Pure Appl. Chem. 2022, 59, 2–10. [Google Scholar] [CrossRef]
- Konuray, A.O.; Fernández-Francos, X.; Ramis, X. Analysis of the reaction mechanism of the thiol–epoxy addition initiated by nucleophilic tertiary amines. Polym. Chem. 2017, 8, 5934–5947. [Google Scholar] [CrossRef]
- Lin, G.; Yin, J.; Lin, Z.; Zhu, Y.; Li, W.; Li, H.; Liu, Z.; Xiang, H.; Liu, X. Facile thiol-epoxy click chemistry for transparent and aging-resistant silicone/epoxy composite as LED encapsulant. Prog. Org. Coat. 2021, 156, 106269. [Google Scholar] [CrossRef]
- Peng, Y.; Cai, C.; Wang, C.; Zuo, Z.; Liu, X. Probing the glass transition in reversible cross-linked polymer composites. RSC Adv. 2019, 9, 15318–15322. [Google Scholar] [CrossRef]
- Stuparu, M.C.; Khan, A. Thiol-epoxy “click” chemistry: Application in preparation and postpolymerization modification of polymers. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 3057–3070. [Google Scholar] [CrossRef]
- Xin, F.; Han, J.; Pan, H.; Sun, F. Surface microstructures and properties of thiol-epoxy/thiol-Si-methacrylate hybrid polymer networks prepared by UV-induced polymerization. J. Macromol. Sci. Pure Appl. Chem. 2020, 57, 355–362. [Google Scholar] [CrossRef]
- Dhavale, R.P.; Parale, V.G.; Choi, H.; Kim, T.; Lee, K.-Y.; Phadtare, V.D.; Park, H.-H. Epoxy-thiol crosslinking for enhanced mechanical strength in silica aerogels and highly efficient dye adsorption. Appl. Surf. Sci. 2024, 642, 158619. [Google Scholar] [CrossRef]
- Konuray, O.; Fernández-Francos, X.; De la Flor, S.; Ramis, X.; Serra, À. The Use of Click-Type Reactions in the Preparation of Thermosets. Polymers 2020, 12, 1084. [Google Scholar] [CrossRef]
- Ellson, G.; Prima, M.D.; Ware, T.; Tang, X.; Voit, W. Tunable thiol–epoxy shape memory polymer foams. Smart Mater. Struct. 2015, 24, 055001. [Google Scholar] [CrossRef]
- Romański, J.; Stefaniak, M. Facile Synthesis of Hydroxy-Substituted Thiacrown Ethers via Nucleophilic Ring Opening of Epoxides. Synthesis 2019, 51, 2214–2220. [Google Scholar] [CrossRef]
- Hu, Y.-Y.; Bheemanaboina, R.R.Y.; Battini, N.; Zhou, C.-H. Sulfonamide-Derived Four-Component Molecular Hybrids as Novel DNA-Targeting Membrane Active Potentiators against Clinical Escherichia coli. Mol. Pharm. 2019, 16, 1036–1052. [Google Scholar] [CrossRef]
- He, B.; Hu, Y.; Xing, L.; Qing, Y.; Meng, K.; Zeng, W.; Sun, Z.; Wang, Z.; Xue, W. Antifungal Activity of Novel Indole Derivatives Containing 1,3,4-Thiadiazole. J. Agric. Food Chem. 2024, 72, 10227–10235. [Google Scholar] [CrossRef]
- Yalla, R.; Raghavan, S. Synthesis of solandelactone F, constanolactone A and an advanced intermediate towards solandelactone E from a common synthetic intermediate. Org. Biomol. Chem. 2019, 17, 4572–4592. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Truong, G.N.; Van Vuong, T.; Van, T.N.; Manh, C.N.; Dao, C.T.; Thuy, T.D.T.; Van, C.L.; Khac, V.T. Synthesis of new indirubin derivatives and their in vitro anticancer activity. Chem. Pap. 2019, 73, 1083–1092. [Google Scholar] [CrossRef]
