Next Article in Journal
Effect of Gamma Irradiation on Free Radicals and the Antioxidant Properties of Walnuts
Previous Article in Journal
Tetraanion of Tetracyclopentatetraphenylene Derivative: Global Versus Local Conjugation Modes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Thiol-Epoxy Click Chemistry: The Synthesis of Vicinal Amino Alcohols Containing a 1,2,4-Triazole Ring

by
Artyom V. Petrosyan
1,
Astghik A. Shahkhatuni
2,
Andranik M. Davinyan
2,
Karine S. Avetisyan
1,*,
Tariel V. Ghochikyan
1,
Melanya A. Samvelyan
1,
Valentine G. Nenajdenko
3 and
Armen S. Galstyan
1,*
1
Faculty of Chemistry, Yerevan State University, 1 A. Manoukyan Str., Yerevan 0025, Armenia
2
Scientific and Technological Center of Organic and Pharmaceutical Chemistry of NAS RA, 26, Azatutian ave., Yerevan 0014, Armenia
3
Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
*
Authors to whom correspondence should be addressed.
Chemistry 2025, 7(2), 53; https://doi.org/10.3390/chemistry7020053
Submission received: 12 March 2025 / Revised: 25 March 2025 / Accepted: 26 March 2025 / Published: 1 April 2025
(This article belongs to the Special Issue Celebrating the 50th Anniversary of Professor Valentine Ananikov)

Abstract

:
As examples of “Click Chemistry”, the reaction of 1-(oxiran-2-ylmethyl)piperidine with several 1,2,4-triazoles derivatives was studied. As a result, the reaction shows that the oxirane ring opens regiospecifically, according to Krasusky’s rule, without using a catalyst. The basic nitrogen present in 1-(oxiran-2-ylmethyl)piperidine has a catalytic (anchimer) effect.

Graphical Abstract

1. Introduction

The thiol-epoxy reaction is a “click” reaction that has drawn intensive attention in recent years due to its outstanding advantages, such as fast reaction rate, high selectivity, mild reaction conditions, and wide range of applications (Scheme 1) [1,2]. The thiol-epoxy reaction is used in the synthesis of polymers [1,2,3,4,5,6,7], materials with programmed properties [7,8,9,10,11], biologically active compounds, etc. [12,13,14,15,16,17,18,19,20,21,22].
The reaction becomes particularly significant when oxiranes containing an amino group in the vicinal position react with thiols to form vicinal amino alcohols with thioether fragments. Several methods [23,24,25] have been described for the synthesis of vicinal amino alcohols. The most accessible are the reactions of epoxides or aziridines, which contain desirable functional groups with appropriate nucleophiles. A number of vicinal amino alcohols are currently employed in medicinal applications (Figure 1). Some of them behave as β-adrenergic blocking agents, demonstrating targeted effects in inhibiting the stimulation of β-adrenergic receptor systems [26,27,28,29].
Salbutamol and propranolol are on the World Health Organization’s List of Essential Medicines [30] and represent the most important examples of therapeutic agents bearing this structural feature. In addition to their high relevance in drug discovery [31,32,33], N-substituted vicinal amino alcohols are important building blocks in the preparation of added-value chemicals [34,35] and ligands for catalysis [36,37]. Previously, we have studied the reaction of epoxides of various structures with S-, N-, and O-nucleophiles, resulting in the synthesis of vicinal amino alcohols, lactones, and other compounds [38,39,40,41,42,43,44].
Similarly, derivatives of 4,5-disubstituted-2,4-dihydro-3H-1,2,4-triazole-3-thiones hold potential interest for developing novel bioactive compounds. Some 1,2,4-triazoles are extensively used in medicine (Figure 2) [45,46,47,48,49,50,51,52,53,54,55].
Our previous studies have shown that the alkylation of 4,5-disubstituted-2,4-dihydro-3H-1,2,4-triazole-3-thiones depends on the nature of the alkylating electrophile. S-alkylation takes place in the case of the reaction with alkyl halides. However, Michael’s addition proceeds as an attack on nitrogen. The Ullmann-type arylation leads to S-substituted triazoles (Scheme 2) [55,56,57,58,59,60,61,62].

