Emerging Trends in Skin Anti-Photoaging by Lactic Acid Bacteria: A Focus on Postbiotics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Strategy for Data Retrieval
- Search terms were established through a topic search (TS), encompassing the title, abstract, author’s keywords, and keywords Plus. The criteria were TS = (“skin aging” or “photoaging”) and TS = (“probiotics” or “postbiotics”).
- The type of document sought was an “article”.
- The publication timeframe considered was from 2013 to 2023.
- The subsequent data were gathered, including publications, authors, nations, institutions, journals, keywords, and citations.
2.2. Data Analysis and Network Mapping
2.3. Reference Analysis of Research Paper
3. Results and Discussion
3.1. Comprehensive Analysis of Research Trends
3.1.1. Results of a Publication Survey on Skin Aging Related to Probiotics and Postbiotics
3.1.2. Global Distribution of Research Collaborative Effort
3.1.3. Analysis of Co-Citations Involving Referenced Sources and Keywords
3.2. The Research Trends on Photoaging and Lactic Acid Bacteria
3.2.1. Research Trends on Probiotics
3.2.2. Classification Trends of Postbiotics
3.3. Limitations and Future Trends
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gilchrest, B.A. Photoaging. J. Investig. Dermatol. 2013, 133, E2–E6. [Google Scholar] [CrossRef] [PubMed]
- Scharffetter–Kochanek, K.; Brenneisen, P.; Wenk, J.; Herrmann, G.; Ma, W.; Kuhr, L.; Meewes, C.; Wlaschek, M. Photoaging of the Skin from Phenotype to Mechanisms. Exp. Gerontol. 2000, 35, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Cavinato, M.; Jansen-Dürr, P. Molecular Mechanisms of UVB-Induced Senescence of Dermal Fibroblasts and Its Relevance for Photoaging of the Human Skin. Exp. Gerontol. 2017, 94, 78–82. [Google Scholar] [CrossRef]
- Chien, A.L.; Qi, J.; Grandhi, R.; Kim, N.; César, S.S.A.; Harris-Tryon, T.; Jang, M.S.; Olowoyeye, O.; Kuhn, D.; Leung, S.; et al. Effect of Age, Gender, and Sun Exposure on Ethnic Skin Photoaging: Evidence Gathered Using a New Photonumeric Scale. J. Natl. Med. Assoc. 2018, 110, 176–181. [Google Scholar] [CrossRef]
- Kang, S.; Fisher, G.J.; Voorhees, J.J. Photoaging and Topical Tretinoin: Therapy, Pathogenesis, and Prevention. Arch. Dermatol. 1997, 133, 1280–1284. [Google Scholar] [CrossRef]
- Kligman, A.M. Early Destructive Effect of Sunlight on Human Skin. JAMA 1969, 210, 2377–2380. [Google Scholar] [CrossRef]
- Vierkötter, A.; Hüls, A.; Yamamoto, A.; Stolz, S.; Krämer, U.; Matsui, M.S.; Morita, A.; Wang, S.; Li, Z.; Jin, L.; et al. Extrinsic Skin Ageing in German, Chinese and Japanese Women Manifests Differently in All Three Groups Depending on Ethnic Background, Age and Anatomical Site. J. Dermatol. Sci. 2016, 83, 219–225. [Google Scholar] [CrossRef]
- Shah, H.; Rawal Mahajan, S. Photoaging: New Insights into Its Stimulators, Complications, Biochemical Changes and Therapeutic Interventions. Biomed. Aging Pathol. 2013, 3, 161–169. [Google Scholar] [CrossRef]
- Wohlrab, J.; Hilpert, K.; Wohlrab, A. Besonderheiten Der Altershaut. Der Hautarzt 2014, 65, 911–922. [Google Scholar] [CrossRef]
- Hashizume, H. Skin Aging and Dry Skin. J. Dermatol. 2004, 31, 603–609. [Google Scholar] [CrossRef]
- Orioli, D.; Dellambra, E. Epigenetic Regulation of Skin Cells in Natural Aging and Premature Aging Diseases. Cells 2018, 7, 268. [Google Scholar] [CrossRef] [PubMed]
