Hydrothermal Generation, Crystal Structures, and Catalytic Performance of Mn(II), Cu(II), and Ni(II) Coordination Polymers Based on a Pyridine–Tricarboxylate Ligand
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Measurements
2.2. Synthesis of [Mn8(μ3-Hcpia)2(μ6-cpia)4(H2biim)2(H2O)6]n·6nH2O (1)
2.3. Synthesis of [Cu3(μ3-cpia)2(bipy)2(H2O)2]n·4nH2O (2)
2.4. Synthesis of [Ni3(μ3-cpia)2(μ-dpe)3(H2O)2]n·4nH2O (3)
2.5. Single Crystal X-ray Diffraction and Topological Analysis
2.6. Catalytic Henry Reaction
3. Discussion of Results
3.1. Crystal Structure of CP 1
3.2. Crystal Structure of CP 2
3.3. Crystal Structure of CP 3
3.4. TGA and PXRD Data
3.5. Catalytic Henry Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, J.Y. Crystal engineering of Cu–containing metal—Organic coordination polymers under hydrothermal conditions. Coord. Chem. Rev. 2003, 246, 327–347. [Google Scholar] [CrossRef]
- Chen, X.M.; Tong, M.L. Solvothermal in Situ Metal/Ligand Reactions: A New Bridge between Coordination Chemistry and Organic Synthetic Chemistry. Acc. Chem. Res. 2007, 40, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.R.; Wang, X.Z.; Li, Y.; Du, J.; Liu, S.X.; Luo, Y.; Huo, J.Z.; Liu, Y.Y.; Wu, X.X.; Ding, B. Hydrothermal Preparation of a Series of Luminescent Cadmium(II) and Zinc(II) Coordination Complexes and Enhanced Real-time Photo-luminescent Sensing for Benzaldehyde. Z. Anorg. Allg. Chem. 2018, 644, 357–366. [Google Scholar] [CrossRef]
- Chakraborty, G.; Park, I.H.; Medishetty, R.; Vittal, J.J. Two−Dimensional Metal–Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem. Rev. 2021, 121, 3751–3891. [Google Scholar] [CrossRef] [PubMed]
- Maurin, G.; Serre, C.; Cooper, A.; Ferey, G. The new age of MOFs and of their porous-related solids. Chem. Soc. Rev. 2017, 46, 3104–3107. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J.; Kirlikovali, K.O.; Li, P.; Farha, O.K. Reticular Chemistry for Highly Porous Metal–Organic Frameworks: The Chemistry and Applications. Acc. Chem. Res. 2022, 55, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Macreadie, L.K.; Babarao, R.; Setter, C.J.; Lee, S.J.; Qazvini, O.T.; Seeber, A.J.; Tsanaktsidis, J.; Telfer, S.G.; Batten, S.R.; Hill, M.R. Enhancing Multicomponent Metal–Organic Frameworks for Low Pressure Liquid Organic Hydrogen Carrier Separations. Angew. Chem. Int. Ed. 2020, 59, 6090–6098. [Google Scholar] [CrossRef]
- Dong, X.Y.; Si, Y.; Yang, S.J.; Zhang, C.; Han, Z.; Luo, P.; Wang, Z.Y.; Zang, S.Q.; Mak, T.C.W. Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metalorganic framework. Nat. Commun. 2020, 11, 3678. [Google Scholar] [CrossRef]
- Gu, S.F.; Xiong, X.H.; Gong, L.L.; Zhang, H.P.; Xu, Y.; Feng, X.F.; Luo, F. Classified Encapsulation of an Organic Dye and Metal–Organic Complex in Different Molecular Compartments for White-Light Emission and Selective Adsorption of C2H2 over CO2. Inorg. Chem. 2021, 60, 8211–8217. [Google Scholar] [CrossRef]