2. Materials and Methods

1H and 13C NMR spectra were recorded on Varian Mercury 300 MHz or on Bruker Avance Neo 400 MHz spectrometer in DMSO/CCl4 mixture (1:3) or DMSO-d6. Chemical shifts (δ) in ppm are reported as quoted relative to the residual signals of solvents, for instance, DMSO-d6 (2.5 for 1H NMR and 39.5 for 13C NMR) as internal references. The coupling constants (J) are given in Hertz. All 1H and 13C spectra are given in Supplementary Materials. ESI-MS spectra were measured with a Waters Xevo G3 QTof Mass Spectrometer. Spectroscopic measurements were performed on a Nicolet IS 50 FTIR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) coupled with an ATR accessory. TLC analysis was performed on “Silufol UV-254” plates. All reagents were of reagent grade and were used as such or distilled prior to use. Starting 1,2,4-triazoles were prepared as previously reported (1a, 1k, 1mo, 1r [60]; 1f [62]; 1g–CAS 21358-12-3; 1j–CAS: 93378-58-6; 1v [55]; 1h, 1i [61]; 1e [63]; 1q [64]; 1u [65]). Melting points were determined on “SMP-10”.
  • 4-Propyl-5-(thiophen-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (1b). Yield 84%, white solid, m.p. 135 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 13.77 (s, 1H, NH), 7.63 (dd, J = 5.1, 1.1 Hz, 1Hthph), 7.52 (dd, J = 3.7, 1.1 Hz, 1Hthph), 7.18 (dd, J = 5.1, 3.7 Hz, 1Hthph), 4.19–4.03 (m, 2H, NCH2), 1.84–1.67 (m, 2H, CH2CH3), 0.97 (t, J = 7.4 Hz, 3H, CH2CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 167.4 (C=S), 145.2 (C=N), 128.4 (CH=), 127.8 (CH=), 127.5 (CH=), 126.8, 45.1 (NCH2), 21.1 (CH2), 10.6 (CH3). IRνmax = 3094; 3083; 3062; 3007; 2959; 2927; 2911; 2870; 2819; 2793; 2758; 2723; 2683; 2584; 2574; 1792; 1719; 1648; 1623; 1571; 1544; 1515; 1480; 1459; 1443; 1433; 1401; 1373; 1353; 1324; 1300; 1283; 1253; 1230; 1218; 1205; 1145; 1103; 1086; 1071; 1060; 1035; 1014; 951; 942; 895; 868; 854; 846; 824; 780; 759; 750; 742; 727; 705; 695; 669; 660; 655; 577; 568; 493; 434; 423 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C9H12N3S+ 226.0473; Found 226.0473.
  • 5-(4-Bromophenyl)-4-cyclohexyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (1c). Yield 89%, white solid, m.p. 198 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 13.72 (s, 1H, NH), 7.74–7.58 (m, 2Harom), 7.46–7.35 (m, 2Harom), 4.39–4.17 (m, 1H, NCH), 2.38–1.91 (m, 2H, Cy), 1.86–1.67 (m, 4H, Cy), 1.67–1.53 (m, 1H, Cy), 1.37–1.19 (m, 2H, Cy), 1.16–0.99 (m, 1H, Cy). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 166.5 (C=S), 149.8 (C=N), 131.4 (2*CH=), 131.1 (2*CH=), 126.1, 124.3, 56.8 (NCH), 29.5 (2*CH2), 25.4 (2*CH2), 24.4 (CH2). IRνmax = 3091; 3069; 3059; 3025; 2980; 2931; 2894; 2863; 2854; 2824; 2779; 2747; 2689; 1600; 1575; 1544; 1500; 1474; 1450; 1442; 1409; 1383; 1340; 1307; 1289; 1281; 1256; 1242; 1188; 1151; 1141; 1116; 1097; 1085; 1066; 1057; 1010; 996; 970; 942; 925; 896; 855; 832; 819; 793; 782; 759; 728; 719; 706; 670; 666; 629; 604; 539; 509; 484; 461; 452; 432; 420; 414 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C14H1779BrN3S+ 338.0327; Found 338.0327.
  • 5-(4-Bromophenyl)-4-phenethyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (1d). Yield 81%, white solid, m.p. 178 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 13.83 (s, 1H, NH), 7.61–7.54 (m, 2Harom), 7.31–7.25 (m, 2Harom), 7.20–7.11 (m, 3Harom), 7.04–6.98 (m, 2Harom), 4.27–4.17 (m, 2H, NCH2), 3.06–2.98 (m, 2H, CH2Ph). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 167.1 (C=S), 149.9 (C=N), 136.9, 131.4 (2*CH=), 129.9 (2*CH), 128.4 (2*CH=), 128.0 (2*CH=), 126.1, 125.0, 124.0, 45.0 (NCH2), 33.1 (CH2). IRνmax = 3120; 3084; 3042; 3030; 2984; 2953; 2937; 2908; 2868; 2841; 2770; 1604; 1558; 1503; 1473; 1443; 1404; 1393; 1372; 1352; 1333; 1322; 1275; 1200; 1189; 1177; 1139; 1104; 1078; 1061; 1031; 1023; 1010; 968; 944; 925; 900; 836; 829; 777; 762; 754; 748; 731; 719; 699; 675; 659; 623; 601; 555; 538; 493; 455; 445; 417; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C16H1579BrN3S+ 360.0170; Found 360.0170.
  • 4-Allyl-5-(2-iodophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (1l). Yield 88%, white solid, m.p. 145 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 13.84 (s, 1H, NH), 7.96 (dd, J = 8.0, 1.1 Hz, 1Harom), 7.50 (td, J = 7.5, 1.1 Hz, 1Harom), 7.41 (dd, J = 7.7, 1.8 Hz, 1Harom), 7.28 (td, J = 7.7, 1.7 Hz, 1Harom), 5.69 (ddt, J = 16.1, 10.3, 5.7 Hz, 1H, CH=), 5.01 (dd, J = 10.3, 1.4 Hz, 1Ha, =CH2), 4.80 (dt, J = 17.1, 1.6 Hz, 1Hb, =CH2), 4.42 (dt, J = 6.0, 1.6 Hz, 2H, NCH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 166.7 (C=S), 151.3 (C=N), 138.8 (CH=), 131.8 (CH=), 131.5 (CH=), 130.5 (CH=), 130.4, 127.8 (CH=), 117.9 (=CH2), 98.9 (=CI), 45.7 (NCH2). IRνmax = 3083; 3058; 3037; 2967; 2923; 2910; 2850; 2836; 2754; 2650; 1644; 1624; 1596; 1561; 1528; 1498; 1459; 1442; 1425; 1395; 1354; 1331; 1293; 1262; 1250; 1197; 1159; 1147; 1099; 1077; 1018; 993; 982; 949; 914; 871; 779; 754; 728; 720; 709; 665; 641; 618; 602; 576; 526; 485; 465; 444; 421; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C11H11IN3S+ 343.9718; Found 343.9726.
  • 4-Phenyl-5-(m-tolyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (1t). Yield 90%, white solid, m.p. 245 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 13.94 (s, 1H, NH), 7.52–7.43 (m, 3Harom), 7.30–7.23 (m, 2Harom), 7.18–7.07 (m, 3Harom), 6.99–6.92 (m, 1Harom), 2.25 (s, 3H, CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 168.5 (C=S), 149.7 (C=N), 137.4, 134.5, 130.3, 128.7 (CH=), 128.7 (2CH=), 128.3 (CH=), 128.2 (2*CH=), 127.7 (CH=), 125.6, 124.7 (CH=), 20.7 (CH3). IRνmax =3107; 3085; 3058; 3031; 2995; 2928; 2823; 2770; 2752; 1591; 1551; 1496; 1488; 1459; 1438; 1402; 1383; 1334; 1313; 1285; 1274; 1243; 1208; 1175; 1130; 1098; 1083; 1074; 1037; 1003; 977; 919; 885; 851; 797; 773; 737; 717; 701; 692; 669; 660; 621; 614; 545; 525; 514; 481; 442; 427 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C15H14N3S+ 268.0909; Found 268.0931.
  • Dimethyl 2,2′-(((2,5-dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl)) diacetate (ac).
  • Method A: 0.48 g (21 mmol) of sodium was dissolved in 25 mL of methanol, then 4.16 g (21 mmol) of (2,5-dimethyl-1,4-phenylene)dimethanethiol was added and the mixture was stirred at r.t. for 30min. Then 1.09 g (10 mmol, 0.95 mL) of ethyl chloroformate and 25 mL of methanol were added to the mixture and refluxed for 4h. The resulting mixture was left overnight, and the precipitate was filtered, washed with water, and dried. Yield 84%.
  • Method B: 0.48 g (21 mmol) sodium was dissolved in 25 mL of methanol, then 2.22 g (21 mmol, 1.88 mL) methyl 2-mercaptoacetate was added and the mixture was stirred at r.t. for 30min. Then 2.03 g (10 mmol) of 1,4-bis(chloromethyl)-2,5-dimethylbenzene and 25 mL of methanol were added to the mixture and refluxed for w4h. The resulting mixture was left overnight, and the precipitate was filtered, washed with water, and dried. Yield 89%. White solid, m.p. 100 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 6.99 (s, 2Harom), 3.75 (s, 4H, CH2CO), 3.69 (s, 6H, OCH3), 3.11 (s, 4H, SCH2Ar), 2.32 (s, 6H, ArCH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 169.5 (2*C=O), 133.4 (2*C), 133.3 (2*C), 131.8 (2*CH=), 51.4 (2*OCH3), 33.4 (2*SCH2), 31.8 (2*SCH2), 17.9 (2*CH3). IRνmax = 3428; 3032; 3004; 2973; 2950; 2918; 2894; 2862; 2727; 1723; 1680; 1506; 1436; 1428; 1409; 1393; 1372; 1291; 1215; 1144; 1113; 1038; 1005; 937; 908; 867; 828; 795; 719; 700; 595; 580; 466; 424 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C16H23O4S2+ 343.1038; Found 343.1048.
  • 2,2′-(((2,5-Dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl))di(acetohydrazide) (ad). The mixture of 3.42 g dimethyl 2,2′-(((2,5-dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl)) diacetate and 8 mL hydrazine hydrate in 10 mL of ethanol was stirred for 1h at r.t., then refluxed for 3h. The resulting mixture was left overnight, and the precipitate was filtered, washed with ethanol and water, and dried. Yield 95%, white solid, m.p. 179 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 9.07 (br.s., 2H, NH), 7.03 (s, 2Harom), 4.11 (br.s., 4H, NH2), 3.77 (s, 4H, CH2CO), 2.96 (s, 4H, SCH2Ar), 2.30 (s, 6H, ArCH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 168.3 (2*C=O), 134.0 (2*C), 133.3 (2*C), 131.7 (2*CH), 33.6 (2*SCH2), 32.1 (2*SCH2), 18.0 (2*CH3). IRνmax = 3329; 3307; 3255; 3207; 3141; 3016; 2991; 2964; 2953; 2934; 2914; 2847; 1654; 1623; 1501; 1458; 1434; 1396; 1377; 1325; 1296; 1240; 1218; 1179; 1127; 1117; 1034; 987; 920; 889; 854; 802; 780; 706; 696; 659; 583; 537; 463 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C14H23N4O4S2+ 343.1263; Found 343.1263.
  • 2,2′-(2,2′-(((2,5-Dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl))bis(acetyl))bis(N-phenylhydrazine-1-carbothioamide) (ae). The mixture of 1.026 g (3 mmol) 2,2′-(((2,5-dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl))di(acetohydrazide) and 0.81 g (6 mmol) phenyl isothiocyanate in 5 mL ethanol was stirred at r.t for 1h, then was refluxed for 2h. The resulting mixture was left overnight, and the precipitate was filtered, washed with ethanol, and dried. Yield 91%, white solid, m.p 210 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 10.03 (br.s., 2H, NH), 9.68–9.32 (m, 4H, NH), 7.55 (d, J = 8.0 Hz, 4Harom), 7.29 (t, J = 7.8 Hz, 4Harom), 7.15–7.02 (m, 4Harom), 3.83 (s, 4H, CH2CO), 3.14 (s, 4H, SCH2Ar), 2.33 (s, 6H, CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) 180.3(2*C), 138.9 (2*C), 133.8 (2*C), 133.3 (2*CH), 131.8 (2*CH=), 127.6 (4*CH=), 124.1 (br, 6*CH), 33.5 (2*SCH2), 32.3 (2*SCH2), 18.1 (2*CH3). IRνmax = 3303; 3222; 3166; 3067; 3005; 2970; 2923; 2861; 1680; 1654; 1624; 1605; 1560; 1536; 1499; 1477; 1446; 1420; 1363; 1328; 1314; 1294; 1255; 1239; 1222; 1205; 1194; 1164; 1156; 1142; 1082; 1032; 997; 970; 929; 907; 897; 876; 838; 797; 753; 747; 731; 711; 691; 574; 503; 465 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C28H33N6O2S4+ 613.1548; Found 613.1545.