- Goukassian, D.A.; Gilchrest, B.A. The Interdependence of Skin Aging, Skin Cancer, and DNA Repair Capacity: A Novel Perspective with Therapeutic Implications. Rejuvenation Res. 2004, 7, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the Gut Microbiota in Nutrition and Health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef] [PubMed]
- The Human Microbiome Project Consortium. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef]
- Johnson, T.; Gómez, B.; McIntyre, M.; Dubick, M.; Christy, R.; Nicholson, S.; Burmeister, D. The Cutaneous Microbiome and Wounds: New Molecular Targets to Promote Wound Healing. Int. J. Mol. Sci. 2018, 19, 2699. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, J.J.; Myeong, N.R.; Kim, T.; Kim, D.; An, S.; Kim, H.; Park, T.; Jang, S.I.; Yeon, J.H.; et al. Segregation of Age-Related Skin Microbiome Characteristics by Functionality. Sci. Rep. 2019, 9, 16748. [Google Scholar] [CrossRef]
- Jugé, R.; Rouaud-Tinguely, P.; Breugnot, J.; Servaes, K.; Grimaldi, C.; Roth, M.-P.; Coppin, H.; Closs, B. Shift in Skin Microbiota of Western European Women across Aging. J. Appl. Microbiol. 2018, 125, 907–916. [Google Scholar] [CrossRef]
- Ellis, S.R.; Nguyen, M.; Vaughn, A.R.; Notay, M.; Burney, W.A.; Sandhu, S.; Sivamani, R.K. The Skin and Gut Microbiome and Its Role in Common Dermatologic Conditions. Microorganisms 2019, 7, 550. [Google Scholar] [CrossRef]
- Grice, E.A.; Segre, J.A. The Skin Microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef]
- Burns, E.M.; Ahmed, H.; Isedeh, P.N.; Kohli, I.; Van Der Pol, W.; Shaheen, A.; Muzaffar, A.F.; Al-Sadek, C.; Foy, T.M.; Abdelgawwad, M.S.; et al. Ultraviolet Radiation, Both UVA and UVB, Influences the Composition of the Skin Microbiome. Exp. Dermatol. 2019, 28, 136–141. [Google Scholar] [CrossRef]
- Bowe, W.P.; Logan, A.C. Acne Vulgaris, Probiotics and the Gut-Brain-Skin Axis—Back to the Future? Gut Pathog. 2011, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Romagnani, S. Coming Back to a Missing Immune Deviation as the Main Explanatory Mechanism for the Hygiene Hypothesis. J. Allergy Clin. Immunol. 2007, 119, 1511–1513. [Google Scholar] [CrossRef] [PubMed]
- Evivie, S.E.; Huo, G.-C.; Igene, J.O.; Bian, X. Some Current Applications, Limitations and Future Perspectives of Lactic Acid Bacteria as Probiotics. Food Nutr. Res. 2017, 61, 1318034. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Zmora, N.; Segal, E.; Elinav, E. The Pros, Cons, and Many Unknowns of Probiotics. Nat. Med. 2019, 25, 716–729. [Google Scholar] [CrossRef]
- Lee, G.R.; Maarouf, M.; Hendricks, A.J.; Lee, D.E.; Shi, V.Y. Topical Probiotics: The Unknowns behind Their Rising Popularity. Dermatol. Online J. 2019, 25, 5. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Tsilingiri, K.; Barbosa, T.; Penna, G.; Caprioli, F.; Sonzogni, A.; Viale, G.; Rescigno, M. Probiotic and Postbiotic Activity in Health and Disease: Comparison on a Novel Polarised Ex-Vivo Organ Culture Model. Gut 2012, 61, 1007–1015. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Romero, L.; Portillo-Salido, E. Trends in Sigma-1 Receptor Research: A 25-Year Bibliometric Analysis. Front. Pharmacol. 2019, 10, 564. [Google Scholar] [CrossRef]
