Current Scenario of MXene-Based Nanomaterials for Wastewater Remediation: A Review
Abstract
:1. Introduction
1.1. Background Study of MXene
1.2. Basic Principle of MXene
2. Synthesis Routes of MXene
3. Environmental Applications
3.1. Photocatalysis Mechanism
3.2. Photocatalysis
3.3. Adsorption Mechanism
3.4. Adsorption
3.5. Water Splitting Mechanism
3.6. Water Splitting
4. MXene-Based Nanomaterials
4.1. MXene/TiO2 Composites
4.2. MXene/g-C3N4 Composites
4.3. MXene/BiVO4 Composites
5. Multi-Roles of MXene-Based Nanomaterials
5.1. Photocharge Separation and Transfer Role
5.2. Photocatalytic Active Sites
6. Economic and Eco-Friendly Feasibility
7. Regeneration Studies of MXene-Based Nanomaterials
8. Conclusions and Future Challenges
Author Contributions
Funding
Conflicts of Interest
References
- Sun, B.; Dong, X.; Li, H.; Shang, Y.; Zhang, Y.; Hu, F.; Gu, S.; Wu, Y.; Gao, T.; Zhou, G. Surface charge engineering for two-dimensional Ti2CTx MXene for highly efficient and selective removal of cationic dye from aqueous solution. Sep. Purif. Technol. 2021, 272, 118964. [Google Scholar] [CrossRef]
- Jin, X.C.; Liu, G.Q.; Xu, Z.H.; Tao, W.Y. Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Appl. Microbiol. Biotechnol. 2007, 74, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Department of Environment. Environmental Requirements: A Guide for Investors; Department of Environment: Putrajaya, Malaysia, 2010; pp. 1–77. [Google Scholar]
- Vunain, E.; Mishra, A.K.; Mamba, B.B. Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. Int. J. Biol. Macromol. 2016, 86, 570–586. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Q.; Zhang, B.; Tian, L.; Li, K.; Zhang, X. Recent advances in transition metal carbide electrocatalysts for oxygen evolution reaction. Catalysts 2020, 10, 1164. [Google Scholar] [CrossRef]
- Zhang, C.J.; Nicolosi, V. Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 2019, 16, 102–125. [Google Scholar] [CrossRef]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, Z.; Shen, P. Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2 (X = F, OH) Monolayer. J. Am. Chem. Soc. 2012, 134, 16909–16916. [Google Scholar] [CrossRef]
- Mashtalir, O.; Cook, K.M.; Mochalin, V.N.; Crowe, M.; Barsoum, M.W.; Gogotsi, Y. Dye adsorption and decomposition on two- dimensional titanium carbide in aqueous media. J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 14334–14338. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, H.; Xiao, J.; Liu, D.; Liu, Z.; Qian, Y.; Xi, H. Adsorptive separation of methanol-acetone on isostructural series of metal-organic frameworks M-BTC (M = Ti, Fe, Cu, Co, Ru, Mo): A computational study of adsorption mechanisms and metal-substitution impacts. ACS Appl. Mater. Interfaces 2015, 7, 26930–26940. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, L.; Chen, K.; Zhang, Y.; Deng, Q.; Du, S.; Huang, Q.; Zheng, L.; Zhang, J.; Chai, Z.; et al. Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene. ACS Appl. Mater. Interfaces 2016, 8, 16396–16403. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Chen, P. Catalyst: NH3 as an Energy Carrier. Chem 2017, 3, 709–712. [Google Scholar] [CrossRef]
- Kumar, J.A.; Prakash, P.; Krithiga, T.; Amarnath, D.J.; Premkumar, J.; Rajamohan, N.; Vasseghian, Y.; Saravanan, P.; Rajasimman, M. Methods of synthesis, characteristics, and environmental applications of MXene: A comprehensive review. Chemosphere 2022, 286, 131607. [Google Scholar] [CrossRef] [PubMed]
- Hantanasirisakul, K.; Gogotsi, Y. Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Adv. Mater. 2018, 30, 1804779. [Google Scholar] [CrossRef] [PubMed]
- López-Grimau, V.; Gutiérrez, M.C. Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light. Chemosphere 2006, 62, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Liu, Y.; Meng, X. Fabrication of TiO2 nanofibers/MXene Ti3C2 nanocomposites for photocatalytic H2 evolution by electrostatic self-assembly. Appl. Surf. Sci. 2019, 496, 143647. [Google Scholar] [CrossRef]
- Jaffari, Z.H.; Abuabdou, S.M.A.; Ng, D.Q.; Bashir, M.J.K. Insight into two-dimensional MXenes for environmental applications: Recent progress, challenges, and prospects. FlatChem 2021, 28, 100256. [Google Scholar] [CrossRef]