  • 5,5′-((((2,5-Dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl))bis(methylene))bis(4-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione) (1w). The mixture of 1.23 g (2 mmol) 2,2′-(2,2′-(((2,5-dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl))bis(acetyl))bis(N-phenylhydrazine-1-carbothioamide) and 0.35 g (6 mmol) KOH in 5 mL of water was refluxed for 4h. The resulting mixture was acidified with 6M HCl, and the precipitate was filtered and washed with water before being dried. Yield 88%, white solid, m.p. 270 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 13.72 (s, 2H, NH), 7.57–7.46 (m, 6Harom), 7.37–7.29 (m, 4Harom), 6.91 (s, 2Harom), 3.62 (s, 4H, CH2CNN), 3.42 (s, 4H, SCH2Ar), 2.21 (s, 6H, CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 168.2 (2*C=S), 148.6 (2*C=N), 133.4 (2*C), 133.2 (2*C), 133.2 (2*C), 131.6 (2*CH=), 128.9 (2*CH=), 128.7 (4*CH=), 128.0 (4*CH=), 32.8 (2*SCH2), 24.6 (2*SCH2), 17.9 (2*CH3). IRνmax = 3103; 3036; 2929; 1591; 1567; 1498; 1491; 1454; 1416; 1397.99; 1333; 1277; 1233; 1165; 1092; 1069; 1038; 1014; 921; 888; 844; 801; 785; 759; 743; 709; 692; 672; 613; 553; 504; 457 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C28H29N6S4+ 577.1337; Found 577.1335.
  • General procedure for synthesis of 1-((4,5-disubstituted-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ols. A mixture of the corresponding triazole (2 mmol) and 1-(oxiran-2-ylmethyl)piperidine (2.2 mmol, 310 mg) was stirred at 50 °C 4 h. Then the mixture was cooled down to r.t. and purified with flash chromatography (eluent: C6H6:MeOH:Et3N 50:1:1).
  • 1-((5-Isobutyl-4-propyl-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3a). Yield 68%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 4.74 (br.s., 1H, OH), 3.90–3.80 (m, 1H, CHOH), 3.80–3.72 (m, 2H, NCH2CH2CH3), 3.30 (dd, J = 13.2, 4.2 Hz, 1Ha, SCH2), 3.08 (dd, J = 13.2, 6.7 Hz, 1Hb, SCH2), 2.49 (d, J = 7.1 Hz, 2H, CH2CH(CH3)2), 2.46–2.33 (m, 4H, N(CH2CH2)2CH2), 2.31 (dd, J = 6.4, 1.8 Hz, 2H, NCH2CH), 2.16–2.05 (m, 1H, CH(CH3)2), 1.72–1.61 (m, 2H), 1.56–1.44 (m, 4H, N(CH2CH2)2CH2), 1.42–1.30 (m, 2H, N(CH2CH2)2CH2), 0.97 (d, J = 6.7 Hz, 6H, CH(CH3)2), 0.91 (t, J = 7.4 Hz, 3H, CH2CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.6 (SC=N), 149.3 (C=N), 66.8 (OCH), 63.3 (NCH2), 54.6 (2*NCH2), 44.4 (NCH2), 38.2 (SCH2), 33.2 (CH2), 26.5 (CH), 25.5 (2*CH2), 23.8 (CH2), 22.8 (CH2), 22.1 (2*CH3), 10.6 (CH3). IRνmax = 3259; 2932; 2871; 2853; 2796; 2757; 1514; 1465; 1442; 1428; 1398; 1384; 1367; 1352; 1342; 1301; 1280; 1245; 1225; 1202; 1168; 1157; 1117; 1089; 1040; 995; 963; 925; 898; 862; 804; 788; 746; 688; 656; 614; 593; 556; 515; 477; 470; 445; 430; 424; 416; 408 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C17H33N4OS+ 341.2375; Found 341.2388.
  • 1-(Piperidin-1-yl)-3-((4-propyl-5-(thiophen-2-yl)-4H-1,2,4-triazol-3-yl)thio)propan-2-ol (3b). Yield 85%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.58 (dd, J = 5.1, 1.2 Hz, 1Hthph), 7.45 (dd, J = 3.7, 1.2 Hz, 1Hthph), 7.16 (ddd, J = 5.0, 3.6, 1.2 Hz, 1Hthph), 4.70 (br.s., 1H, OH), 4.06 (dd, J = 8.6, 6.8 Hz, 2H, NCH2CH2CH3), 4.00–3.87 (m, 1H, CHOH), 3.44 (dd, J = 13.2, 4.2 Hz, 1Ha, SCH2), 3.27–3.14 (m, 1Hb, SCH2), 2.42 (br.t., J = 5.1 Hz, 4H, N(CH2CH2)2CH2), 2.37 (dd, J = 6.4, 1.2 Hz, 2H, NCH2CHOH), 1.82–1.69 (m, 2H, NCH2CH2CH3), 1.59–1.49 (m, 4H, N(CH2CH2)2CH2), 1.46–1.36 (m, 2H, N(CH2CH2)2CH2), 0.95 (t, J = 7.4 Hz, 3H, CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 151.4 (SC=N), 149.0 (C=N), 128.0, 127.6 (CH=), 127.3 (CH=), 126.6 (CH=), 66.6 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 45.6 (NCH2), 38.4 (SCH2), 25.6 (2*CH2), 23.9 (CH2), 22.6 (CH2), 10.5 (CH3). IRνmax = 3298; 3100; 3078; 2931; 2876; 2852; 2797; 2757; 1653; 1565; 1468; 1459; 1432; 1417; 1387; 1366; 1352; 1335; 1301; 1278; 1250; 1233; 1210; 1156; 1141; 1116; 1086; 1039; 995; 962; 943; 897; 850; 787; 711; 649; 583; 544; 506; 491; 478; 461; 444; 421 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C17H27N4OS2+ 367.1626; Found 367.1648.
  • 1-((5-(4-Bromophenyl)-4-cyclohexyl-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3c). Yield 87%, white solid, m.p. 109 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.70–7.55 (m, 2Harom), 7.46–7.33 (m, 2Harom), 4.73 (br.s., 1H, OH), 4.02–3.85 (m, 2H, 1H CHOH, 1H NCH), 3.47 (dd, J = 13.2, 4.3 Hz, 1Ha, SCH2), 3.25 (dd, J = 13.2, 6.7 Hz, 1Hb, SCH2), 2.42 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.36 (dd, J = 6.4, 1.5 Hz, 2H, NCH2CHOH), 2.19–2.02 (m, 2H, Cy), 1.89–1.74 (m, 4H, Cy), 1.68–1.58 (m, 1H, Cy), 1.57–1.47 (m, 4H, N(CH2CH2)2CH2), 1.43–1.34 (m, 2H, N(CH2CH2)2CH2), 1.33–1.09 (m, 3H, Cy). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.8 (SC=N), 150.1 (C=N), 131.4 (2*CH), 130.7 (2*CH), 126.8, 123.5, 66.6 (OCH), 63.5 (NCH2), 56.2 (NCH), 54.6 (2*NCH2), 38.3 (SCH2), 30.6 (2*CH2), 25.6 (2*CH2), 25.2 (2*CH2), 24.3 (CH2), 23.9 (CH2). IRνmax = 3186; 3062; 3037; 2931; 2857; 2797; 2782; 2758; 2745; 2694; 2669; 1596; 1567; 1465; 1440; 1411; 1390; 1362; 1345; 1289; 1273; 1258; 1213; 1201; 1184; 1158; 1146; 1129; 1105; 1062; 1041; 1026; 1011; 999; 971; 948; 928; 901; 893; 870; 855; 838; 823; 789; 765; 752; 731; 713; 690; 626; 593; 561; 531; 515; 483; 457; 443; 434; 421; 406 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C22H3279BrN4OS+ 479.1480; Found 479.1489.
  • 1-((5-(4-Bromophenyl)-4-phenethyl-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3d). Yield 78%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.62–7.54 (m, 2Harom), 7.35–7.31 (m, 2Harom), 7.21–7.14 (m, 3Harom), 6.97–6.91 (m, 2Harom), 4.73 (br.s., 1H, OH), 4.21 (t, J = 7.4 Hz, 2H, NCH2CH2Ph), 4.00–3.90 (m, 1H, CHOH), 3.45 (dd, J = 13.2, 4.2 Hz, 1Ha, SCH2), 3.21 (dd, J = 13.1, 6.9 Hz, 1Hb, SCH2), 2.93 (t, J = 7.4 Hz, 2H, CH2Ph), 2.44 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.39 (dd, J = 6.5, 1.5 Hz, 2H, NCH2CHOH), 1.61–1.50 (m, 4H, N(CH2CH2)2CH2), 1.48–1.38 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.5 (SC=N), 151.3 (C=N), 136.2, 131.3 (2*CH=), 129.8 (2*CH=), 128.3 (2*CH=), 128.1 (2*CH=), 126.3 (CH=), 126.2, 123.3, 66.6 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 45.3 (NCH2), 38.4 (SCH2), 35.0 (CH2Ph), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3283; 3087; 3063; 3027; 3001; 2932; 2852; 2798; 2757; 1599; 1567; 1496; 1455; 1432; 1386; 1354; 1334; 1301; 1276; 1241; 1207; 1177; 1156; 1115; 1092; 1068; 1039; 1007; 996; 971; 931; 891; 861; 828; 787; 765; 750; 728; 720; 698; 679; 626; 578; 549; 523; 496; 477; 453; 438; 431; 426; 419; 410 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C24H3079BrN4OS+ 501.1324; Found 501.1328.
  • 1-((4-Phenethyl-5-(thiophen-2-yl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3e). Yield 92%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.58 (dd, J = 5.1, 1.1 Hz, 1Harom), 7.36 (dd, J = 3.7, 1.1 Hz, 1Harom), 7.28–7.14 (m, 4Harom), 7.12–7.06 (m, 2Harom), 4.68 (br.s., 1H, OH), 4.38–4.21 (m, 2H, CH2CH2Ph), 3.98–3.85 (m, 1H, CHOH), 3.40 (dd, J = 13.2, 4.2 Hz, 1Ha, SCH2), 3.16 (dd, J = 13.2, 6.8 Hz, 1Hb, SCH2), 3.01 (t, J = 7.8 Hz, 2H, CH2Ph), 2.43 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.37 (dd, J = 6.3, 0.9 Hz, 2H, NCH2CHOH), 1.60–1.50 (m, 4H, N(CH2CH2)2CH2), 1.46–1.37 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 151.4, 149.0, 136.2, 128.3 (2*CH=), 128.2 (2*CH=), 127.7 (CH=), 127.3 (CH=), 126.9 (CH=), 126.4 (CH=), 66.6 (OCH), 63.4 (NCH2), 54.6 (NCH2), 45.4 (NCH2), 38.6 (SCH2), 35.1 (CH2Ph), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3303; 3103; 3086; 3065; 3027; 3002; 2931; 2851; 2797; 2758; 1604; 1584; 1565; 1496; 1474; 1454; 1431; 1417; 1387; 1354; 1333; 1301; 1277; 1255; 1240; 1225; 1211; 1176; 1156; 1115; 1086; 1040; 995; 962; 943; 907; 892; 851; 809; 787; 764; 749; 697; 649; 643; 620; 571; 539; 495; 479; 430; 420; 407 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C22H29N4OS2+ 429.1783; Found 429.1796.
  • 1-((4-Phenyl-5-(m-tolyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3f). Yield 83%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 5.88 (ddt, J = 17.2, 10.1, 4.9 Hz, 1H, CH=), 5.20 (dq, J = 10.4, 1.5 Hz, 1Ha, =CH2), 4.92 (dq, J = 17.1, 1.6 Hz, 1Hb, =CH2), 4.71 (br.s., 1H, OH), 4.53 (dt, J = 5.0, 1.9 Hz, 2H, NCH2 in Allyl), 3.92–3.80 (m, 1H, CHOH), 3.29 (dd, J = 13.2, 4.2 Hz, 1Ha, SCH2), 3.07 (dd, J = 13.2, 6.8 Hz, 1Hb, SCH2), 2.60 (t, J = 7.5 Hz, 2H, CH2CH2CH3), 2.40 (br.t, J = 5.2 Hz, 4H, N(CH2CH2)2CH2), 2.37–2.27 (m, 2H, NCH2CHOH), 1.82–1.69 (m, 2H, CH2CH2CH3), 1.58–1.47 (m, 4H, N(CH2CH2)2CH2), 1.45–1.35 (m, 2H, N(CH2CH2)2CH2), 1.01 (t, J = 7.4 Hz, 3H, CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 154.4 (SC=N), 149.5 (C=N), 131.7 (CH=CH2), 116.6 (=CH2), 66.7 (OCH), 63.3 (NCH2), 54.5 (2*NCH2), 45.0 (NCH2), 38.5 (SCH2), 26.2 (CH2), 25.5 (2*CH2), 23.8 (CH2), 19.7 (CH2), 13.4 (CH3). IRνmax = 3246; 3086; 2932; 2873; 2853; 2796; 2757; 1645; 1519; 1461; 1441; 1431; 1411; 1400; 1375; 1352; 1332; 1300; 1280; 1256; 1242; 1216; 1196; 1156; 1116; 1089; 1040; 994; 963; 915; 892; 862; 813; 787; 739; 685; 664; 615; 553; 479; 463; 443; 421; 411 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C16H29N4OS+ 325.2062; Found 325.2083.
  • 1-((4-Allyl-5-benzyl-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3g). Yield 68%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.31–7.15 (m, 5Harom), 5.62 (ddt, J = 17.2, 10.3, 5.2 Hz, 1H, CH=), 5.09 (dt, J = 10.4, 1.3 Hz, 1Ha, =CH2), 4.87 (m, 2H, 1H, OH, 1Hb, =CH2), 4.41 (dt, J = 5.3, 1.7 Hz, 2H, NCH2 in Allyl), 4.09 (s, 2H, PhCH2), 3.95–3.82 (m, 1H, CHOH), 3.31 (dd, J = 13.2, 4.3 Hz, 1Ha, SCH2), 3.10 (dd, J = 13.2, 6.7 Hz, 1Hb, SCH2), 2.57–2.31 (m, 6H, NCH2), 1.62–1.47 (m, 4H, N(CH2CH2)2CH2), 1.47–1.37 (m, 2H N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.3 (SC=N), 150.4 (C=N), 135.4, 131.0 (CH=CH2), 128.1 (2*CH), 128.1 (2*CH), 126.3 (CH=), 117.2 (=CH2), 66.5 (OCH), 63.1 (NCH2), 54.4 (2*NCH2), 45.3 (NCH2), 38.4 (SCH2), 30.6 (CH2Ph), 25.3 (2*CH2), 23.6 (CH2). IRνmax = 3258; 3086; 3063; 3029; 2932; 2852; 2796; 2759; 1645; 1604; 1518; 1496; 1464; 1453; 1441; 1420; 1393; 1374; 1353; 1329; 1301; 1279; 1243; 1203; 1156; 1116; 1088; 1076; 1039; 994; 962; 928; 916; 862; 787; 752; 726; 697; 681; 616; 573; 554; 494; 479; 446; 425; 402 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C20H29N4OS+ 373.2062; Found 373.2090.
