The Magnetic Properties of Fluorenyl and tert-Butyl-nitroxyl Acene-Based Derivatives: A Quantum Chemical Insight
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Compounds 1–3
3.2. Compounds 4–6
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anthony, J.E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 2006, 106, 5028–5048. [Google Scholar] [CrossRef] [PubMed]
- Hicks, R.G. Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds; John Wiley & Sons Ltd.: Chichester, UK, 2010. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, J. Open-Shell Polycyclic Aromatic Hydrocarbons. J. Mater. Chem. 2012, 22, 4151–4160. [Google Scholar] [CrossRef]
- Abe, M. Diradicals. Chem. Rev. 2013, 113, 7011–7088. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.S. Organic- and Molecule-Based Magnets. Mater. Today 2014, 17, 224–235. [Google Scholar] [CrossRef]
- Kubo, T. Recent progress in quinoidal singlet biradical molecules. Chem. Lett. 2014, 44, 111–122. [Google Scholar] [CrossRef]
- Liu, J.; Xia, J.; Song, P.; Ding, Y.; Cui, Y.; Liu, X.; Dai, Y.; Ma, F. Organic Nonlinear Optical Materials: The Mechanism of Intermolecular Covalent Bonding Interactions of Kekulé Hydrocarbons with Significant Singlet Biradical Character. ChemPhysChem 2014, 15, 2626–2633. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, Y.; Kumar Keshri, S.; Mukhopadhyay, P. Recent Advances in Organic Radicals and Their Magnetism. Magnetochemistry 2016, 2, 42. [Google Scholar] [CrossRef]
- Hu, X.; Wang, W.; Wang, D.; Zheng, Y. The Electronic Applications of Stable Diradicaloids: Present and Future. J. Mater. Chem. C 2018, 6, 11232–11242. [Google Scholar] [CrossRef]
- Stuyver, T.; Chen, B.; Zeng, T.; Geerlings, P.; De Proft, F.; Hoffmann, R. Do Diradicals Behave like Radicals? Chem. Rev. 2019, 119, 11291–11351. [Google Scholar] [CrossRef]
- Jousselin-Oba, T.; Mamada, M.; Marrot, J.; Maignan, A.; Adachi, C.; Yassar, A.; Frigoli, M. Excellent Semiconductors Based on Tetracenotetracene and Pentacenopentacene: From Stable Closed-Shell to Singlet Open-Shell. J. Am. Chem. Soc. 2019, 141, 9373–9381. [Google Scholar] [CrossRef]
- Dressler, J.J.; Haley, M.M. Learning How to Fine-tune Diradical Properties by Structure Refinement. J. Phys. Org. Chem. 2020, 33, e4114. [Google Scholar] [CrossRef]
- Kamada, K.; Ohta, K.; Kubo, T.; Shimizu, A.; Morita, Y.; Nakasuji, K.; Kishi, R.; Ohta, S.; Furukawa, S.; Takahashi, H.; et al. Strong Two-Photon Absorption of Singlet Diradical Hydrocarbons. Angew. Chem. Int. Ed. 2007, 46, 3544–3546. [Google Scholar] [CrossRef] [PubMed]
- Lukman, S.; Richter, J.M.; Yang, L.; Hu, P.; Wu, J.; Greenham, N.C.; Musser, A.J. Efficient Singlet Fission and Triplet-Pair Emission in a Family of Zethrene Diradicaloids. J. Am. Chem. Soc. 2017, 139, 18376–18385. [Google Scholar] [CrossRef]
- Casanova, D. Theoretical Modeling of Singlet Fission. Chem. Rev. 2018, 118, 7164–7207. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tom, R.; Gao, S.; Marom, N. Assessing Zethrene Derivatives as Singlet Fission Candidates Based on Multiple Descriptors. J. Phys. Chem. C 2020, 124, 26134–26143. [Google Scholar] [CrossRef]
- Tonami, T.; Nagami, T.; Okada, K.; Yoshida, W.; Miyamoto, H.; Nakano, M. Quantum design for singlet-fission-induced nonlinear optical systems: Effects of π-conjugation length and molecular packing of butterfly-shaped acenes. J. Chem. Phys. 2020, 153, 084304. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M. Open-Shell-Character-Based Molecular Design Principles: Applications to Nonlinear Optics and Singlet Fission. Chem. Rec. 2017, 17, 27–62. [Google Scholar] [CrossRef]