- Mamat, M.; Liu, C.; Abdukerem, D.; Abdukader, A. A visible-light-induced thiol addition/aerobic oxidation cascade reaction of epoxides and thiols for the synthesis of β-hydroxylsulfoxides. Org. Biomol. Chem. 2021, 19, 9855–9859. [Google Scholar] [CrossRef] [PubMed]
- Haggam, R.A. Microwave-assisted synthesis of double-headed derivatives of (4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-ethan-1-ol and study of their biological activity. Res. Chem. Intermed. 2021, 47, 3733–3749. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, S.; Pan, G.; Wu, D.; Wang, T.; Yu, C.; Ansari, M.F.; Bheemanaboina, R.R.Y.; Cheng, Y.; Bai, L.; et al. Potential antibacterial ethanol-bridged purine azole hybrids as dual-targeting inhibitors of MRSA. Bioorg. Chem. 2021, 114, 105096. [Google Scholar] [CrossRef]
- Wang, Q.; Xing, L.; Zhang, Y.; Gong, C.; Zhou, Y.; Zhang, N.; He, B.; Xue, W. Antiviral activity evaluation and action mechanism of myricetin derivatives containing thioether quinoline moiety. Mol. Divers. 2024, 28, 1039–1055. [Google Scholar] [CrossRef]
- Pirota, V.; D’Acerno, G.; Quadrelli, P. Synthesis of tetrazole- and imidazole-based compounds: Prophetic molecules made real for biological studies. Arkivoc 2022, 2022, 245–258. [Google Scholar] [CrossRef]
- Saeeda, S.; Saif, M.J.; Zahoor, A.F.; Tabassumc, H.; Kamald, S.; Faisal, S.; Ashrafa, R.; Khana, S.G.; Nazeerf, U.; Irfan, A.; et al. Discovery of novel 1,2,4-triazole tethered β-hydroxy sulfides as bacterial tyrosinase inhibitors: Synthesis and biophysical evaluation through in vitro and in silico approaches. RSC Adv. 2024, 14, 15419–15430. [Google Scholar] [CrossRef]
- Bergmeier, S.C. The Synthesis of Vicinal Amino Alcohols. Tetrahedron 2000, 56, 2561–2576. [Google Scholar] [CrossRef]
- Karjalainen, O.K.; Koskinen, A.M.P. Diastereoselective synthesis of vicinal amino alcohols. Org. Biomol. Chem. 2012, 10, 4311–4326. [Google Scholar] [CrossRef]
- Ye, C.X.; Melcamu, Y.Y.; Li, H.H.; Cheng, J.T.; Zhang, T.T.; Ruan, Y.P.; Zheng, X.; Lu, X.; Huang, P.Q. Dual catalysis for enantioselective convergent synthesis of enantiopure vicinal amino alcohols. Nat. Commun. 2018, 9, 410. [Google Scholar] [CrossRef]
- National Institute of Diabetes and Digestive and Kidney Diseases. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]; Beta Adrenergic Blocking Agents: Bethesda, MD, USA, 2012; Bookshelf ID: NBK547852. [Google Scholar]
- Hersh, E.V.; Giannakopoulos, H. Beta-adrenergic blocking agents and dental vasoconstrictors. Dent. Clin. N. Am. 2010, 54, 687–696. [Google Scholar] [CrossRef]
- Helfand, M.; Peterson, K. Drug Class Review on Beta Adrenergic Blockers Final Report; Oregon Health & Science University: Portland, OR, USA, 2005; Bookshelf ID: NBK47172. [Google Scholar]
- Miyajima, R.; Sano, K.; Yoshida, H. β-Adrenergic Blocking Agents and Intermittent Claudication: Systematic Review. Yakugaku Zasshi 2004, 124, 825–831. [Google Scholar] [CrossRef]
- WHO Team. WHO Essential Medicines, 22nd ed.; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02 (accessed on 31 March 2025).