- Kim, H.M.; Lee, D.E.; Park, S.D.; Kim, Y.-T.; Kim, Y.J.; Jeong, J.W.; Jang, S.S.; Ahn, Y.-T.; Sim, J.-H.; Huh, C.-S.; et al. Oral Administration of Lactobacillus plantarum HY7714 Protects Hairless Mouse Against Ultraviolet B-Induced Photoaging. J. Microbiol. Biotechnol. 2014, 24, 1583–1591. [Google Scholar] [CrossRef]
- Zawistowska-Rojek, A.; Tyski, S. Are Probiotic Really Safe for Humans? Pol. J. Microbiol. 2018, 67, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Joint WHO/FAO/UNU Expert Consultation. Protein and Amino Acid Requirements in Human Nutrition. World Health Organ. Tech. Rep. Ser. 2007, 1–265. [Google Scholar] [CrossRef]
- Doron, S.; Snydman, D.R. Risk and Safety of Probiotics. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2015, 60 (Suppl. S2), S129–S134. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, V.T.; Ganju, P.; Ramkumar, A.; Grover, R.; Gokhale, R.S. Multifaceted Pathways Protect Human Skin from UV Radiation. Nat. Chem. Biol. 2014, 10, 542–551. [Google Scholar] [CrossRef]
- Mohania, D.; Chandel, S.; Kumar, P.; Verma, V.; Digvijay, K.; Tripathi, D.; Choudhury, K.; Mitten, S.K.; Shah, D. Ultraviolet Radiations: Skin Defense-Damage Mechanism. In Ultraviolet Light in Human Health, Diseases and Environment; Ahmad, S.I., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2017; Volume 996, pp. 71–87. ISBN 978-3-319-56016-8. [Google Scholar]
- Dunand, E.; Burns, P.; Binetti, A.; Bergamini, C.; Peralta, G.H.; Forzani, L.; Reinheimer, J.; Vinderola, G. Postbiotics Produced at Laboratory and Industrial Level as Potential Functional Food Ingredients with the Capacity to Protect Mice against Salmonella Infection. J. Appl. Microbiol. 2019, 127, 219–229. [Google Scholar] [CrossRef]
- Shenderov, B.A. Metabiotics: Novel Idea or Natural Development of Probiotic Conception. Microb. Ecol. Health Dis. 2013, 24, 20399. [Google Scholar] [CrossRef]
- Kaur, S.; Thukral, S.K.; Kaur, P.; Samota, M.K. Perturbations Associated with Hungry Gut Microbiome and Postbiotic Perspectives to Strengthen the Microbiome Health. Future Foods 2021, 4, 100043. [Google Scholar] [CrossRef]
- Li, C.-C.; Lin, L.-H.; Lee, H.-T.; Tsai, J.-R. Avobenzone Encapsulated in Modified Dextrin for Improved UV Protection and Reduced Skin Penetration. Chem. Pap. 2016, 70, 840–847. [Google Scholar] [CrossRef]
- Baker, L.A.; Marchetti, B.; Karsili, T.N.V.; Stavros, V.G.; Ashfold, M.N.R. Photoprotection: Extending Lessons Learned from Studying Natural Sunscreens to the Design of Artificial Sunscreen Constituents. Chem. Soc. Rev. 2017, 46, 3770–3791. [Google Scholar] [CrossRef]
- Garmyn, M.; Young, A.R.; Miller, S.A. Mechanisms of and Variables Affecting UVR Photoadaptation in Human Skin. Photochem. Photobiol. Sci. 2018, 17, 1932–1940. [Google Scholar] [CrossRef]
- Ácsová, A.; Hojerová, J.; Tobolková, B.; Martiniaková, S. Antioxidant Efficacy of Natural Ubiquinol Compared to Synthetic References—In Vitro Study. ChemistrySelect 2021, 6, 4495–4505. [Google Scholar] [CrossRef]
- Hojerová, J.; Medovcíková, A.; Mikula, M. Photoprotective Efficacy and Photostability of Fifteen Sunscreen Products Having the Same Label SPF Subjected to Natural Sunlight. Int. J. Pharm. 2011, 408, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Klimová, Z.; Hojerová, J.; Beránková, M. Skin Absorption and Human Exposure Estimation of Three Widely Discussed UV Filters in Sunscreens—In Vitro Study Mimicking Real-Life Consumer Habits. Food Chem. Toxicol. 2015, 83, 237–250. [Google Scholar] [CrossRef]