- Teki, Y.; Toichi, T.; Nakajima, S. π Topology and Spin Alignment in Unique Photoexcited Triplet and Quintet States Arising from Four Unpaired Electrons of an Organic Spin System. Chem. Eur. J. 2006, 12, 2329–2336. [Google Scholar] [CrossRef]
- Kawanaka, Y.; Shimizu, A.; Shinada, T.; Tanaka, R.; Teki, Y. Using Stable Radicals To Protect Pentacene Derivatives from Photodegradation. Angew. Chem. Int. Ed. 2013, 52, 6643–6647. [Google Scholar] [CrossRef]
- Shimizu, A.; Ito, A.; Teki, Y. Photostability enhancement of the pentacene derivative having two nitronyl nitroxide radical substituents. Chem. Commun. 2016, 52, 2889–2892. [Google Scholar] [CrossRef]
- Minami, N.; Yoshida, K.; Maeguchi, K.; Kato, K.; Shimizu, A.; Kashima, G.; Fujiwara, M.; Uragami, C.; Hashimoto, H.; Teki, Y. p-Topology and ultrafast excited-state dynamics of remarkably photochemically stabilized pentacene derivatives with radical substituents. Phys. Chem. Chem. Phys. 2022, 24, 13514–13518. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Teki, Y. Theoretical investigation of multi-spin excited states of anthracene radical-linked p-conjugated spin systems by computational chemistry. Phys. Chem. Chem. Phys. 2024, 26, 8106–8114. [Google Scholar] [CrossRef]
- Shinozuka, T.; Shimizu, D.; Matsuda, K. Theoretical investigation of the effect of radical substituents on the open-shell character of polycyclic aromatic hydrocarbons. New J. Chem. 2024, 48, 8683–8689. [Google Scholar] [CrossRef]
- Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 2011, 40, 3336–3355. [Google Scholar] [CrossRef]
- Pilevarshahri, R.; Rungger, I.; Archer, T.; Sanvito, S.; Shahtahmassebi, N. Spin transport in higher n-acene molecules. Phys. Rev. B 2011, 84, 174437. [Google Scholar] [CrossRef]
- Ratera, I.; Veciana, J. Playing with organic radicals as building blocks for functional molecular material. Chem. Soc. Rev. 2012, 41, 303–349. [Google Scholar] [CrossRef]
- Cano, J.; Lloret, F.; Julve, M. Theoretical design of magnetic wires from acene and nanocorone derivatives. Dalton Trans. 2016, 45, 16700–16708. [Google Scholar] [CrossRef]
- Zhang, H.; Miao, F.; Liu, X.; Wang, D.; Zheng, Y. Recent Advances of Stable Phenoxyl Diradicals. Chem. Res. Chin. Univ. 2023, 39, 170–175. [Google Scholar] [CrossRef]
- Kurata, H.; Tanaka, T.; Oda, M. Dibenzoannulated 3,5,3″,5″-Tetra(t-butyl)-p-terphenoquinone. A Reversible, Photochemical-Thermal Switching System Involving Restricted Conformational Change. Chem. Lett. 1999, 28, 749–750. [Google Scholar] [CrossRef]
- Wentrup, C.; Regimbald-Krnel, M.J.; Müller, D.; Comba, P.A. Thermally Populated, Perpendicularly Twisted Alkene Triplet Diradical. Angew. Chem. Int. Ed. 2016, 55, 14600–14605. [Google Scholar] [CrossRef]
- Yin, X.; Low, J.Z.; Fallon, K.J.; Paley, D.W.; Campos, L.M. The Butterfly Effect in Bisfluorenylidene-Based Dihydroacenes: Aggregation Induced Emission and Spin Switching. Chem. Sci. 2019, 10, 10733–10739. [Google Scholar] [CrossRef]
- Hamamoto, Y.; Hirao, Y.; Kubo, T. Biradicaloid Behavior of a Twisted Double Bond. J. Phys. Chem. Lett. 2021, 12, 4729–4734. [Google Scholar] [CrossRef] [PubMed]
- Ravat, P.; Baumgarten, M. “Tschitschibabin type Biradicals”: Benzenoid or Quinoid? Phys. Chem. Chem. Phys. 2015, 17, 983–991. [Google Scholar] [CrossRef]
- Ten, Y.A.; Troshkova, N.M.; Tretyakov, E.V. From spin-labelled fused polyaromatic compounds to magnetically active graphene nanostructures. Russ. Chem. Rev. 2020, 89, 693–712. [Google Scholar] [CrossRef]
- Tretyakov, E.V.; Ovcharenko, V.I.; Terent’ev, A.O.; Krylov, I.B.; Magdesieva, T.V.; Mazhukin, D.G.; Gritsan, N.P. Conjugated nitroxides. Russ. Chem. Rev. 2022, 91, RCR5025. [Google Scholar] [CrossRef]