  • 1-((4-Allyl-5-((4-chloro-2-methylphenoxy)methyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3h). Yield 93%, colorless oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.17–7.05 (m, 3Harom), 5.89 (ddt, J = 17.0, 10.4, 5.2 Hz, 1H, CH=), 5.24–5.15 (m, 3H, 1Ha, =CH2, 2H OCH2), 5.00 (dq, J = 17.1, 1.4 Hz, 1Hb, =CH2), 4.80–4.55 (m, 3H, 2H NCH2 in Allyl, 1H OH), 3.96–3.85 (m, 1H, CHOH), 3.39 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.16 (dd, J = 13.1, 6.9 Hz, 1Hb, SCH2), 2.42 (br.t., J = 5.1 Hz, 4H, N(CH2CH2)2CH2), 2.38–2.34 (m, 2H, NCH2CHOH) 2.16 (s, 3H, CH3), 1.58–1.50 (m, 4H, N(CH2CH2)2CH2), 1.45–1.38 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 154.1 (SC=N), 152.0, 150.6, 131.2 (CH=CH2), 129.8 (CH=), 127.8, 126.0 (CH=), 125.0, 117.5 (=CH2), 112.6 (CH=), 66.5 (OCH), 63.3 (NCH2), 60.1 (OCH2), 54.5 (2*NCH2), 45.7 (NCH2), 38.3 (SCH2), 25.5 (2*CH2), 23.8 (CH2), 15.7 (CH3). IRνmax = 3299; 3086; 2933; 2853; 2798; 2758; 1645; 1598; 1490; 1467; 1440; 1419; 1396; 1330; 1296; 1277; 1240; 1225; 1186; 1155; 1133; 1089; 1071; 1039; 1014; 994; 963; 930; 920; 878; 838; 804; 787; 747; 688; 654; 641; 590; 554; 514; 482; 468; 461; 441; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C21H30ClN4O2S+ 437.1778; Found 437.1794.
  • 1-((4-Allyl-5-((2,4-dichlorophenoxy)methyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3i). Yield 68%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.38–7.32 (m, 2Harom), 7.26 (dd, J = 8.9, 2.6 Hz, 1Harom), 5.93 (ddt, J = 17.2, 10.6, 5.5 Hz, 1H, CH=), 5.31 (s, 2H, OCH2), 5.21 (dq, J = 10.3, 1.3 Hz, 1Ha, =CH2), 5.07 (dq, J = 17.0, 1.5 Hz, 1Hb, =CH2), 4.79–4.57 (m, 3H, 1H OH, 2H NCH2 in Allyl), 3.96–3.85 (m, 1H, CHOH), 3.39 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.16 (dd, J = 13.1, 6.8 Hz, 1Hb, SCH2), 2.41 (br.t., 4H, N(CH2CH2)2CH2), 2.35 (d, J = 6.4 Hz, 2H, NCH2CHOH), 1.57–1.50 (m, 4H, N(CH2CH2)2CH2), 1.45–1.37 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 152.2, 151.6, 150.0, 131.0 (CH=CH2), 129.1 (CH=), 127.4 (CH=), 125.6, 122.7, 117.9 (=CH2), 115.1 (CH=), 66.5 (OCH), 63.3 (NCH2), 60.9 (OCH2), 54.6 (2*NCH2), 45.9 (NCH2), 38.3 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3248; 3082; 3029; 2934; 2886; 2854; 2796; 2758; 1643; 1587; 1575; 1528; 1481; 1469; 1456; 1442; 1418; 1390; 1355; 1329; 1285; 1266; 1245; 1233; 1204; 1154; 1115; 1105; 1093; 1060; 1041; 1006; 995; 963; 933; 915; 891; 863; 834; 816; 804; 786; 723; 698; 687; 651; 642; 593; 555; 508; 491; 486; 468; 441; 422; 410 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C20H27Cl2N4O2S+ 457.1232; Found 457.1252.
  • 1-((4-Phenethyl-5-(thiophen-2-yl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3j). Yield 87%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.52–7.46 (m, 2Harom), 7.28 (d, J = 7.9 Hz, 2Harom), 5.95 (ddt, J = 17.2, 10.5, 4.6 Hz, 1H, CH=), 5.31–5.18 (m, 1Ha, =CH2), 5.00–4.88 (m, 1Hb, =CH2), 4.71 (br.s., 1H, OH), 4.60 (dt, J = 4.3, 1.9 Hz, 2H, NCH2 in Allyl), 3.98–3.87 (m, 1H, CHOH), 3.41 (dd, J = 13.2, 4.3 Hz, 1Ha, SCH2), 3.18 (dd, J = 13.2, 6.8 Hz, 1Hb, SCH2), 2.47–2.38 (m, 7H, 4H, N(CH2CH2)2CH2, 3H CH3), 2.37 (dd, J = 6.4, 2.1 Hz, 2H, NCH2CHOH), 1.60–1.49 (m, 4H, N(CH2CH2)2CH2), 1.45–1.37 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 154.5(SC=N), 151.3 (C=N), 139.0, 131.8 (CH=CH2), 128.9 (2*CH=), 127.7 (2*CH=), 124.1, 117.0 (=CH2), 66.6 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 46.1 (NCH2), 38.4 (SCH2), 25.5 (2*CH2), 23.8 (CH2), 20.8 (CH3). IRνmax = 3275; 3085; 3026; 293; 2852; 2796; 2757; 1645; 1617; 1574; 1479; 1453; 1431; 1386; 1353; 1331; 1301; 1280; 1256; 1201; 1186; 1156; 1115; 1088; 1039; 1022; 994; 984; 963; 916; 892; 862; 822; 787; 762; 727; 685; 640; 627; 579; 553; 531; 491; 439; 431; 414; 406 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C20H29N4OS+ 373.2062; Found 373.2068.
  • 1-((4-Allyl-5-(2-bromophenyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3k). Yield 81%, colorless oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.72–7.67 (m, 1Harom), 7.49–7.37 (m, 3Harom), 5.69 (ddt, J = 17.2, 10.4, 5.3 Hz, 1H, CH=), 5.07 (dt, J = 10.2, 1.3 Hz, 1Ha, =CH2), 4.83 (dq, J = 17.0, 1.5 Hz, 1Hb, =CH2), 4.69 (br.s., 1H, OH), 4.43–4.30 (m, 2H, NCH2 in Allyl), 3.96–3.86 (m, 1H, CHOH), 3.38 (dd, J = 13.1, 4.4 Hz, 1Ha, SCH2), 3.17 (dd, J = 13.1, 6.8 Hz, 1Hb, SCH2), 2.51–2.28 (m, 6H, NCH2), 1.58–1.48 (m, 4H, N(CH2CH2)2CH2), 1.44–1.34 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.2 (SC=N), 150.8 (C=N), 132.4 (CH=), 132.2 (CH=), 131.6 (CH=CH2), 130.9 (CH=), 128.7, 127.2 (CH=), 123.3, 117.6 (=CH2), 66.5 (OCH), 63.3 (NCH2), 54.5 (2*NCH2), 45.9 (NCH2), 38.5 (SCH2), 25.4 (2*CH2), 23.8 (CH2). IRνmax = 3296; 3085; 3064; 3019; 2931; 2851; 2798; 2758; 2701; 1645; 1597; 1564; 1528; 1447; 1429; 1387; 1352; 1328; 1301; 1277; 1246; 1204; 1156; 1115; 1088; 1040; 1027; 994; 982; 962; 916; 892; 862; 769; 726; 713; 684; 648; 588; 567; 553; 511; 471; 451; 423; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C19H2679BrN4OS+ 437.1011; Found 437.1019.
  • 1-((4-Allyl-5-(2-iodophenyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3l). Yield 72%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.98 (dd, J = 8.0, 1.1 Hz, 1Harom), 7.51 (td, J = 7.5, 1.2 Hz, 1Harom), 7.39 (dd, J = 7.6, 1.7 Hz, 1Harom), 7.28 (td, J = 7.7, 1.8 Hz, 2Harom), 5.73 (ddt, J = 17.1, 10.5, 5.3 Hz, 1H, CH=), 5.12 (dq, J = 10.4, 1.3 Hz, 1Ha, =CH2), 4.88 (dq, J = 17.0, 1.5 Hz, 1Hb, =CH2), 4.69 (br.s., 1H, OH), 4.46–4.29 (m, 2H, NCH2 in Allyl), 3.99–3.86 (m, 1H, CHOH), 3.42 (dd, J = 13.1, 4.4 Hz, 1Ha, SCH2), 3.20 (dd, J = 13.1, 6.8 Hz, 1Hb, SCH2), 2.43 (br.t., J = 4.8 Hz, 4H, N(CH2CH2)2CH2), 2.38 (dd, J = 6.4, 2.1 Hz, 2H, NCH2CHOH), 1.60–1.49 (m, 4H, N(CH2CH2)2CH2), 1.47–1.37 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 155.3 (SC=N), 150.8 (C=N), 138.7 (CH=), 132.7, 131.4 (CH=CH2), 131.3 (CH=), 130.9 (CH=), 127.5 (CH=), 117.7 (=CH2), 99.1 (=CI), 66.6 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 46.0 (NCH2), 38.6 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3293; 3086; 3059; 3033; 2983; 2931; 2851; 2796; 2758; 1645; 1590; 1560; 1525; 1442; 1428; 1387; 1352; 1328; 1301; 1273; 1246; 1203; 1156; 1115; 1088; 1039; 1017; 994; 981; 962; 916; 891; 862; 769; 721; 706; 680; 641; 587; 553; 509; 469; 460; 444; 422; 418 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C19H26IN4OS+ 485.0872; Found 485.0896.
  • 1-((4-Allyl-5-(2-nitrophenyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3m). Yield 89%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 8.25–8.14 (m, 1Harom), 7.91–7.76 (m, 2Harom), 7.70–7.59 (m, 1Harom), 5.77 (ddt, J = 17.1, 10.5, 5.4 Hz, 1H, CH=), 5.14 (dt, J = 10.3, 1.3 Hz, 1Ha, =CH2), 4.97 (dq, J = 17.1, 1.5 Hz, 1Hb, =CH2), 4.68 (br.s., 1H, OH), 4.52–4.37 (m, 2H, NCH2 in Allyl), 3.98–3.86 (m, 1H, CHOH), 3.44 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.20 (dd, J = 13.1, 6.9 Hz, 1Hb, SCH2), 2.43 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.41–2.33 (m, 2H, NCH2CHOH), 1.62–1.49 (m, 4H, N(CH2CH2)2CH2), 1.47–1.38 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 151.3, 150.8, 148.4, 133.1 (CH=), 132.2 (CH=), 131.3 (CH=CH2), 131.0 (CH=), 124.4 (CH=), 121.9, 117.8 (=CH2), 66.5 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 46.1 (NCH2), 38.6 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3293; 3085; 2933; 2852; 2799; 2759; 1645; 1617; 1575; 1528; 1452; 1441; 1432; 1420; 1388; 1344; 1301; 1279; 1253; 1204; 1156; 1115; 1088; 1071; 1039; 993; 983; 963; 930; 891; 853; 786; 751; 728; 717; 697; 652; 590; 559; 534; 511; 479; 460; 442; 423; 576; 526; 485; 465; 444; 421; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C19H26N5O3S+ 404.1756; Found 404.1772.
  • 1-((4-Allyl-5-(furan-2-yl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3n). Yield 91%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.70 (d, J = 1.8 Hz, 1Hfur), 6.95 (d, J = 3.5 Hz, 1Hfur), 6.59 (dd, J = 3.5, 1.9 Hz, 1Hfur), 5.94 (ddt, J = 17.2, 10.3, 5.1 Hz, 1H, CH=), 5.26–5.13 (m, 1Ha, =CH2), 5.00 (dd, J = 17.2, 2.2 Hz, 1Hb, =CH2), 4.81 (dt, J = 5.2, 1.8 Hz, 2H, NCH2 in Allyl), 4.67 (br.s., 1H, OH), 3.97–3.85 (m, 1H, CHOH), 3.40 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.17 (dd, J = 13.1, 6.9 Hz, 1Hb, SCH2), 2.42 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.36 (dd, J = 6.3, 1.5 Hz, 2H, NCH2CHOH), 1.58–1.49 (m, 4H, N(CH2CH2)2CH2), 1.44–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 151.2 (SC=N), 146.5 (C=N), 143.5 (CH=), 141.7, 131.5 (CH=CH2), 117.2 (=CH2), 111.2 (CH=), 110.8 (CH=), 66.5 (OCH), 63.3 (NCH2), 54.6 (2*NCH2), 46.4 (NCH2), 38.6 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3293; 3148; 3121; 3089; 2983; 2932; 2852; 2798; 2759; 2697; 1645; 1612; 1515; 1467; 1441; 1429; 1421; 1379; 1353; 1332; 1301; 1279; 1258; 1224; 1206; 1158; 1115; 1088; 1070; 1039; 1016; 993; 962; 916; 902; 885; 862; 822; 785; 743; 712; 684; 648; 593; 546; 497; 476; 444; 429; 414; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C17H25N4O2S+ 349.1698; Found 349.1708.
  • 1-((4-Allyl-5-(5-bromofuran-2-yl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3o). Yield 80%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.01–6.92 (m, 1Hfur), 6.64–6.55 (m, 1Hfur), 5.94 (ddt, J = 17.3, 10.3, 5.1 Hz, 1H, CH=), 5.28–5.18 (m, 1Ha, =CH2), 5.09–4.98 (m, 1Hb, =CH2), 4.83–4.72 (m, 2H, NCH2 in Allyl), 4.61 (br.s., 1H, OH), 3.96–3.83 (m, 1H, CHOH), 3.41 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.17 (dd, J = 13.1, 6.8 Hz, 1Hb, SCH2), 2.41 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.35 (d, J = 6.4 Hz, 2H, NCH2CHOH), 1.59–1.49 (m, 4H, N(CH2CH2)2CH2), 1.46–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 151.6 (SC=N), 145.6 (C=N), 143.6, 131.2 (CH=CH2), 122.9, 117.5 (=CH2), 113.2 (2*CH=), 66.5 (OCH), 63.3 (NCH2), 54.6 (2*NCH2), 46.4 (NCH2), 38.6 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3309; 3140; 3121; 3088; 2984; 2932; 2852; 2796; 2757; 1645; 1614; 1515; 1466; 1441; 1427; 1420; 1379; 1353; 1331; 1301; 1278; 1256; 1205; 1156; 1115; 1092; 1039; 1012; 994; 962; 929; 892; 862; 786; 763; 709; 685; 649; 588; 549; 535; 510; 477; 460; 434; 414; 409; 403 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C17H2479BrN4O2S+ 427.0803; Found 427.0818.