- Smith, C.D.; Wang, A.; Vembaiyan, K.; Zhang, J.; Xie, C.; Zhou, Q.; Wu, G.; Chen, S.R.W.; Back, T.G. Novel carvedilol analogues that suppress store-overload-induced Ca2+ release. J. Med. Chem. 2013, 56, 8626–8655. [Google Scholar] [CrossRef]
- Verma, A.K.; Singh, H.; Satyanarayana, M.; Srivastava, S.P.; Tiwari, P.; Singh, A.B.; Dwivedi, A.K.; Singh, S.K.; Srivastava, M.; Nath, C.; et al. Flavone-based novel antidiabetic and antidyslipidemic agents. J. Med. Chem. 2012, 55, 4551–4567. [Google Scholar] [CrossRef]
- Liu, A.; Huang, L.; Wang, Z.; Luo, Z.; Mao, F.; Shan, W.; Xie, J.; Lai, K.; Li, X. Hybrids consisting of the pharmacophores of salmeterol and roflumilast or phthalazinone: Dual β2-adrenoceptor agonists-PDE4 inhibitors for the treatment of COPD. Bioorg. Med. Chem. Lett. 2013, 23, 1548–1552. [Google Scholar] [CrossRef]
- Ang, W.; Ye, W.; Sang, Z.; Liu, Y.; Yang, T.; Deng, Y.; Luo, Y.; Wei, Y. Discovery of novel bis-oxazolidinone compounds as potential potent and selective antitubercular agents. Bioorg. Med. Chem. Lett. 2014, 24, 1496–1501. [Google Scholar] [CrossRef]
- Burns, J.F.; Chen, B.; Chen, C.-A.; Doller, D.; Edelmenky, E.; Jiang, Y.; Peterson, J.M.; Sabio, M.; Weiss, J.; White, A.D.; et al. cis-1-Oxo-heterocyclyl-4-amido cyclohexane derivatives as NPY5 receptor antagonists. Bioorg. Med. Chem. Lett. 2014, 24, 1458–1461. [Google Scholar] [CrossRef] [PubMed]
- Guijarro, D.; Pablo, Ó.; Yus, M. Achiral β-amino alcohols as efficient ligands for the ruthenium-catalysed asymmetric transfer hydrogenation of sulfinylimines. Tetrahedron Lett. 2011, 52, 789–791. [Google Scholar] [CrossRef]
- Tasgin, D.I.; Unaleroglu, C. Enantioselective addition of diethylzinc to aldehydes catalyzed by β-amino alcohols derived from (1R,2S)-norephedrine. Appl. Organomet. Chem. 2010, 24, 33–37. [Google Scholar] [CrossRef]
- Mesropyan, E.G.; Galstyan, A.S.; Avetisyan, A.A. Syntheses on the basis of 4-(Oxiran-2-ylmethyl)morpholine. Russ. J. Org. Chem. 2006, 42, 1845–1847. [Google Scholar] [CrossRef]
- Mesropyan, E.G.; Avetisyan, A.A.; Galstyan, A.S. Synthesis of N-aryl derivatives of vicinal aminoalcohols. Russ. J. Org. Chem. 2007, 43, 1176–1179. [Google Scholar] [CrossRef]
- Mesropyan, E.G.; Galstyan, A.S.; Avetisyan, A.A. Syntheses proceeding from N-(oxiran-2-ylmethyl)-N-ethylaniline. Russ. J. Org. Chem. 2010, 46, 1296–1300. [Google Scholar] [CrossRef]
- Mesropyan, E.G.; Galstyan, A.S.; Avetisyan, A.A. Reactions of aromatic dithiols with diethyl 2-alkyl-2-(oxiran-2-ylmethyl)malonates. Russ. J. Org. Chem. 2012, 48, 373–375. [Google Scholar] [CrossRef]
- Mesropyan, E.G.; Ambartsumyan, G.B.; Avetisyan, A.A.; Galstyan, A.S. Reaction of phenyl glycidyl ether with some heterocycles. Chem. Heterocycl. Compd. 2008, 44, 650–653. [Google Scholar] [CrossRef]
- Mesropyan, E.G.; Avetisyan, A.A.; Galstyan, A.S.; Ter-Vardanyan, L.R. Reactions of aromatic dithiols with allyl glycidyl ether and 4-(oxiran-2-ylmethyl)morpholine. Russ. Chem. Bull. 2009, 58, 1528–1530. [Google Scholar] [CrossRef]
- Mesropyan, E.G.; Hambardzumyan, G.B.; Avetisyan, A.A.; Galstyan, A.S.; Khachatryan, A.G. Synthesis of 3-Allyloxy(2-hydroxypropyl)-5,5-dimethylhydantoin, 1-Allyloxy(2-hydroxypropyl)-substituted Benzotriazole and Benzimidazole, and N-allyloxy(2-hydroxypropyl)-substituted Pyrrolidone, Caprolactam, and Phthalimide. Chem. Heterocycl. Compd. 2005, 41, 962–966. [Google Scholar] [CrossRef]
- Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol. 2017, 133, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, S.; Liu, Y.; Dong, G.; Cao, Y.; Miao, Z.; Yao, J.; Zhang, W.; Sheng, C. Novel conformationally restricted triazole derivatives with potent antifungal activity. Eur. J. Med. Chem. 2010, 45, 6020–6026. [Google Scholar] [CrossRef]
- Sheng, C.; Che, X.; Wang, W.; Wang, S.; Cao, Y.; Miao, Z.; Yao, J.; Zhang, W. Design and synthesis of novel triazole antifungal derivatives by structure-based bioisosterism. Eur. J. Med. Chem. 2011, 46, 5276–5282. [Google Scholar] [CrossRef]
- Wang, S.; Jin, G.; Wang, W.; Zhu, L.; Zhang, Y.; Dong, G.; Liu, Y.; Zhuang, C.; Miao, Z.; Yao, J.; et al. Design, synthesis and structure–activity relationships of new triazole derivatives containing N-substituted phenoxypropylamino side chains. Eur. J. Med. Chem. 2012, 53, 292–299. [Google Scholar] [CrossRef]
- Yu, S.; Chai, X.; Hu, H.; Yan, Y.; Guan, Z.; Zou, Y.; Sun, Q.; Wu, Q. Synthesis and antifungal evaluation of novel triazole derivatives as inhibitors of cytochrome P450 14α-demethylase. Eur. J. Med. Chem. 2010, 45, 4435–4445. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Huang, L.; Xu, Z.; Wang, Y.; Bai, G.; Wu, Q.; Wang, X.; Yu, S.; Jiang, Y. Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group. Drug Des. Dev. Ther. 2015, 9, 1459–1467. [Google Scholar] [CrossRef]
- Elias, R.; Benhamou, R.I.; Jaber, Q.Z.; Dorot, O.; Zada, S.L.; Oved, K.; Pichinuk, E.; Fridman, M. Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles. Eur. J. Med. Chem. 2019, 179, 779–790. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, S.; Liu, Z.J.; Chen, W.; Fu, J.; Zeng, Q.F.; Zhu, H.L. Synthesis and antimicrobical evaluation of a novel class of 1,3,4-thiadiazole: Derivatives bearing 1,2,4-triazolo[1,5-a]pyrimidine moiety. Eur. J. Med. Chem. 2013, 64, 54–61. [Google Scholar] [CrossRef]
- Zoumpoulakis, P.; Camoutsis, C.; Pairas, G.; Sokovic, M.; Glamoclija, J.; Potamitis, C.; Pitsas, A. Synthesis of novel sulfonamide-1,2,4-triazoles, 1,3,4-thiadiazoles and 1,3,4-oxadiazoles, as potential antibacterial and antifungal agents. Biological evaluation and conformational analysis studies. Bioorg. Med. Chem. 2012, 20, 1569–1583. [Google Scholar] [CrossRef]
- Charushin, V.N.; Verbitskiy, E.V.; Chupakhin, O.N.; Vorobyeva, D.V.; Gribanov, P.S.; Osipov, S.N.; Ivanov, A.V.; Martynovskaya, S.V.; Sagitova, E.F.; Dyachenko, V.D.; et al. The chemistry of heterocycles in the 21st century. Russ. Chem. Rev. 2024, 93, RCR5125. [Google Scholar] [CrossRef]
- Ghochikyan, T.V.; Zhamharyan, A.G.; Afrikyan, S.G.; Frangyan, V.R.; Galstyan, A.S. Novel Triazole-Containing “Dipeptides”: Synthesis, Molecular Docking and Analgesic Activity Studies. ChemBioChem 2024, 25, e202300837. [Google Scholar] [CrossRef]
- Galstyan, A.S.; Ghochikyan, T.V.; Frangyan, V.R.; Tamazyan, R.A.; Ayvazyan, A.G. Synthesis of Novel Derivatives of 1,2,4-Triazoles. ChemistrySelect 2018, 3, 9981–9985. [Google Scholar] [CrossRef]
- Galstyan, A.S.; Ghochikyan, T.V.; Samvelyan, M.A.; Frangyan, V.R.; Sarfraz, M. Synthesis, Study of the Biological Activity of New 1,2,4-Triazole Derivatives and Characteristics of the Relationship of the Structure and Biological Activity in a Series of the Latter. ChemistrySelect 2019, 4, 12386–12390. [Google Scholar] [CrossRef]
- Galstyan, A.S.; Grigoryan, S.V.; Samvelyan, M.A.; Frangyan, V.R.; Yeganyan, T.H.; Ayvazyan, A.G.; Ghochikyan, T.V. On Features of Halocyclization of 4-Allyl-5-substituted-2,4-dihydro-3H-1,2,4-triazol-3-thiones and Synthesis of New Derivatives of 1,2,3-Triazoles. ChemistrySelect 2022, 7, e202201283. [Google Scholar] [CrossRef]