- Ácsová, A.; Hojerová, J.; Janotková, L.; Bendová, H.; Jedličková, L.; Hamranová, V.; Martiniaková, S. The Real UVB Photoprotective Efficacy of Vegetable Oils: In Vitro and in Vivo Studies. Photochem. Photobiol. Sci. 2021, 20, 139–151. [Google Scholar] [CrossRef]
- Fiorani, M.; Tohumcu, E.; Del Vecchio, L.E.; Porcari, S.; Cammarota, G.; Gasbarrini, A.; Ianiro, G. The Influence of Helicobacter Pylori on Human Gastric and Gut Microbiota. Antibiotics 2023, 12, 765. [Google Scholar] [CrossRef]
- Dreher, F.; Jungman, E.J.; Sakamoto, K.; Maibach, H.I. (Eds.) Handbook of Cosmetic Science and Technology, 5th ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-0-367-46997-9. [Google Scholar]
- Maguire, M.; Maguire, G. The Role of Microbiota, and Probiotics and Prebiotics in Skin Health. Arch. Dermatol. Res. 2017, 309, 411–421. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Rafique, N.; Jan, S.Y.; Dar, A.H.; Dash, K.K.; Sarkar, A.; Shams, R.; Pandey, V.K.; Khan, S.A.; Amin, Q.A.; Hussain, S.Z. Promising Bioactivities of Postbiotics: A Comprehensive Review. J. Agric. Food Res. 2023, 14, 100708. [Google Scholar] [CrossRef]
- Duarte, M.; Oliveira, A.L.; Oliveira, C.; Pintado, M.; Amaro, A.; Madureira, A.R. Current Postbiotics in the Cosmetic Market—An Update and Development Opportunities. Appl. Microbiol. Biotechnol. 2022, 106, 5879–5891. [Google Scholar] [CrossRef]
- Perez, M.; Astó, E.; Huedo, P.; Alcántara, C.; Buj, D.; Espadaler, J. Derived Postbiotics of a Multi-strain Probiotic Formula Clinically Validated for the Treatment of Irritable Bowel Syndrome. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Tomasik, P.; Tomasik, P. Probiotics, Non-Dairy Prebiotics and Postbiotics in Nutrition. Appl. Sci. 2020, 10, 1470. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Datta, S.C.; Biswas, D.R.; Dotaniya, C.K.; Meena, B.L.; Rajendiran, S.; Regar, K.L.; Lata, M. Use of Sugarcane Industrial By-Products for Improving Sugarcane Productivity and Soil Health. Int. J. Recycl. Org. Waste Agric. 2016, 5, 185–194. [Google Scholar] [CrossRef]
- Guerra, S.P.S.; Denadai, M.S.; Saad, A.L.M.; Spadim, E.R.; Da Costa, M.X.R. Sugarcane Biorefinery, Technology and Perspectives; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-814236-3. [Google Scholar]
- Ruseler-van Embden, J.G.H.; Van Lieshout, L.M.C.; Gosselink, M.J.; Marteau, P. Inability of Lactobacillus Casei Strain GG, L. Acidophilus, and Bifidobacterium Bifidum to Degrade Intestinal Mucus Glycoproteins. Scand. J. Gastroenterol. 1995, 30, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, G.-H.; Cho, H. Postbiotics for Cancer Prevention and Treatment. Korean J. Microbiol. 2021, 57, 142–153. [Google Scholar] [CrossRef]
- Hennequin, C.; Kauffmann-Lacroix, C.; Jobert, A.; Viard, J.P.; Ricour, C.; Jacquemin, J.L.; Berche, P. Possible Role of Catheters in Saccharomyces Boulardii Fungemia. Eur. J. Clin. Microbiol. Infect. Dis. 2000, 19, 16–20. [Google Scholar] [CrossRef]
- Rautio, M.; Jousimies-Somer, H.; Kauma, H.; Pietarinen, I.; Saxelin, M.; Tynkkynen, S.; Koskela, M. Liver Abscess Due to a Lactobacillus Rhamnosus Strain Indistinguishable from L. rhamnosus Strain GG. Clin. Infect. Dis. 1999, 28, 1159–1160. [Google Scholar] [CrossRef]