  • 1-((4-Allyl-5-(pyridin-3-yl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3p). Yield 80%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 8.80 (d, J = 2.2 Hz, 1Hpyr), 8.66 (dd, J = 4.9, 1.7 Hz, 1Hpyr), 8.01 (dt, J = 8.0, 2.0 Hz, 1Hpyr), 7.48 (dd, J = 7.9, 4.8 Hz, 1Hpyr), 6.04–5.89 (m, 1H, CH=), 5.27 (dd, J = 10.5, 2.0 Hz, 1Ha, =CH2), 4.94 (dd, J = 17.2, 2.1 Hz, 1Hb, =CH2), 4.81–4.47 (m, 3H, 1H OH, 2H NCH2 in Allyl), 3.99–3.86 (m, 1H, CHOH), 3.44 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.20 (dd, J = 13.1, 6.9 Hz, 1Hb, SCH2), 2.43 (br.t., J = 5.0 Hz, 4H, N(CH2CH2)2CH2), 2.37 (dd, J = 6.4, 1.5 Hz, 2H, NCH2CHOH), 1.59–1.49 (m, 4H, N(CH2CH2)2CH2), 1.46–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 152.3, 152.1, 150.1 (CH=N), 148.1 (CH=N), 135.0 (CH=), 131.7 (CH=CH2), 123.2, 123.1 (CH=), 117.1 (=CH2), 66.6 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 46.3 (NCH2), 38.5 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3291; 3086; 3072; 3035; 2982; 2932; 2852; 2797; 2760; 1645; 1599; 1571; 1514; 1453; 1432; 1413; 1386; 1352; 1329; 1301; 1279; 1258; 1241; 1201; 1192; 1156; 1115; 1088; 1039; 1025; 994; 982; 963; 918; 891; 862; 812; 786; 765; 709; 687; 651; 620; 590; 552; 505; 479; 438; 424 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C18H26N5OS+ 360.1858; Found 360.1876.
  • 1-((4-Allyl-5-(pyridin-4-yl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3q). Yield 89%, m.p. 86 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 8.77–8.60 (m, 2Hpyr), 7.71–7.52 (m, 2Hpyr), 5.99 (ddt, J = 17.2, 10.5, 4.5 Hz, 1H, CH=), 5.34–5.23 (m, 1Ha, =CH2), 5.01–4.90 (m, 1Hb, =CH2), 4.79–4.58 (m, 3H, 2H NCH2 in Allyl, 1H OH), 3.99–3.86 (m, 1H, CHOH), 3.45 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.20 (dd, J = 13.1, 6.9 Hz, 1Hb, SCH2), 2.49–2.25 (m, 6H, NCH2), 1.60–1.47 (m, 4H, N(CH2CH2)2CH2), 1.46–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.0, 152.3, 149.8 (2*CH=N), 134.1, 131.6 (CH=CH2), 121.4 (2*CH=), 117.2 (=CH2), 66.5 (OCH), 63.4 (NCH2), 54.6 (2*NCH2), 46.4 (NCH2), 38.4 (SCH2), 25.5 (2*CH2), 23.8 (CH2). IRνmax = 3190; 3085; 3046; 2986; 2970; 2929; 2917; 2850; 2806; 2775; 2755; 2731; 2669; 2553; 2520; 1644; 1605; 1557; 1515; 1452; 1428; 1411; 1379; 1367; 1326; 1312; 1302; 1284; 1256; 1236; 1222; 1201; 1186; 1154; 1116; 1087; 1066; 1050; 1039; 1016; 998; 989; 962; 926; 871; 858; 826; 790; 762; 728; 706; 699; 659; 583; 575; 558; 536; 511; 479; 458; 448; 423; 408; 404 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C18H26N5OS+ 360.1858; Found 360.1862.
  • 1-((4-Phenyl-5-propyl-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3r). Yield 63%, colorless oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.58–7.45 (m, 3Harom), 7.36–7.28 (m, 2Harom), 4.63 (br.s., 1H, OH), 3.91–3.77 (m, 1H, CH), 3.28 (dd, J = 13.2, 4.4 Hz, 1Ha, SCH2), 3.04 (dd, J = 13.2, 6.7 Hz, 1Hb, SCH2), 2.49–2.44 (m, 2H, CH2CH2CH3), 2.38 (br.t., J = 5.2 Hz, 4H, N(CH2CH2)2CH2), 2.29 (dd, J = 6.7, 2.4 Hz, 2H, NCH2CHOH), 1.62–1.53 (m, 2H, CH2CH2CH3), 1.53–1.45 (m, 4H, N(CH2CH2)2CH2), 1.41–1.32 (m, 2H, N(CH2CH2)2CH2), 0.87 (t, J = 7.4 Hz, 3H, CH3). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 154.5 (SC=N), 150.3 (C=N), 133.2 (=CH), 129.3 (2*CH=), 129.2, 126.9 (2*CH=), 66.5 (OCH), 63.3 (NCH2), 54.5 (2*NCH2), 37.4 (SCH2), 26.4 (CH2), 25.4 (2*CH2), 23.7 (CH2), 19.7 (CH2), 13.3 (CH3). IRνmax = 3282; 3063; 2931; 2872; 2852; 2797; 2758; 1597; 1589; 1522; 1498; 1442; 1431; 1397; 1352; 1328; 1300; 1276; 1156; 1116; 1088; 1075; 1039; 1009; 995; 963; 891; 862; 809; 786; 771; 742; 696; 614; 603; 563; 500; 480; 471; 445; 420; 412; 406 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C19H29N4OS+ 361.2062; Found 361.2073.
  • 1-((4,5-Diphenyl-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3s). Yield 83%, white solid, m.p. 97 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.59–7.45 (m, 3Harom), 7.37–7.24 (m, 7Harom), 4.68 (br.s., 1H, OH), 4.01–3.87 (m, 1H, CHOH), 3.43 (dd, J = 13.1, 4.4 Hz, 1Ha, SCH2), 3.18 (dd, J = 13.2, 6.8 Hz, 1Hb, SCH2), 2.44 (br.t., J = 5.4 Hz, 4H, N(CH2CH2)2CH2), 2.39–2.31 (m, 2H, NCH2CHOH), 1.61–1.49 (m, 4H, N(CH2CH2)2CH2), 1.46–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.6, 152.4, 134.0, 129.3 (2*CH=), 128.9 (CH=), 127.9 (2*CH=), 127.4 (2*CH=), 127.1 (2*CH=), 126.6, 66.4 (OCH), 63.3 (NCH2), 54.5 (2*NCH2), 37.4 (SCH2), 25.4 (2*CH2), 23.7 (CH2). IRνmax = 3451; 3104; 3086; 3050; 3012; 2934; 2918; 2855; 2787; 2758; 2736; 2697; 2648; 1596; 1498; 1473; 1457; 1446; 1426; 1378; 1357; 1330; 1305; 1283; 1272; 1257; 1246; 1214; 1177; 1154; 1119; 1096; 1073; 1043; 1032; 1007; 995; 971; 922; 906; 889; 862; 849; 834; 809; 792; 772; 730; 710; 694; 620; 614; 603; 584; 558; 514; 504; 482; 465; 426; 406 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C22H27N4OS+ 395.1906; Found 395.1912.
  • 1-((4-Phenyl-5-(m-tolyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3t). Yield 90%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.57–7.46 (m, 3Harom), 7.33–7.29 (m, 3Harom), 7.14–7.08 (m, 2Harom), 7.04–6.99 (m, 1Harom), 4.63 (br.s., 1H, OH), 4.01–3.87 (m, 1H, CHOH), 3.43 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.18 (dd, J = 13.1, 6.8 Hz, 1Hb, SCH2), 2.42 (br.t, 4H, N(CH2CH2)2CH2), 2.37–2.31 (m, 2H, NCH2CHOH), 2.28 (s, 3H, CH3), 1.59–1.49 (m, 4H, N(CH2CH2)2CH2), 1.45–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.6, 152.2, 137.2, 134.0, 129.6 (CH=), 129.3 (2*CH=), 129.1 (CH=), 128.2 (CH=), 127.7 (2*CH=), 126.4, 124.4 (CH=), 66.5 (OCH), 63.4 (NCH2), 54.5 (2*NCH2), 37.5 (SCH2), 25.5 (2*CH2), 23.8 (CH2), 20.8 (CH3). IRνmax = 3304; 3060; 3036; 2931; 2851; 2797; 2757; 1608; 1596; 1497; 1485; 1465; 1453; 1432; 1376; 1324; 1303; 1268; 1243; 1210; 1156; 1116; 1088; 1073; 1039; 1010; 995; 963; 911; 887; 861; 850; 788; 769; 718; 692; 681; 668; 608; 545; 525; 503; 481; 442; 430; 419; 410 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C23H29N4OS+ 409.2062; Found 409.2082.
  • 1-((4-Phenyl-5-(p-tolyl)-4H-1,2,4-triazol-3-yl)thio)-3-(piperidin-1-yl)propan-2-ol (3u). Yield 85%, white solid, m.p. 115 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.56–7.46 (m, 3Harom), 7.34–7.26 (m, 2Harom), 7.26–7.18 (m, 2Harom), 7.11–7.03 (m, 2Harom), 4.60 (br.s., 1H, OH), 3.98–3.85 (m, 1H, CHOH), 3.41 (dd, J = 13.1, 4.3 Hz, 1Ha, SCH2), 3.16 (dd, J = 13.1, 6.8 Hz, 1Hb, SCH2), 2.41 (br.t., J = 5.3 Hz, 4H, N(CH2CH2)2CH2), 2.36–2.25 (m, 5H, 2H NCH2CH, 3H CH3), 1.59–1.47 (m, 4H, N(CH2CH2)2CH2), 1.45–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 153.6, 152.1, 138.6, 134.1, 129.3 (2*CH=), 129.1 (CH=), 128.5 (2*CH=), 127.4 (2*CH=), 127.1 (2*CH=) 123.7, 66.5 (OCH), 63.4 (NCH2), 54.5 (2*NCH2), 37.4 (SCH2), 25.5 (2*CH2), 23.8 (CH2), 20.7 (CH3). IRνmax = 3410; 3100; 3070; 3049; 2932; 2920; 2858; 2804; 2760; 2665; 1614; 1593; 1495; 1480; 1430; 1404; 1375; 1357; 1336; 1323; 1305; 1284; 1264; 1243; 1228; 1206; 1186; 1158; 1152; 1121; 1107; 1081; 1062; 1040; 1021; 1012; 1006; 992; 970; 948; 917; 891; 868; 847; 823; 799; 782; 769; 749; 726; 708; 694; 646; 633; 613; 584; 553; 526; 515; 499; 484; 479; 444; 424; 407 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C23H29N4OS+ 409.2062; Found 409.2062.
  • 5-Benzyl-2-(2-(5-((2-hydroxy-3-(piperidin-1-yl)propyl)thio)-4-phenyl-4H-1,2,4-triazol-3-yl)ethyl)-4-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (3v). Yield 68%, yellow oil. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.61–7.52 (m, 3Harom), 7.48–7.40 (m, 5Harom), 7.21–7.09 (m, 5Harom), 6.93–6.85 (m, 2Harom), 4.62 (br.s., 1H, OH), 4.44 (t, J = 7.3 Hz, 2H, NNCH2), 3.92–3.86 (m, 1H, CHOH), 3.83 (s, 2H, CH2Ph), 3.34 (dd, J = 13.2, 4.3 Hz, 1Ha, SCH2), 3.16–3.06 (m, 3H, 1Hb, SCH2, 2H NNCH2CH2), 2.39 (br.t., J = 5.1 Hz, 4H, N(CH2CH2)2CH2), 2.31 (d, J = 6.4 Hz, 2H, NCH2CHOH), 1.57–1.47 (m, 4H, N(CH2CH2)2CH2), 1.45–1.36 (m, 2H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 167.4, 151.5, 151.0, 149.3, 133.7, 133.6, 132.9, 129.4, 129.3, 128.9, 128.7, 128.2, 127.9, 127.7, 127.0, 126.4, 66.5 (OCH), 63.4 (NCH2), 54.5 (2*NCH2), 45.5 (NCH2), 37.6 (SCH2), 31.2 (CH2), 25.5 (2*CH2), 23.8 (CH2), 23.3 (CH). IRνmax = 3364; 3088; 3063; 3033; 2933; 2852; 2799; 2758; 1597; 1568; 1523; 1497; 1478; 1455; 1442; 1415; 1345; 1334; 1295; 1257; 1214; 1156; 1116; 1073; 1038; 1016; 995; 963; 919; 891; 862; 768; 723; 694; 679; 639; 614; 566; 533; 504; 477; 458; 437; 419 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C33H38N7OS2+ 612.2579; Found 612.2579.
  • 3,3′-((((((2,5-Dimethyl-1,4-phenylene)bis(methylene))bis(sulfanediyl))bis(methylene))bis(4-phenyl-4H-1,2,4-triazole-5,3-diyl))bis(sulfanediyl))bis(1-(piperidin-1-yl)propan-2-ol) (3w). Yield 73%, white solid, m.p. 186 °C. 1H NMR (400 MHz, DMSO/CCl4 -1/3) δ 7.59–7.46 (m, 6Harom), 7.39–7.28 (m, 4Harom), 7.00 (s, 2Harom), 4.58 (br.s., 2H, OH), 3.94–3.83 (m, 2H, CHOH), 3.65 (s, 4H, CH2CNN), 3.53 (s, 4H, SCH2Ar), 3.38 (dd, J = 13.1, 4.3 Hz, 2Ha, SCH2CHOH), 3.12 (dd, J = 13.1, 6.8 Hz, 2Hb, SCH2CHOH), 2.40 (br.t., J = 5.3 Hz, 8H, N(CH2CH2)2CH2), 2.32 (d, J = 6.4 Hz, 4H, NCH2CHOH), 2.22 (s, 6H, CH3), 1.61–1.46 (m, 8H, N(CH2CH2)2CH2), 1.46–1.32 (m, 4H, N(CH2CH2)2CH2). 13C NMR (101 MHz, DMSO/CCl4 -1/3) δ 152.3 (2*N=CCH2), 151.5 (2*N=CS), 133.7 (2*C=CCH3), 133.2 (2*C=CCH2), 132.7 (2*NC=CH), 131.7 (2*CH=CCH3), 129.5 (2*CH=), 129.3 (4*CH=), 126.9 (4*CH=CN), 66.4 (2*OCH), 63.5 (2*NCH2CH), 54.5 (4*NCH2), 37.6 (2*SCH2CH), 32.6 (2*SCH2(C6H2)), 25.4 (4*NCH2), 24.0 (2*SCH2(C2N3)), 23.8 (2*CH2), 17.9 (2*CH3). IRνmax = 3448; 3070; 3055; 2961; 2949; 2921; 2852; 2803; 2759; 2736; 1496; 1445; 1435; 1409; 1403; 1388; 1374; 1355; 1326; 1321; 1303; 1279; 1253; 1239; 1223; 1172; 1152; 1116; 1090; 1070; 1045; 1029; 1008; 991; 964; 923; 916; 891; 860; 843; 834; 797; 781; 748; 703; 689; 664; 616; 582; 555; 487; 462; 426 cm−1. HRMS (ESI) m/z: [M + H]+ Calcd for C44H59N8O2S4+ 859.3644; Found 859.3639.