- Fan, L.; Liu, Z.; Zhang, Y.; Zhao, D.; Yang, J.; Zhang, X. p-Terphenyl-2,2″,5″,5‴–tetracarboxylate acid based bifunctional 1D Zinc(II) metal–organic platform for luminescent sensing and gas adsorption. Inorg. Chem. Commun. 2019, 107, 107463. [Google Scholar] [CrossRef]
- Wu, D.; Liu, J.; Jin, J.; Cheng, J.; Wang, M.; Yang, G.; Wang, Y.Y. New Doubly Interpenetrated MOF with [Zn4O] Clusters and Its Doped Isomorphic MOF: Sensing, Dye, and Gas Adsorption Capacity. Cryst. Growth Des. 2019, 19, 6774–6783. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Fan, N.N.; Han, M.L.; Yang, G.P.; Ma, L.F. Porous Zn(II)–Based Metal–Organic Frameworks Decorated with Carboxylate Groups Exhibiting High Gas Adsorption and Separation of Organic Dyes. Cryst. Growth Des. 2018, 18, 7114–7121. [Google Scholar] [CrossRef]
- Kang, X.Q.; Ren, C.; Mei, Z.Z.; Fan, X.X.; Xue, J.J.; Shao, Y.L.; Gu, J.Z. Hydrothermal Assembly, Structural Multiplicity, and Catalytic Knoevenagel Condensation Reaction of a Series of Coordination Polymers Based on a Pyridine-Tricarboxylic Acid. Molecules 2023, 28, 7474. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Shen, Q.; Li, Z.; Jing, X.; Duan, C. Two Copper–Containing Polyoxometalate–Based Metal−Organic Complexesas Heterogeneous Catalysts for the C−H Bond Oxidation of Benzylic Compounds and Olefin Epoxidation. Inorg. Chem. 2022, 61, 11156–11164. [Google Scholar] [CrossRef] [PubMed]
- Markad, D.; Mandal, S.K. Synthesis and structural characterization of a novel dinuclear Cu(II) complex: An efficient and recyclable bifunctional heterogeneous catalyst for the diastereoselective Henry reaction. Dalton Trans. 2018, 47, 5928–5932. [Google Scholar] [CrossRef] [PubMed]
- Mörtel, M.; Oschwald, J.; Scheurer, A.; Drewello, T.; Khusniyarov, M.M. Molecular Valence Tautomeric Metal Complexes for Chemosensing. Inorg. Chem. 2021, 60, 14230–14237. [Google Scholar] [CrossRef] [PubMed]
- Rashid, A.; Mondal, S.; Ghosh, P. Development and Application of Ruthenium(II) and Iridium(III) Based Complexes for Anion Sensing. Molecules 2023, 28, 1231. [Google Scholar] [CrossRef] [PubMed]
- Hung, P.Q.; Lin, P.Y.; Wang, X.H.; Ho, J.A. Metal–organic frameworks in diagnostics, therapeutics, and other biomedical applications. J. Chin. Chem. Soc. 2023, 70, 1284–1296. [Google Scholar] [CrossRef]
- Qin, Y.; She, P.; Huang, X.; Huang, W.; Zhao, Q. Luminescent manganese(II) complexes: Synthesis, properties and optoelectronic applications. Coord. Chem. Rev. 2020, 416, 213331. [Google Scholar] [CrossRef]
- Hong, L.C.; Lin, L.Y.; Wei, L.; Fei, K.Y. Hydrothermal Synthesis, Crystal Structure and Properties of a New Binuclear Nickel(III) Complex with 3-(Pyridin-2-yl)-1,2,4-triazole. Chin. J. Struct. Chem. 2021, 40, 363–368. [Google Scholar]