- Samvelyan, M.A.; Ghochikyan, T.V.; Grigoryan, S.V.; Tamazyan, R.A.; Aivazyan, A.G. Alkylation of 1,2,4-triazole-3-thiols with haloalkanoic acid esters. Russ. J. Org. Chem. 2017, 53, 935–940. [Google Scholar] [CrossRef]
- Petrosyan, A.; Ayvazyan, A.; Ghochikyan, T.; Galstyan, A. Ligand-Free Copper(0)-Catalyzed C−S Ullmann-Type Cross-Coupling Reaction: S-Arylation of 5,4-Disubstituted 2,4-Dihydro-3H-1,2,4-triazole-3-thiones. Eur. J. Org. Chem. 2024, 27, e202400199. [Google Scholar] [CrossRef]
- Kochikyan, T.V.; Samvelyan, M.A.; Arutyunyan, V.S.; Avetisyan, A.A.; Tamazyan, R.A.; Aivazyan, A.G. Synthesis of 1,2,4-triazole-3-thiols and their S-substituted derivatives. Russ. J. Org. Chem. 2010, 46, 551–555. [Google Scholar] [CrossRef]
- Kochikyan, T.V.; Samvelyan, M.A.; Petrosyan, A.M.; Langer, P.D. Synthesis and properties of thiazolo[2,3-c][1,2,4]triazoles. Russ. J. Org. Chem. 2015, 51, 1469–1473. [Google Scholar] [CrossRef]
- Kirschberg, T.A.; Balakrishnan, M.; Huang, W.; Hluhanich, R.; Kutty, N.; Liclican, A.C.; McColl, D.J.; Squires, N.H.; Lansdon, E.B. Triazole derivatives as non-nucleoside inhibitors of HIV-1 reverse transcriptase—Structure–activity relationships and crystallographic analysis. Bioorg. Med. Chem. Lett. 2008, 18, 1131–1134. [Google Scholar] [CrossRef]
- Romaine, I.M.; Taylor, R.W.; Saidu, S.P.; Kim, K.; Sulikowski, G.A.; Zwiebel, L.J.; Waterson, A.G. Narrow SAR in odorant sensing Orco receptor agonists. Bioorg. Med. Chem. Lett. 2014, 24, 2613–2616. [Google Scholar] [CrossRef]
- Turky, A.; Sherbiny, F.F.; Bayoumi, A.H.; Ahmed, H.E.A.; Abulkhair, H.S. Novel 1,2,4-triazole derivatives: Design, synthesis, anticancer evaluation, molecular docking, and pharmacokinetic profiling studies. Arch. Pharm. 2020, 353, 2000170. [Google Scholar] [CrossRef]
- Enikolopiyan, N.S. New Aspects of the Nucleophilic Opening of Epoxide Rings. Pure Appl. Chem. 1976, 48, 317–328. [Google Scholar] [CrossRef]
- Omoto, K.; Fujimoto, H. Theoretical Study of Activation of Oxirane by Bidentate Acids. J. Org. Chem. 2000, 65, 2464–2471. [Google Scholar] [CrossRef]
- Kas’yan, L.I.; Okovityi, S.I.; Kas’yan, A.O. Reactions of Alicyclic Epoxy Compounds with Nitrogen-Containing Nucleophiles. Russ. J. Org. Chem. 2004, 40, 1–34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrosyan, A.V.; Shahkhatuni, A.A.; Davinyan, A.M.; Avetisyan, K.S.; Ghochikyan, T.V.; Samvelyan, M.A.; Nenajdenko, V.G.; Galstyan, A.S. Thiol-Epoxy Click Chemistry: The Synthesis of Vicinal Amino Alcohols Containing a 1,2,4-Triazole Ring. Chemistry 2025, 7, 53. https://doi.org/10.3390/chemistry7020053
Petrosyan AV, Shahkhatuni AA, Davinyan AM, Avetisyan KS, Ghochikyan TV, Samvelyan MA, Nenajdenko VG, Galstyan AS. Thiol-Epoxy Click Chemistry: The Synthesis of Vicinal Amino Alcohols Containing a 1,2,4-Triazole Ring. Chemistry. 2025; 7(2):53. https://doi.org/10.3390/chemistry7020053
Chicago/Turabian StylePetrosyan, Artyom V., Astghik A. Shahkhatuni, Andranik M. Davinyan, Karine S. Avetisyan, Tariel V. Ghochikyan, Melanya A. Samvelyan, Valentine G. Nenajdenko, and Armen S. Galstyan. 2025. "Thiol-Epoxy Click Chemistry: The Synthesis of Vicinal Amino Alcohols Containing a 1,2,4-Triazole Ring" Chemistry 7, no. 2: 53. https://doi.org/10.3390/chemistry7020053
APA StylePetrosyan, A. V., Shahkhatuni, A. A., Davinyan, A. M., Avetisyan, K. S., Ghochikyan, T. V., Samvelyan, M. A., Nenajdenko, V. G., & Galstyan, A. S. (2025). Thiol-Epoxy Click Chemistry: The Synthesis of Vicinal Amino Alcohols Containing a 1,2,4-Triazole Ring. Chemistry, 7(2), 53. https://doi.org/10.3390/chemistry7020053