3. Results and Discussion

Initially, the starting triazoles with different substituents at the N(4) and C(5) positions (Scheme 3) were synthesized from the corresponding acids using the procedures described in the literature [52,56].
Bis-1,2,4-triazole 1w was synthesized according to Scheme 4. The starting bis-ester ac was synthesized using two methods. Method A involved the use of (2,5-dimethyl-1,4-phenylene)dimethanethiol (aa) and methyl 2-chloroacetate (ab), whereas Method B utilized 1,4-bis(chloromethyl)-2,5-dimethylbenzene (aa′) and methyl 2-mercaptoacetate (ab′). In both cases, the reactions were carried out under the same conditions in a methanol medium in the presence of sodium methylate. The bis-ester ac was obtained in almost the same quantitative yields. The synthesized ester was subjected to hydrazinolysis using excess aq. hydrazine in an ethanol medium. To construct the 1,2,4-triazole ring, the synthesized hydrazide (ad) was reacted with phenylisothiocyanate to give the corresponding bis(thiosemicarbazide) (ae). For the cyclization of bis(thiosemicarbazide) (ae), the classic base cyclization using a 10% potassium hydroxide solution was utilized under heating conditions, which resulted in obtaining bis-1,2,4-triazole-3-thione 1w in high yield.
Next, the reaction of triazoles 1av with 1-(oxiran-2-ylmethyl)piperidine (2) [38] was investigated (Scheme 5). The reaction proceeds without the use of basic catalysts because the nitrogen of the piperidine ring in compound 2 plays the role of basic catalysis via an anchimer effect. Ethanol as a solvent plays an important role here, forming a hydrogen bond with the epoxide ring to polarize the C-O bond [66,67,68]. Most probably, intermediate complex A is formed during this reaction, which facilitates the course of the reaction.
The reaction proceeds 100% regioselectively in agreement to the Krasusky rule [68] and produces the corresponding secondary alcohols only. This is evidenced by the presence of the CH group signal at 3.8–4.0 ppm in the 1H NMR spectra. All these products were isolated in high yield.
The reaction of bis-1,2,4-triazole 1w with oxirane 2 was also investigated, and as a result, the corresponding bis-vicinal amino alcohol 3w was obtained in good yield as a mixture of diastereomers (Scheme 6).
The structure of the compound 3w was confirmed by several 2D NMR spectra (HSQC, HMBC, NOESY). Interestingly, although the compound has two chirality centers, there is only one set of signals present in both 1H and 13C NMR spectra. As it is known, NMR spectroscopy in achiral solvents cannot distinguish between enantiomers. Thus, there should be at least two chiral centers in the molecule to produce two different diastereomers with their corresponding spectra. However, the chiral centers being located far apart from each other, the symmetry and the conformational flexibility of the molecule can further reduce the number of different stereoisomers, which can be observed by NMR spectroscopy. In the case of compound 3w, using conventional NMR techniques, it is impossible to determine if we observe the signals of the meso isomer, the set of enantiomers, or even a set of stereoisomers with averaged signals.

4. Conclusions

The reaction of 4,5-disubstituted-2,4-dihydro-3H-1,2,4-triazole-3-thiones with 1-(oxiran-2-ylmethyl)piperidine provides a facile and efficient method for synthesizing vicinal amino alcohols, satisfying the criteria of click chemistry: high yields, regiospecificity, mild reaction conditions, and broad substrate scope. The triazolethione acts as a dual nucleophile center; nucleophilic attack occurs regiospecifically at the sulfur atom, leading to the regiospecific opening of the epoxide ring and the exclusive formation of a secondary alcohol, in accordance with Krasusky’s rule, facilitated by the anchimeric effect of the piperidine nitrogen. From NMR spectra of the mixture of diastereomers resulting from the bis-1,2,4-triazole reaction, it is impossible to determine if we observe the signals of meso isomer, the set of enantiomers, or even a set of stereoisomers with averaged signals. This may be due to chiral centers being far apart. These vicinal amino alcohols are valuable building blocks for the synthesis of various biologically active compounds, including β-adrenergic blocking agents and other pharmaceuticals.

Supplementary Materials

The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/chemistry7020053/s1: Copies of 1H and 13C NMR spectra of all compounds.

Author Contributions

Investigation, A.V.P., A.A.S. and A.M.D.; Validation, K.S.A., M.A.S. and T.V.G.; Reviewing, V.G.N.; Conceptualization, A.S.G. All authors have read and agreed to the published version of the manuscript.

Funding

The research was supported by the Higher Education and Science Committee of MESCS RA (Research project 24LCG-1D009).

Data Availability Statement

The original contributions presented in the study are included in the article/Supplementary Materials, further inquiries can be directed to the corresponding authors.

Conflicts of Interest

The authors declare no conflicts of interest, either of a financial or personal nature.