- Kang, X.Q.; Wang, J.H.; Gu, J.Z. Syntheses, crystals tructures, and catalytic properties of three zinc(II), nickel(II) and cobalt(II) coordination polymers constructed from 4,4′-(pyridin-3,5-diyl)dibenzoic acid. Chinese. J. Inorg. Chem. 2023, 39, 2385–2392. [Google Scholar]
- Singh, R.S.; Paitandi, R.P.; Gupta, R.K.; Pandey, D.S. Recent developments in metal dipyrrin complexes: Design, synthesis, and applications. Coord. Chem. Rev. 2020, 414, 213269. [Google Scholar] [CrossRef]
- Islam, S.; Tripathi, S.; Hossain, A.; Seth, S.K.; Mukhopadhyay, S. pH-induced structural variations of two new Mg(II)–PDA complexes: Experimental and theoretical studies. J. Mol. Struct. 2022, 1265, 133373. [Google Scholar] [CrossRef]
- Fonseca, D.; Pérez-Torres, A.F.; Cobo, J.; Zapata-Rivera, J.; Hurtado, J.J.; Macías, M.A. Influence of the Lewis basicity hardness of crystallization solvents on the coordinations phere of the complex [Co(3,5–dinitrobenzoate–O,O′)2]: Crystallographic and theoretical analysis. CrystEngComm 2022, 24, 2982–2991. [Google Scholar] [CrossRef]
- Xu, M.; Liang, G.; Wang, S.; Ma, X.; Liang, G.; Ni, Q. Structural variability, topology and luminescent properties of three new cadmium(II) coordination polymers based on 4′,4′,4′–[(trimethylamino)]–tris[(1,1′–biphenyl)–2–carboxylate]. J. Mol. Struct. 2020, 1217, 128411. [Google Scholar] [CrossRef]
- Kong, J.J.; Shao, D.; Zhang, J.C.; Jiang, Y.X.; Ji, C.L.; Huang, X.C. From mononuclear to two-dimensional cobalt(II) complexes based on a mixed benzimidazole-dicarboxylate strategy: Syntheses, structures, and magnetic properties. CrystEngComm 2019, 21, 749–757. [Google Scholar] [CrossRef]
- Huang, R.-W.; Li, B.; Zhang, Y.-Q.; Zhao, Y.; Zang, S.-Q.; Xu, H. Divalent cobalt, zinc, and copper coordination polymers based on a new bifunctional ligand: Syntheses, crystal structures, and properties. Inorg. Chem. Commun. 2014, 39, 106–109. [Google Scholar] [CrossRef]
- Chai, X.; Zhang, H.; Zhang, S.; Cao, Y.; Chen, Y. The tunable coordination architectures of a flexible multicarboxylate N-(4-carboxyphenyl)iminodiacetic acid via different metal ions, pH values and auxiliary ligand. J. Solid State Chem. 2009, 182, 1889–1898. [Google Scholar] [CrossRef]
- Fan, X.X.; Wang, H.Y.; Gu, J.Z.; Lv, D.Y.; Zhang, B.; Xue, J.J.; Kirillova, M.V.; Kirillov, A.M. Coordination Polymers from an Amono-Founctionalized Terphenyl-Tetracarboxylate Linker: Structural Multiplicity and Catalytic Properties. Inorg. Chem. 2023, 62, 17612–17624. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Du, L.Y.; Zhang, W.X.; Li, R.F.; Feng, F.; Feng, X. Syntheses, structures and hirshfeld surface analyses of two 3D supramolecules based on nitrogen-heterocyclictric arboxylate ligand. J. Mol. Struct. 2019, 1194, 138–143. [Google Scholar] [CrossRef]