- Gasser, F. Safety of Lactic Acid Bacteria and Their Occurrence in Human Clinical Infections. Bull. L’Inst. Pasteur 1994, 92, 45–67. [Google Scholar]
- Yang, X.; Liang, Q.; Chen, Y.; Wang, B. Alteration of Methanogenic Archaeon by Ethanol Contribute to the Enhancement of Biogenic Methane Production of Lignite. Front. Microbiol. 2019, 10, 2323. [Google Scholar] [CrossRef]
- Alokika; Anu; Kumar, A.; Kumar, V.; Singh, B. Cellulosic and Hemicellulosic Fractions of Sugarcane Bagasse: Potential, Challenges and Future Perspective. Int. J. Biol. Macromol. 2021, 169, 564–582. [Google Scholar] [CrossRef]
- Dimarzio, L.; Cinque, B.; Cupelli, F.; De Simone, C.; Cifone, M.G.; Giuliani, M. Increase of Skin-Ceramide Levels in Aged Subjects Following a Short-Term Topical Application of Bacterial Sphingomyelinase from Streptococcus thermophilus. Int. J. Immunopathol. Pharmacol. 2008, 21, 137–143. [Google Scholar] [CrossRef]
- Majeed, M.; Majeed, S.; Nagabhushanam, K.; Lawrence, L.; Arumugam, S.; Mundkur, L. Skin Protective Activity of LactoSporin-the Extracellular Metabolite from Bacillus coagulans MTCC 5856. Cosmetics 2020, 7, 76. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.; Jiang, Y.; Wang, D.; Zhao, D.; Wang, C.; Li, M. Bacillus Amyloliquefaciens Lysate Ameliorates Photoaging of Human Skin Fibroblasts through NRF2/KEAP1 and TGF-β/SMAD Signaling Pathways. Appl. Sci. 2022, 12, 9151. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Song, Y.; Zheng, B.; Wen, Z.; Gong, M.; Meng, L. Heat-Killed Lacticaseibacillus paracasei Ameliorated UVB-Induced Oxidative Damage and Photoaging and Its Underlying Mechanisms. Antioxidants 2022, 11, 1875. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.M.; Lee, D.-G.; Mun, S.; Kim, M.; Baek, C.; Lee, H.; Yun, S.K.; Kang, S.; Han, K. Skin Benefits of Postbiotics Derived from Micrococcus luteus Derived from Human Skin: An Untapped Potential for Dermatological Health. Genes Genom. 2024, 46, 13–25. [Google Scholar] [CrossRef]
Year | Journal | Title | Citations |
---|---|---|---|
2018 | Trends in Food Science and Technology | Postbiotics: An evolving term within the functional foods field | 470 |
2015 | International Journal of Women’s Dermatology | The effect of probiotics on immune regulation, acne, and photoaging | 105 |
2014 | Beneficial microbes | Impact of prebiotics and probiotics on skin health | 105 |
2020 | Microorganisms | Update of probiotics in human world: A nonstop source of benefactions until the end of time | 94 |
2015 | Journal of Microbiology and Biotechnology | Clinical evidence of effects of Lactobacillus plantarum HY7714 on skin aging: A randomized, double-blind, placebo-controlled study | 84 |
2010 | British Journal of Dermatology | Clinical evidence of benefits of a dietary supplement containing probiotics and carotenoids on ultraviolet-induced skin damage | 74 |
2020 | Microorganisms | Staphylococcus epidermidis and Cutibacterium acnes: Two major sentinels of skin microbiota and the influence of cosmetics | 72 |
2021 | Molecules | Advantages of hyaluronic acid and its combination with other bioactive ingredients in cosmeceuticals | 71 |
2015 | Critical Reviews in Food Science and Nutrition | Health Effects of Probiotics on the Skin | 65 |
2014 | Applied and Environmental Microbiology | Lactobacillus rhamnosus GG inhibits the toxic effects of Staphylococcus aureus on epidermal keratinocytes | 50 |