References

  1. Yao, Z.; Dai, B.; Yu, Y.; Cao, K. Thiol-epoxy click chemistry and its applications in macromolecular materials. Prog. Chem. 2016, 28, 1062–1069. [Google Scholar] [CrossRef]
  2. Khan, A. Thiol-epoxy ‘click’ chemistry: A focus on molecular attributes in the context of polymer chemistry. Chem. Commun. 2023, 59, 11028–11044. [Google Scholar] [CrossRef]
  3. Stuparu, M.C.; Khan, A. Poly(ß-hydroxy thioether)s: Synthesis through thiol-epoxy ‘click’ reaction and post-polymerization modification to main-chain polysulfonium salts. J. Macromol. Sci. Pure Appl. Chem. 2022, 59, 2–10. [Google Scholar] [CrossRef]
  4. Konuray, A.O.; Fernández-Francos, X.; Ramis, X. Analysis of the reaction mechanism of the thiol–epoxy addition initiated by nucleophilic tertiary amines. Polym. Chem. 2017, 8, 5934–5947. [Google Scholar] [CrossRef]
  5. Lin, G.; Yin, J.; Lin, Z.; Zhu, Y.; Li, W.; Li, H.; Liu, Z.; Xiang, H.; Liu, X. Facile thiol-epoxy click chemistry for transparent and aging-resistant silicone/epoxy composite as LED encapsulant. Prog. Org. Coat. 2021, 156, 106269. [Google Scholar] [CrossRef]
  6. Peng, Y.; Cai, C.; Wang, C.; Zuo, Z.; Liu, X. Probing the glass transition in reversible cross-linked polymer composites. RSC Adv. 2019, 9, 15318–15322. [Google Scholar] [CrossRef]
  7. Stuparu, M.C.; Khan, A. Thiol-epoxy “click” chemistry: Application in preparation and postpolymerization modification of polymers. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 3057–3070. [Google Scholar] [CrossRef]
  8. Xin, F.; Han, J.; Pan, H.; Sun, F. Surface microstructures and properties of thiol-epoxy/thiol-Si-methacrylate hybrid polymer networks prepared by UV-induced polymerization. J. Macromol. Sci. Pure Appl. Chem. 2020, 57, 355–362. [Google Scholar] [CrossRef]
  9. Dhavale, R.P.; Parale, V.G.; Choi, H.; Kim, T.; Lee, K.-Y.; Phadtare, V.D.; Park, H.-H. Epoxy-thiol crosslinking for enhanced mechanical strength in silica aerogels and highly efficient dye adsorption. Appl. Surf. Sci. 2024, 642, 158619. [Google Scholar] [CrossRef]
  10. Konuray, O.; Fernández-Francos, X.; De la Flor, S.; Ramis, X.; Serra, À. The Use of Click-Type Reactions in the Preparation of Thermosets. Polymers 2020, 12, 1084. [Google Scholar] [CrossRef]
  11. Ellson, G.; Prima, M.D.; Ware, T.; Tang, X.; Voit, W. Tunable thiol–epoxy shape memory polymer foams. Smart Mater. Struct. 2015, 24, 055001. [Google Scholar] [CrossRef]
  12. Romański, J.; Stefaniak, M. Facile Synthesis of Hydroxy-Substituted Thiacrown Ethers via Nucleophilic Ring Opening of Epoxides. Synthesis 2019, 51, 2214–2220. [Google Scholar] [CrossRef]
  13. Hu, Y.-Y.; Bheemanaboina, R.R.Y.; Battini, N.; Zhou, C.-H. Sulfonamide-Derived Four-Component Molecular Hybrids as Novel DNA-Targeting Membrane Active Potentiators against Clinical Escherichia coli. Mol. Pharm. 2019, 16, 1036–1052. [Google Scholar] [CrossRef]
  14. He, B.; Hu, Y.; Xing, L.; Qing, Y.; Meng, K.; Zeng, W.; Sun, Z.; Wang, Z.; Xue, W. Antifungal Activity of Novel Indole Derivatives Containing 1,3,4-Thiadiazole. J. Agric. Food Chem. 2024, 72, 10227–10235. [Google Scholar] [CrossRef]
  15. Yalla, R.; Raghavan, S. Synthesis of solandelactone F, constanolactone A and an advanced intermediate towards solandelactone E from a common synthetic intermediate. Org. Biomol. Chem. 2019, 17, 4572–4592. [Google Scholar] [CrossRef] [PubMed]
  16. Nguyen, D.T.; Truong, G.N.; Van Vuong, T.; Van, T.N.; Manh, C.N.; Dao, C.T.; Thuy, T.D.T.; Van, C.L.; Khac, V.T. Synthesis of new indirubin derivatives and their in vitro anticancer activity. Chem. Pap. 2019, 73, 1083–1092. [Google Scholar] [CrossRef]
  17. Mamat, M.; Liu, C.; Abdukerem, D.; Abdukader, A. A visible-light-induced thiol addition/aerobic oxidation cascade reaction of epoxides and thiols for the synthesis of β-hydroxylsulfoxides. Org. Biomol. Chem. 2021, 19, 9855–9859. [Google Scholar] [CrossRef] [PubMed]
  18. Haggam, R.A. Microwave-assisted synthesis of double-headed derivatives of (4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-ethan-1-ol and study of their biological activity. Res. Chem. Intermed. 2021, 47, 3733–3749. [Google Scholar] [CrossRef]
  19. Hu, Y.; Hu, S.; Pan, G.; Wu, D.; Wang, T.; Yu, C.; Ansari, M.F.; Bheemanaboina, R.R.Y.; Cheng, Y.; Bai, L.; et al. Potential antibacterial ethanol-bridged purine azole hybrids as dual-targeting inhibitors of MRSA. Bioorg. Chem. 2021, 114, 105096. [Google Scholar] [CrossRef]
  20. Wang, Q.; Xing, L.; Zhang, Y.; Gong, C.; Zhou, Y.; Zhang, N.; He, B.; Xue, W. Antiviral activity evaluation and action mechanism of myricetin derivatives containing thioether quinoline moiety. Mol. Divers. 2024, 28, 1039–1055. [Google Scholar] [CrossRef]
  21. Pirota, V.; D’Acerno, G.; Quadrelli, P. Synthesis of tetrazole- and imidazole-based compounds: Prophetic molecules made real for biological studies. Arkivoc 2022, 2022, 245–258. [Google Scholar] [CrossRef]
  22. Saeeda, S.; Saif, M.J.; Zahoor, A.F.; Tabassumc, H.; Kamald, S.; Faisal, S.; Ashrafa, R.; Khana, S.G.; Nazeerf, U.; Irfan, A.; et al. Discovery of novel 1,2,4-triazole tethered β-hydroxy sulfides as bacterial tyrosinase inhibitors: Synthesis and biophysical evaluation through in vitro and in silico approaches. RSC Adv. 2024, 14, 15419–15430. [Google Scholar] [CrossRef]
  23. Bergmeier, S.C. The Synthesis of Vicinal Amino Alcohols. Tetrahedron 2000, 56, 2561–2576. [Google Scholar] [CrossRef]
  24. Karjalainen, O.K.; Koskinen, A.M.P. Diastereoselective synthesis of vicinal amino alcohols. Org. Biomol. Chem. 2012, 10, 4311–4326. [Google Scholar] [CrossRef]
  25. Ye, C.X.; Melcamu, Y.Y.; Li, H.H.; Cheng, J.T.; Zhang, T.T.; Ruan, Y.P.; Zheng, X.; Lu, X.; Huang, P.Q. Dual catalysis for enantioselective convergent synthesis of enantiopure vicinal amino alcohols. Nat. Commun. 2018, 9, 410. [Google Scholar] [CrossRef]
  26. National Institute of Diabetes and Digestive and Kidney Diseases. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]; Beta Adrenergic Blocking Agents: Bethesda, MD, USA, 2012; Bookshelf ID: NBK547852. [Google Scholar]
  27. Hersh, E.V.; Giannakopoulos, H. Beta-adrenergic blocking agents and dental vasoconstrictors. Dent. Clin. N. Am. 2010, 54, 687–696. [Google Scholar] [CrossRef]
  28. Helfand, M.; Peterson, K. Drug Class Review on Beta Adrenergic Blockers Final Report; Oregon Health & Science University: Portland, OR, USA, 2005; Bookshelf ID: NBK47172. [Google Scholar]
  29. Miyajima, R.; Sano, K.; Yoshida, H. β-Adrenergic Blocking Agents and Intermittent Claudication: Systematic Review. Yakugaku Zasshi 2004, 124, 825–831. [Google Scholar] [CrossRef]
  30. WHO Team. WHO Essential Medicines, 22nd ed.; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02 (accessed on 31 March 2025).
  31. Smith, C.D.; Wang, A.; Vembaiyan, K.; Zhang, J.; Xie, C.; Zhou, Q.; Wu, G.; Chen, S.R.W.; Back, T.G. Novel carvedilol analogues that suppress store-overload-induced Ca2+ release. J. Med. Chem. 2013, 56, 8626–8655. [Google Scholar] [CrossRef]
  32. Verma, A.K.; Singh, H.; Satyanarayana, M.; Srivastava, S.P.; Tiwari, P.; Singh, A.B.; Dwivedi, A.K.; Singh, S.K.; Srivastava, M.; Nath, C.; et al. Flavone-based novel antidiabetic and antidyslipidemic agents. J. Med. Chem. 2012, 55, 4551–4567. [Google Scholar] [CrossRef]
  33. Liu, A.; Huang, L.; Wang, Z.; Luo, Z.; Mao, F.; Shan, W.; Xie, J.; Lai, K.; Li, X. Hybrids consisting of the pharmacophores of salmeterol and roflumilast or phthalazinone: Dual β2-adrenoceptor agonists-PDE4 inhibitors for the treatment of COPD. Bioorg. Med. Chem. Lett. 2013, 23, 1548–1552. [Google Scholar] [CrossRef]
  34. Ang, W.; Ye, W.; Sang, Z.; Liu, Y.; Yang, T.; Deng, Y.; Luo, Y.; Wei, Y. Discovery of novel bis-oxazolidinone compounds as potential potent and selective antitubercular agents. Bioorg. Med. Chem. Lett. 2014, 24, 1496–1501. [Google Scholar] [CrossRef]
  35. Burns, J.F.; Chen, B.; Chen, C.-A.; Doller, D.; Edelmenky, E.; Jiang, Y.; Peterson, J.M.; Sabio, M.; Weiss, J.; White, A.D.; et al. cis-1-Oxo-heterocyclyl-4-amido cyclohexane derivatives as NPY5 receptor antagonists. Bioorg. Med. Chem. Lett. 2014, 24, 1458–1461. [Google Scholar] [CrossRef] [PubMed]
  36. Guijarro, D.; Pablo, Ó.; Yus, M. Achiral β-amino alcohols as efficient ligands for the ruthenium-catalysed asymmetric transfer hydrogenation of sulfinylimines. Tetrahedron Lett. 2011, 52, 789–791. [Google Scholar] [CrossRef]
  37. Tasgin, D.I.; Unaleroglu, C. Enantioselective addition of diethylzinc to aldehydes catalyzed by β-amino alcohols derived from (1R,2S)-norephedrine. Appl. Organomet. Chem. 2010, 24, 33–37. [Google Scholar] [CrossRef]
  38. Mesropyan, E.G.; Galstyan, A.S.; Avetisyan, A.A. Syntheses on the basis of 4-(Oxiran-2-ylmethyl)morpholine. Russ. J. Org. Chem. 2006, 42, 1845–1847. [Google Scholar] [CrossRef]
  39. Mesropyan, E.G.; Avetisyan, A.A.; Galstyan, A.S. Synthesis of N-aryl derivatives of vicinal aminoalcohols. Russ. J. Org. Chem. 2007, 43, 1176–1179. [Google Scholar] [CrossRef]
  40. Mesropyan, E.G.; Galstyan, A.S.; Avetisyan, A.A. Syntheses proceeding from N-(oxiran-2-ylmethyl)-N-ethylaniline. Russ. J. Org. Chem. 2010, 46, 1296–1300. [Google Scholar] [CrossRef]
  41. Mesropyan, E.G.; Galstyan, A.S.; Avetisyan, A.A. Reactions of aromatic dithiols with diethyl 2-alkyl-2-(oxiran-2-ylmethyl)malonates. Russ. J. Org. Chem. 2012, 48, 373–375. [Google Scholar] [CrossRef]
  42. Mesropyan, E.G.; Ambartsumyan, G.B.; Avetisyan, A.A.; Galstyan, A.S. Reaction of phenyl glycidyl ether with some heterocycles. Chem. Heterocycl. Compd. 2008, 44, 650–653. [Google Scholar] [CrossRef]
  43. Mesropyan, E.G.; Avetisyan, A.A.; Galstyan, A.S.; Ter-Vardanyan, L.R. Reactions of aromatic dithiols with allyl glycidyl ether and 4-(oxiran-2-ylmethyl)morpholine. Russ. Chem. Bull. 2009, 58, 1528–1530. [Google Scholar] [CrossRef]
  44. Mesropyan, E.G.; Hambardzumyan, G.B.; Avetisyan, A.A.; Galstyan, A.S.; Khachatryan, A.G. Synthesis of 3-Allyloxy(2-hydroxypropyl)-5,5-dimethylhydantoin, 1-Allyloxy(2-hydroxypropyl)-substituted Benzotriazole and Benzimidazole, and N-allyloxy(2-hydroxypropyl)-substituted Pyrrolidone, Caprolactam, and Phthalimide. Chem. Heterocycl. Compd. 2005, 41, 962–966. [Google Scholar] [CrossRef]
  45. Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol. 2017, 133, 86–96. [Google Scholar] [CrossRef] [PubMed]
  46. Wang, W.; Wang, S.; Liu, Y.; Dong, G.; Cao, Y.; Miao, Z.; Yao, J.; Zhang, W.; Sheng, C. Novel conformationally restricted triazole derivatives with potent antifungal activity. Eur. J. Med. Chem. 2010, 45, 6020–6026. [Google Scholar] [CrossRef]
  47. Sheng, C.; Che, X.; Wang, W.; Wang, S.; Cao, Y.; Miao, Z.; Yao, J.; Zhang, W. Design and synthesis of novel triazole antifungal derivatives by structure-based bioisosterism. Eur. J. Med. Chem. 2011, 46, 5276–5282. [Google Scholar] [CrossRef]
  48. Wang, S.; Jin, G.; Wang, W.; Zhu, L.; Zhang, Y.; Dong, G.; Liu, Y.; Zhuang, C.; Miao, Z.; Yao, J.; et al. Design, synthesis and structure–activity relationships of new triazole derivatives containing N-substituted phenoxypropylamino side chains. Eur. J. Med. Chem. 2012, 53, 292–299. [Google Scholar] [CrossRef]
  49. Yu, S.; Chai, X.; Hu, H.; Yan, Y.; Guan, Z.; Zou, Y.; Sun, Q.; Wu, Q. Synthesis and antifungal evaluation of novel triazole derivatives as inhibitors of cytochrome P450 14α-demethylase. Eur. J. Med. Chem. 2010, 45, 4435–4445. [Google Scholar] [CrossRef] [PubMed]
  50. Xu, K.; Huang, L.; Xu, Z.; Wang, Y.; Bai, G.; Wu, Q.; Wang, X.; Yu, S.; Jiang, Y. Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group. Drug Des. Dev. Ther. 2015, 9, 1459–1467. [Google Scholar] [CrossRef]
  51. Elias, R.; Benhamou, R.I.; Jaber, Q.Z.; Dorot, O.; Zada, S.L.; Oved, K.; Pichinuk, E.; Fridman, M. Antifungal activity, mode of action variability, and subcellular distribution of coumarin-based antifungal azoles. Eur. J. Med. Chem. 2019, 179, 779–790. [Google Scholar] [CrossRef]
  52. Luo, Y.; Zhang, S.; Liu, Z.J.; Chen, W.; Fu, J.; Zeng, Q.F.; Zhu, H.L. Synthesis and antimicrobical evaluation of a novel class of 1,3,4-thiadiazole: Derivatives bearing 1,2,4-triazolo[1,5-a]pyrimidine moiety. Eur. J. Med. Chem. 2013, 64, 54–61. [Google Scholar] [CrossRef]
  53. Zoumpoulakis, P.; Camoutsis, C.; Pairas, G.; Sokovic, M.; Glamoclija, J.; Potamitis, C.; Pitsas, A. Synthesis of novel sulfonamide-1,2,4-triazoles, 1,3,4-thiadiazoles and 1,3,4-oxadiazoles, as potential antibacterial and antifungal agents. Biological evaluation and conformational analysis studies. Bioorg. Med. Chem. 2012, 20, 1569–1583. [Google Scholar] [CrossRef]
  54. Charushin, V.N.; Verbitskiy, E.V.; Chupakhin, O.N.; Vorobyeva, D.V.; Gribanov, P.S.; Osipov, S.N.; Ivanov, A.V.; Martynovskaya, S.V.; Sagitova, E.F.; Dyachenko, V.D.; et al. The chemistry of heterocycles in the 21st century. Russ. Chem. Rev. 2024, 93, RCR5125. [Google Scholar] [CrossRef]
  55. Ghochikyan, T.V.; Zhamharyan, A.G.; Afrikyan, S.G.; Frangyan, V.R.; Galstyan, A.S. Novel Triazole-Containing “Dipeptides”: Synthesis, Molecular Docking and Analgesic Activity Studies. ChemBioChem 2024, 25, e202300837. [Google Scholar] [CrossRef]
  56. Galstyan, A.S.; Ghochikyan, T.V.; Frangyan, V.R.; Tamazyan, R.A.; Ayvazyan, A.G. Synthesis of Novel Derivatives of 1,2,4-Triazoles. ChemistrySelect 2018, 3, 9981–9985. [Google Scholar] [CrossRef]
  57. Galstyan, A.S.; Ghochikyan, T.V.; Samvelyan, M.A.; Frangyan, V.R.; Sarfraz, M. Synthesis, Study of the Biological Activity of New 1,2,4-Triazole Derivatives and Characteristics of the Relationship of the Structure and Biological Activity in a Series of the Latter. ChemistrySelect 2019, 4, 12386–12390. [Google Scholar] [CrossRef]
  58. Galstyan, A.S.; Grigoryan, S.V.; Samvelyan, M.A.; Frangyan, V.R.; Yeganyan, T.H.; Ayvazyan, A.G.; Ghochikyan, T.V. On Features of Halocyclization of 4-Allyl-5-substituted-2,4-dihydro-3H-1,2,4-triazol-3-thiones and Synthesis of New Derivatives of 1,2,3-Triazoles. ChemistrySelect 2022, 7, e202201283. [Google Scholar] [CrossRef]
  59. Samvelyan, M.A.; Ghochikyan, T.V.; Grigoryan, S.V.; Tamazyan, R.A.; Aivazyan, A.G. Alkylation of 1,2,4-triazole-3-thiols with haloalkanoic acid esters. Russ. J. Org. Chem. 2017, 53, 935–940. [Google Scholar] [CrossRef]
  60. Petrosyan, A.; Ayvazyan, A.; Ghochikyan, T.; Galstyan, A. Ligand-Free Copper(0)-Catalyzed C−S Ullmann-Type Cross-Coupling Reaction: S-Arylation of 5,4-Disubstituted 2,4-Dihydro-3H-1,2,4-triazole-3-thiones. Eur. J. Org. Chem. 2024, 27, e202400199. [Google Scholar] [CrossRef]
  61. Kochikyan, T.V.; Samvelyan, M.A.; Arutyunyan, V.S.; Avetisyan, A.A.; Tamazyan, R.A.; Aivazyan, A.G. Synthesis of 1,2,4-triazole-3-thiols and their S-substituted derivatives. Russ. J. Org. Chem. 2010, 46, 551–555. [Google Scholar] [CrossRef]
  62. Kochikyan, T.V.; Samvelyan, M.A.; Petrosyan, A.M.; Langer, P.D. Synthesis and properties of thiazolo[2,3-c][1,2,4]triazoles. Russ. J. Org. Chem. 2015, 51, 1469–1473. [Google Scholar] [CrossRef]
  63. Kirschberg, T.A.; Balakrishnan, M.; Huang, W.; Hluhanich, R.; Kutty, N.; Liclican, A.C.; McColl, D.J.; Squires, N.H.; Lansdon, E.B. Triazole derivatives as non-nucleoside inhibitors of HIV-1 reverse transcriptase—Structure–activity relationships and crystallographic analysis. Bioorg. Med. Chem. Lett. 2008, 18, 1131–1134. [Google Scholar] [CrossRef]
  64. Romaine, I.M.; Taylor, R.W.; Saidu, S.P.; Kim, K.; Sulikowski, G.A.; Zwiebel, L.J.; Waterson, A.G. Narrow SAR in odorant sensing Orco receptor agonists. Bioorg. Med. Chem. Lett. 2014, 24, 2613–2616. [Google Scholar] [CrossRef]
  65. Turky, A.; Sherbiny, F.F.; Bayoumi, A.H.; Ahmed, H.E.A.; Abulkhair, H.S. Novel 1,2,4-triazole derivatives: Design, synthesis, anticancer evaluation, molecular docking, and pharmacokinetic profiling studies. Arch. Pharm. 2020, 353, 2000170. [Google Scholar] [CrossRef]
  66. Enikolopiyan, N.S. New Aspects of the Nucleophilic Opening of Epoxide Rings. Pure Appl. Chem. 1976, 48, 317–328. [Google Scholar] [CrossRef]
  67. Omoto, K.; Fujimoto, H. Theoretical Study of Activation of Oxirane by Bidentate Acids. J. Org. Chem. 2000, 65, 2464–2471. [Google Scholar] [CrossRef]
  68. Kas’yan, L.I.; Okovityi, S.I.; Kas’yan, A.O. Reactions of Alicyclic Epoxy Compounds with Nitrogen-Containing Nucleophiles. Russ. J. Org. Chem. 2004, 40, 1–34. [Google Scholar] [CrossRef]
Scheme 1. “Click chemistry”: thiol-epoxy reaction.
Scheme 1. “Click chemistry”: thiol-epoxy reaction.
Chemistry 07 00053 sch001
Figure 1. Some vicinal amino alcohols are β-adrenergic blocking agents.
Figure 1. Some vicinal amino alcohols are β-adrenergic blocking agents.
Chemistry 07 00053 g001
Figure 2. Drugs with a 1,2,4-triazole backbone are used in clinical practice.
Figure 2. Drugs with a 1,2,4-triazole backbone are used in clinical practice.
Chemistry 07 00053 g002
Scheme 2. Reaction of 4,5-disubstituted-2,4-dihydro-3H-1,2,4-triazole-3-thiones with electrophiles. Research focus: reaction of triazolothiones with epoxides.
Scheme 2. Reaction of 4,5-disubstituted-2,4-dihydro-3H-1,2,4-triazole-3-thiones with electrophiles. Research focus: reaction of triazolothiones with epoxides.
Chemistry 07 00053 sch002
Scheme 3. The synthesis of starting 4,5-disubstituted-2,4-dihydro-3H-1,2,4-triazole-3-thiones 1av. Reagents and conditions: (i) EtOH/MeOH, H+ reflux; (ii) N2H4∙H2O, EtOH, r.t. 1 h and reflux 4 h; (iii) R2NCS, EtOH, reflux 4 h; (iv) 10% sol. KOH(aq) 3 eq., reflux 5 h.
Scheme 3. The synthesis of starting 4,5-disubstituted-2,4-dihydro-3H-1,2,4-triazole-3-thiones 1av. Reagents and conditions: (i) EtOH/MeOH, H+ reflux; (ii) N2H4∙H2O, EtOH, r.t. 1 h and reflux 4 h; (iii) R2NCS, EtOH, reflux 4 h; (iv) 10% sol. KOH(aq) 3 eq., reflux 5 h.
Chemistry 07 00053 sch003
Scheme 4. The synthesis of starting bis-1,2,4-triazole-3-thione 1w.
Scheme 4. The synthesis of starting bis-1,2,4-triazole-3-thione 1w.
Chemistry 07 00053 sch004
Scheme 5. The synthesis of vicinal amino alcohols containing a 1,2,4-triazole ring 3av.
Scheme 5. The synthesis of vicinal amino alcohols containing a 1,2,4-triazole ring 3av.
Chemistry 07 00053 sch005
Scheme 6. The synthesis of bis-vicinal amino alcohol 3w.
Scheme 6. The synthesis of bis-vicinal amino alcohol 3w.
Chemistry 07 00053 sch006
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Petrosyan, A.V.; Shahkhatuni, A.A.; Davinyan, A.M.; Avetisyan, K.S.; Ghochikyan, T.V.; Samvelyan, M.A.; Nenajdenko, V.G.; Galstyan, A.S. Thiol-Epoxy Click Chemistry: The Synthesis of Vicinal Amino Alcohols Containing a 1,2,4-Triazole Ring. Chemistry 2025, 7, 53. https://doi.org/10.3390/chemistry7020053