- Ishigaki, Y.; Harimoto, T.; Shimajiri, T.; Suzuki, T. Carbon-based Biradicals: Structural and Magnetic Switching. Chem. Rev. 2023, 123, 13952–13965. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 (Revision C.01); Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Starikova, A.A.; Chegerev, M.G.; Starikov, A.G.; Metelitsa, A.V.; Minkin, V.I.; Aldoshin, S.M. Size matters: Computational insight into magnetic properties of extended acenes. Chem. Phys. Lett. 2023, 833, 140965. [Google Scholar] [CrossRef]
- Starikov, A.G.; Chegerev, M.G.; Starikova, A.A.; Minkin, V.I. Organic Polyradicals Based on Acenes. Computational Modeling. Dokl. Chem. 2022, 503, 51–55. [Google Scholar] [CrossRef]
- Starikova, A.A.; Starikov, A.G.; Minyaev, R.M.; Boldyrev, A.I.; Minkin, V.I. Magnetic Properties of Acenes and Their o-Quinone Derivatives: Computer Simulation. Dokl. Chem. 2018, 478, 21–25. [Google Scholar] [CrossRef]
- Minkin, V.I.; Starikov, A.G.; Starikova, A.A.; Gapurenko, O.A.; Minyaev, R.M.; Boldyrev, A.I. Electronic structure and magnetic properties of the triangular nanographenes with radical substituents: A DFT study. Phys. Chem. Chem. Phys. 2020, 22, 1288–1298. [Google Scholar] [CrossRef]
- Minkin, V.I.; Starikov, A.G.; Starikova, A.A. Acene-Linked Zethrenes and Bisphenalenyls: A DFT Search for Organic Tetraradicals. J. Phys. Chem. A 2021, 125, 6562–6570. [Google Scholar] [CrossRef]
- Noodleman, L. Valence Bond Description of Antiferromagnetic Coupling in Transition Metal Dimers. J. Chem. Phys. 1981, 74, 5737–5743. [Google Scholar] [CrossRef]
- Minyaev, R.M. Gradient lines on multidimensional potential energy surfaces and chemical reaction mechanisms. Russ. Chem. Rev. 1994, 63, 883–903. [Google Scholar] [CrossRef]
- Harvey, J.N.; Aschi, M.; Schwarz, H.; Koch, W. The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor. Chem. Acc. 1998, 99, 95–99. [Google Scholar] [CrossRef]
- Shoji, M.; Koizumi, K.; Kitagawa, Y.; Kawakami, T.; Yamanaka, S.; Okumura, M.; Yamaguchi, K. A general algorithm for calculation of Heisenberg exchange integrals J in multispin systems. Chem. Phys. Lett. 2006, 432, 343–347. [Google Scholar] [CrossRef]
- Neese, F. The ORCA Program System. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 8, e1327. [Google Scholar] [CrossRef]
- Chemcraft, Version 1.8. 2014. Available online: http://www.chemcraftprog.com (accessed on 5 July 2021).
- Nishiuchi, T.; Ito, R.; Stratmann, E.; Kubo, T. Switchable Conformational Isomerization of an Overcrowded Tristricyclic Aromatic Ene. J. Org. Chem. 2020, 85, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Bendikov, M.; Duong, H.M.; Starkey, K.; Houk, K.N.; Carter, E.A.; Wudl, F. Oligoacenes: Theoretical Prediction of Open-Shell Singlet Diradical Ground States. J. Am. Chem. Soc. 2004, 126, 7416–7417. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Dai, S. Electronic ground state of higher acenes. J. Phys. Chem. A 2008, 112, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Zade, S.S.; Bendikov, M. Heptacene and Beyond: The Longest Characterized Acenes. Angew. Chem. Int. Ed. 2010, 49, 4012–4015. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Hodgson, J.L.; Jiang, D.; Zhang, S.B.; Nagase, S.; Miller, G.P.; Chen, Z. Open-shell singlet character of stable derivatives of nonacene, hexacene and teranthene. Org. Lett. 2011, 13, 3316–3319. [Google Scholar] [CrossRef]
- Rivero, P.; Jiménez-Hoyos, C.A.; Scuseria, G.E. Entanglement and Polyradical Character of Polycyclic Aromatic Hydrocarbons Predicted by Projected Hartree-Fock Theory. J. Phys. Chem. B 2013, 117, 12750–12758. [Google Scholar] [CrossRef]