Keyword | Occurrences | Relevance | |
---|---|---|---|
1 | Photoaging | 608 | 0.86 |
2 | Skin | 454 | 0.68 |
3 | Probiotics | 220 | 1.42 |
4 | Health | 217 | 0.60 |
5 | Matrix metalloproteinase (MMP) | 197 | 1.35 |
6 | UVB | 194 | 1.32 |
7 | Gut microbiota | 188 | 1.26 |
8 | Metabolite | 182 | 0.93 |
9 | Matrix metalloproteinase | 154 | 1.37 |
10 | Microbiota | 148 | 1.27 |
11 | Collagen | 117 | 1.12 |
12 | Synbiotics | 97 | 1.54 |
13 | Safety | 96 | 0.61 |
14 | Wrinkle | 88 | 0.96 |
15 | Immune system | 79 | 0.94 |
16 | Lactic acid bacterium | 79 | 0.91 |
17 | Fibroblast | 74 | 1.20 |
18 | Photodamage | 53 | 0.85 |
19 | Dermis | 53 | 1.18 |
20 | Paraprobiotic | 50 | 1.40 |
Postbiotic | Type of Analysis | Main Effects and Mechanisms | Reference |
---|---|---|---|
Streptococcus thermophilus produces topical sphingomyelinase | Clinical trial (cream) | Skin ceramide levels increase | [63] |
Bacillus coagulans MTCC 5856 form spore and produce LactoSporin (The extracellular metabolite) | In vitro (HDF cell) | LactoSporin suppressed the activity of collagenase, hyaluronidase, and elastase while increasing epidermal growth factor, transforming growth factor, and hyaluronan synthase. This was done to safeguard skin cells from programmed cell death and cellular demise induced by UV exposure. | [64] |
Bacillus amyloliquefaciens lysate (BAL1) | In vitro (CCC-ESF-1) | BAL1 has the capability to boost the response to oxidation stress and fortify the defensive mechanism against aging by UV in fibroblasts of the skin. | [65] |
Heat-killed Lacticaseibacillus paracasei (PL) | In vitro (NHDF and B16F10 murine melanoma cells) | By inhibiting signaling pathways such as c-Fos, JNK, c-Jun, and p38 in skin cells, wrinkles were diminished, leading to the attenuation of UVB-induced photoaging. This effect was associated with an enhancement in type I collagen levels | [66] |
Postbiotics isolated from Micrococcus luteus YM-4 on human skin | In vitro (HaCaT cell) | Genes expression associated with skin hydration, synthesis of hyaluronic acid, skin barrier, and cell viability was elevated by the culture filtrate of YM-4 | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Nguyen, T.T.M.; Yi, E.-J.; Zheng, Q.; Park, S.-J.; Yi, G.-S.; Yang, S.-J.; Kim, M.-J.; Yi, T.-H. Emerging Trends in Skin Anti-Photoaging by Lactic Acid Bacteria: A Focus on Postbiotics. Chemistry 2024, 6, 1495-1508. https://doi.org/10.3390/chemistry6060090
Jin X, Nguyen TTM, Yi E-J, Zheng Q, Park S-J, Yi G-S, Yang S-J, Kim M-J, Yi T-H. Emerging Trends in Skin Anti-Photoaging by Lactic Acid Bacteria: A Focus on Postbiotics. Chemistry. 2024; 6(6):1495-1508. https://doi.org/10.3390/chemistry6060090
Chicago/Turabian StyleJin, Xiangji, Trang Thi Minh Nguyen, Eun-Ji Yi, Qiwen Zheng, Se-Jig Park, Gyeong-Seon Yi, Su-Jin Yang, Mi-Ju Kim, and Tae-Hoo Yi. 2024. "Emerging Trends in Skin Anti-Photoaging by Lactic Acid Bacteria: A Focus on Postbiotics" Chemistry 6, no. 6: 1495-1508. https://doi.org/10.3390/chemistry6060090
APA StyleJin, X., Nguyen, T. T. M., Yi, E.-J., Zheng, Q., Park, S.-J., Yi, G.-S., Yang, S.-J., Kim, M.-J., & Yi, T.-H. (2024). Emerging Trends in Skin Anti-Photoaging by Lactic Acid Bacteria: A Focus on Postbiotics. Chemistry, 6(6), 1495-1508. https://doi.org/10.3390/chemistry6060090