AMA Style

Petrosyan AV, Shahkhatuni AA, Davinyan AM, Avetisyan KS, Ghochikyan TV, Samvelyan MA, Nenajdenko VG, Galstyan AS. Thiol-Epoxy Click Chemistry: The Synthesis of Vicinal Amino Alcohols Containing a 1,2,4-Triazole Ring. Chemistry. 2025; 7(2):53. https://doi.org/10.3390/chemistry7020053

Chicago/Turabian Style

Petrosyan, Artyom V., Astghik A. Shahkhatuni, Andranik M. Davinyan, Karine S. Avetisyan, Tariel V. Ghochikyan, Melanya A. Samvelyan, Valentine G. Nenajdenko, and Armen S. Galstyan. 2025. "Thiol-Epoxy Click Chemistry: The Synthesis of Vicinal Amino Alcohols Containing a 1,2,4-Triazole Ring" Chemistry 7, no. 2: 53. https://doi.org/10.3390/chemistry7020053

APA Style

Petrosyan, A. V., Shahkhatuni, A. A., Davinyan, A. M., Avetisyan, K. S., Ghochikyan, T. V., Samvelyan, M. A., Nenajdenko, V. G., & Galstyan, A. S. (2025). Thiol-Epoxy Click Chemistry: The Synthesis of Vicinal Amino Alcohols Containing a 1,2,4-Triazole Ring. Chemistry, 7(2), 53. https://doi.org/10.3390/chemistry7020053

Article Metrics

Back to TopTop