- You, L.X.; Wang, S.J.; Xiong, G.; Ding, F.; Sun, Y.G. Two Coordination Polymers Generated via insitu Decarboxylation of 3-(2,4-Dicarboxylphenyl)-2,6-dicarboxylpyridine: Structure and Magnetism. Chin. J. Inorg. Chem. 2015, 31, 323–328. [Google Scholar]
- Zhao, N.; Li, Y.; Gu, J.Z.; Kirillova, M.V.; Kirillov, A.M. Hydrothermal generation, structural versatility and properties of metal(Ⅱ)-organic architectures driven by a pyridine-tricarboxylic acid. Dalton Trans. 2019, 48, 8361–8374. [Google Scholar] [CrossRef]
- Gu, J.Z.; Wan, S.M.; Kirillova, M.V.; Kirillov, A.M. H-Bonded and metal(II)–organic architectures assembled from an unexplored aromatic tricarboxylic acid: Structural variety and functional properties. Dalton Trans. 2020, 49, 7197–7209. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Aggarwal, H.; Gupta, R. Three-Dimensional Heterometallic Coordination Networks: Syntheses, Crystal Structures, Topologies, and Heterogeneous Catalysis. Cryst. Growth Des. 2015, 15, 4110–4122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXS-97, Program for X-ray Crystal Structure Determination; University of Gottingen: Göttingen, Germany, 1997. [Google Scholar]
- Blatov, V.A. Multipurpose crystallochemical analysis with the program package TOPOS. IUCrCompComm Newsletter 2006, 7, 4–38. [Google Scholar]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package topospro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Guo, L.R.; Wang, H.Y.; Gu, J.Z.; Yang, Y.; Kirillova, M.V.; Kirillov, A.M. Coordination Polymers from Biphenyl–Dicarboxylate Linkers: Synthesis, Structural Diversity, Interpenetration, and Catalytic Properties. Inorg. Chem. 2022, 61, 12577–12590. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; De, D.; Bharadwaj, P.K. A NbO type Cu(II) metal-organic framework showing efficient catalytic activity in the Friedlander and Henry reactions. Dalton Trans. 2017, 46, 7782–7790. [Google Scholar] [CrossRef] [PubMed]
- Neumann, T.; Ceglarska, M.; Germann, L.S.; Rams, M.; Dinnebier, R.E.; Suckert, S.; Jess, I.; Näther, C. Structures, Thermodynamic Relations, and Magnetism of Stable and Metastable Ni(NCS)2 Coordination Polymers. Inorg. Chem. 2018, 57, 3305–3314. [Google Scholar] [CrossRef] [PubMed]
Compound | 1 | 2 | 3 |
---|---|---|---|
Chemical formula | C96H73Mn8N14O48 | C48H40Cu3N6O18 | C32H30Ni15N4O9 |
Molecular weight | 2630.20 | 1179.48 | 702.63 |
Crystal system | Triclinic | Triclinic | Monoclinic |
Space group | P–1 | P–1 | P2/c |
a/Å | 8.8498(3) | 10.5178(6) | 9.8703(14) |
b/Å | 19.6437(8) | 10.8517(6) | 15.3238(18) |
c/Å | 29.7010(12) | 10.9798(5) | 20.932(2) |
α/(°) | 78.045(4) | 73.753(5) | 90 |
β/(°) | 83.139(3) | 73.656(5) | 96.071(11) |
γ/(°) | 86.030(3) | 85.873(5) | 90 |
V/Å3 | 5009.9(3) | 1154.49(11) | 3148.2(7) |
Z | 2 | 1 | 4 |
F(000) | 2662 | 601 | 1376 |
Crystal size/mm | 0.12 × 0.08 × 0.07 | 0.25 × 0.23 × 0.22 | 0.08 × 0.04 × 0.03 |
θ range for data collection | 3.300–25.049 | 3.434–25.046 | 2.366–25.499 |