- Trinquier, G.; David, G.; Malrieu, J.-P. Qualitative Views on the Polyradical Character of Long Acenes. J. Phys. Chem. A 2018, 122, 6926–6933. [Google Scholar] [CrossRef]
- Hachmann, J.; Dorando, J.J.; Aviĺs, M.; Chan, G.K.-L. The Radical Character of the Acenes: A Density Matrix Renormalization Group Study. J. Chem. Phys. 2007, 127, 134309. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Panda, A.; Misra, A.; Klein, D.J. Clar Theory Extended for Polyacenes and Beyond. J. Phys. Chem. A 2014, 118, 4325–4338. [Google Scholar] [CrossRef]
- Tönshoff, C.; Bettinger, H.F. Pushing the Limits of Acene Chemistry: The Recent Surge of Large Acenes. Chem. Eur. J. 2021, 27, 3193–3212. [Google Scholar] [CrossRef]
- Ali, M.d.E.; Datta, S.N. Polyacene Spacers in Intramolecular Magnetic Coupling. J. Phys. Chem. A 2006, 110, 13232–13237. [Google Scholar] [CrossRef]
- Ravat, P.; Teki, Y.; Ito, Y.; Gorelik, E.; Baumgarten, M. Breaking the semi-quinoid structure: Spin-switching from strongly coupled singlet to polarized triplet state. Chem. Eur. J. 2014, 20, 12041–12045. [Google Scholar] [CrossRef]
- Kruszewski, J.; Krygowski, T.M. Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett. 1972, 13, 3839–3842. [Google Scholar] [CrossRef]
- Krygowski, T.M. Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of.pi.-electron systems. J. Chem. Inf. Comput. Sci. 1993, 33, 70–78. [Google Scholar] [CrossRef]
Structure | S | ΔE, kcal mol−1 | ||
---|---|---|---|---|
UB3LYP | wB97XD | LC-wPBE | ||
1a(S) 1 folded | 0 | 0.0 | 0.0 | 0.0 |
1b(T) twisted | 1 | 6.1 | 10.7 | 8.3 |
1b(S) BS | 0 | 5.9 | 10.4 | 8.2 |
1MECPa–c | – | 25.0 | 28.7 | 28.1 |
1c(T) | 1 | 23.5 | 26.4 | 23.3 |
1TSc–b(T) | 1 | 27.1 | 31.8 | 29.6 |
Structure | S | ΔE, kcal mol−1 |
---|---|---|
2a(S)1 folded | 0 | 0.0 |
2TSa–b(S) | 0 | 18.0 |
2b(S) twisted | 0 | 13.5 |
2c(T) twisted | 1 | 17.5 |
3a(S) folded | 0 | 0.0 |
3TSa–b(S) | 0 | 17.8 |
3b(S) twisted | 0 | 14.4 |
3c(Q) | 2 | 29.6 |
Structure | S | ΔE, kcal mol−1 |
---|---|---|
4a(S) 1 folded | 0 | 0.0 |
4b(T)twisted | 1 | −1.5 |
4b(S) BS | 0 | −1.5 |
4MECPb–a | - | 10.4 |
5a(S)folded | 0 | 0.0 |
5b(T)twisted | 1 | 11.0 |
5b(S) BS | 0 | 10.7 |
5MECPa–b | - | 16.8 |
6a(S) folded | 0 | 0.0 |
6b(Q) | 2 | 22.6 |
Compound | I 1 | II | III | IV |
---|---|---|---|---|
Anthracene | - | - | 0.629 | 0.720 |
Pentacene | - | 0.473 | 0.575 | 0.597 |
Heptacene | 0.731 | 0.682 | 0.484 | 0.411 |
1 | - | - | 0.623 | 0.628 |
2 | - | 0.527 | 0.586 | 0.458 |
3 | 0.728 | 0.702 | 0.504 | 0.268 |
4 | - | - | 0.635 | 0.680 |
5 | - | 0.516 | 0.587 | 0.530 |
6 | 0.727 | 0.704 | 0.506 | 0.316 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starikova, A.A.; Chegerev, M.G.; Starikov, A.G.; Minkin, V.I. The Magnetic Properties of Fluorenyl and tert-Butyl-nitroxyl Acene-Based Derivatives: A Quantum Chemical Insight. Chemistry 2024, 6, 816-829. https://doi.org/10.3390/chemistry6050049
Starikova AA, Chegerev MG, Starikov AG, Minkin VI. The Magnetic Properties of Fluorenyl and tert-Butyl-nitroxyl Acene-Based Derivatives: A Quantum Chemical Insight. Chemistry. 2024; 6(5):816-829. https://doi.org/10.3390/chemistry6050049
Chicago/Turabian StyleStarikova, Alyona A., Maxim G. Chegerev, Andrey G. Starikov, and Vladimir I. Minkin. 2024. "The Magnetic Properties of Fluorenyl and tert-Butyl-nitroxyl Acene-Based Derivatives: A Quantum Chemical Insight" Chemistry 6, no. 5: 816-829. https://doi.org/10.3390/chemistry6050049
APA StyleStarikova, A. A., Chegerev, M. G., Starikov, A. G., & Minkin, V. I. (2024). The Magnetic Properties of Fluorenyl and tert-Butyl-nitroxyl Acene-Based Derivatives: A Quantum Chemical Insight. Chemistry, 6(5), 816-829. https://doi.org/10.3390/chemistry6050049