Limiting indices | −10 ≤ h ≤ 10, −23 ≤ k ≤ 23, −35 ≤ l ≤ 35 | −12 ≤ h ≤ 12, −12 ≤ k ≤ 12, −13 ≤ l ≤ 12 | −11 ≤ h ≤ 11, −18 ≤ k ≤ 18, −25 ≤ l ≤ 22 |
Reflections collected/unique (Rint) | 17723/11239 (0.0509) | 4084/3190 (0.0350) | 5782/2667 (0.1392) |
Dc/(g·cm−3) | 1.744 | 1.696 | 1.406 |
μ/mm−1 | 1.084 | 1.457 | 0.959 |
Data/restraints/parameters | 17723/0/1497 | 4084/0/340 | 5782/0/403 |
Goodness-of-fit on F2 | 1.152 | 1.039 | 0.937 |
Final R [(I ≥ 2σ(I))] R1, wR2 | 0.0557, 0.0831 | 0.0479, 0.1114 | 0.0871, 0.1721 |
R (all data) R1, wR2 | 0.1012, 0.1013 | 0.0662, 0.1254 | 0.1824, 0.2046 |
Largest diff. peak & hole/(e·Å−3) | 0.639&–0.645 | 0.578&–0.441 | 0.724&–0.408 |
Entry | Catalyst | T (°C) | Time (h) | Catalyst Loading, mol% | Solvent | Yield b, % |
---|---|---|---|---|---|---|
1 | 2 | 70 | 1 | 4.0 | CH3OH | 45 |
2 | 2 | 70 | 2 | 4.0 | CH3OH | 60 |
3 | 2 | 70 | 4 | 4.0 | CH3OH | 72 |
4 | 2 | 70 | 6 | 4.0 | CH3OH | 82 |
5 | 2 | 70 | 8 | 4.0 | CH3OH | 90 |
6 | 2 | 70 | 10 | 4.0 | CH3OH | 95 |
7 | 2 | 70 | 12 | 4.0 | CH3OH | 98 |
8 | 2 | 70 | 16 | 4.0 | CH3OH | 98 |
9 | 2 | 25 | 12 | 4.0 | CH3OH | 35 |
10 | 2 | 60 | 12 | 4.0 | CH3OH | 77 |
11 | 2 | 80 | 12 | 4.0 | CH3OH | 97 |
12 | 2 | 70 | 12 | 3.0 | CH3OH | 86 |
13 | 2 | 70 | 12 | 5.0 | CH3OH | 98 |
14 | 2 | 70 | 12 | 4.0 | H2O | 89 |
15 | 2 | 70 | 12 | 4.0 | CH3CN | 35 |
16 | 2 | 70 | 12 | 4.0 | THT | 70 |
17 | 2 | 70 | 12 | 4.0 | C2H5OH | 62 |
18 | 1 | 70 | 12 | 4.0 | CH3OH | 92 |
19 | 3 | 70 | 12 | 4.0 | CH3OH | 85 |
20 | Blank | 70 | 12 | − | CH3OH | 3 |
21 | CuCl2 | 70 | 12 | 4.0 | CH3OH | 13 |
22 | H3cpia | 70 | 12 | 4.0 | CH3OH | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, Z.; Wang, H.; Kang, X.; Yang, Y.; Gu, J. Hydrothermal Generation, Crystal Structures, and Catalytic Performance of Mn(II), Cu(II), and Ni(II) Coordination Polymers Based on a Pyridine–Tricarboxylate Ligand. Chemistry 2024, 6, 805-815. https://doi.org/10.3390/chemistry6040048
Mei Z, Wang H, Kang X, Yang Y, Gu J. Hydrothermal Generation, Crystal Structures, and Catalytic Performance of Mn(II), Cu(II), and Ni(II) Coordination Polymers Based on a Pyridine–Tricarboxylate Ligand. Chemistry. 2024; 6(4):805-815. https://doi.org/10.3390/chemistry6040048
Chicago/Turabian StyleMei, Zhenzhong, Hongyu Wang, Xiuqi Kang, Ying Yang, and Jinzhong Gu. 2024. "Hydrothermal Generation, Crystal Structures, and Catalytic Performance of Mn(II), Cu(II), and Ni(II) Coordination Polymers Based on a Pyridine–Tricarboxylate Ligand" Chemistry 6, no. 4: 805-815. https://doi.org/10.3390/chemistry6040048
APA StyleMei, Z., Wang, H., Kang, X., Yang, Y., & Gu, J. (2024). Hydrothermal Generation, Crystal Structures, and Catalytic Performance of Mn(II), Cu(II), and Ni(II) Coordination Polymers Based on a Pyridine–Tricarboxylate Ligand. Chemistry, 6(4), 805-815. https://doi.org/10.3390/chemistry6040048