- Prasad, C.; Yang, X.; Liu, Q.; Tang, H.; Rammohan, A.; Zulfiqar, S.; Zyryanov, G.V.; Shah, S. Recent advances in MXenes supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. J. Ind. Eng. Chem. 2020, 85, 1–33. [Google Scholar] [CrossRef]
- Ronchi, R.M.; Arantes, J.T.; Santos, S.F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceram. Int. 2019, 45, 18167–18188. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Meslam, M.; Eid, K.; Salah, B.; Abdullah, A.M.; Ozoemena, K.I.; Elzatahry, A.; Sharaf, M.A.; Sillanpää, M. A review of MXenes as emergent materials for dye removal from wastewater. Sep. Purif. Technol. 2022, 282, 120083. [Google Scholar] [CrossRef]
- Im, J.K.; Sohn, E.J.; Kim, S.; Jang, M.; Son, A.; Zoh, K.D.; Yoon, Y. Review of MXene-based nanocomposites for photocatalysis. Chemosphere 2021, 270, 129478. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yang, C.; Que, W. A novel two-dimensional accordion-like titanium carbide (MXene) for adsorption of Cr(VI) from aqueous solution. J. Adv. Dielectr. 2018, 8, 1850035. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Teng, D.; Zhang, X.; Yang, Q.; Li, P.; Cao, Y. Preparation and regulation of two-dimensional Ti3C2Tx MXene for enhanced adsorption–photocatalytic degradation of organic dyes in wastewater. Ceram. Int. 2022, 48, 14451–14459. [Google Scholar] [CrossRef]
- Cao, S.; Shen, B.; Tong, T.; Fu, J.; Yu, J. 2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction. Adv. Funct. Mater. 2018, 28, 1800136. [Google Scholar] [CrossRef]
- Alsafari, I.A. Synthesis of CuO/MXene nanocomposite to study its photocatalytic and antibacterial properties. Ceram. Int. 2022, 48, 10960–10968. [Google Scholar] [CrossRef]
- Alsafari, I.A.; Munir, S.; Zulfiqar, S.; Saif, M.S.; Warsi, M.F.; Shahid, M. Synthesis, characterization, photocatalytic and antibacterial properties of copper Ferrite/MXene (CuFe2O4/Ti3C2) nanohybrids. Ceram. Int. 2021, 47, 28874–28883. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Khatun, N.; Roy, S.C. Optimization of etching and sonication time to prepare monolayer Ti3C2Tx MXene flakes: A structural, vibrational, and optical spectroscopy study. Micro Nanostruct. 2022, 167, 207256. [Google Scholar] [CrossRef]
- Long, R.; Yu, Z.; Tan, Q.; Feng, X.; Zhu, X.; Li, X.; Wang, P. Ti3C2 MXene/NH2-MIL-88B(Fe): Research on the adsorption kinetics and photocatalytic performance of an efficient integrated photocatalytic adsorbent. Appl. Surf. Sci. 2021, 570, 151244. [Google Scholar] [CrossRef]
- Quyen, V.T.; Ha, L.T.T.; Thanh, D.M.; van Le, Q.; Viet, N.M.; Nham, N.T.; Thang, P.Q. Advanced synthesis of MXene-derived nanoflower-shaped TiO2@Ti3C2 heterojunction to enhance photocatalytic degradation of Rhodamine B. Environ. Technol. Innov. 2021, 21, 101286. [Google Scholar] [CrossRef]
- Thirumal, V.; Yuvakkumar, R.; Kumar, P.S.; Keerthana, S.P.; Ravi, G.; Velauthapillai, D.; Saravanakumar, B. Efficient photocatalytic degradation of hazardous pollutants by homemade kitchen blender novel technique via 2D-material of few-layer MXene nanosheets. Chemosphere 2021, 281, 130984. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Hu, X.L.; Li, X.; Su, Z.M.; Zhou, E.L. Solvent induced two Cd-MOFs as luminescent sensors for picric acid, Fe3+ and Cr2O72−. J. Solid State Chem. 2021, 298, 122128. [Google Scholar] [CrossRef]
- Tahir, T.; Chaudhary, K.; Warsi, M.F.; Saif, M.S.; Alsafari, I.A.; Shakir, I.; Agboola, P.O.; Haider, S.; Zulfiqar, S. Synthesis of sponge like Gd3+ doped vanadium oxide/2D MXene composites for improved degradation of industrial effluents and pathogens. Ceram. Int. 2022, 48, 1969–1980. [Google Scholar] [CrossRef]
- My Tran, N.; Thanh Hoai Ta, Q.; Noh, J.S. Unusual synthesis of safflower-shaped TiO2/Ti3C2 heterostructures initiated from two-dimensional Ti3C2 MXene. Appl. Surf. Sci. 2021, 538, 148023. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Ling, Z.; Song, H.; Cai, Y.; Li, Z.; Zu, D.; Li, C. Ternary g-C3N4/TiO2/Ti3C2 MXene S-scheme heterojunction photocatalysts for NOx removal under visible light. Appl. Surf. Sci. 2021, 556, 149817. [Google Scholar] [CrossRef]
- Yu, M.; Liang, H.; Zhan, R.; Xu, L.; Niu, J. Sm-doped g-C3N4/Ti3C2 MXene heterojunction for visible-light photocatalytic degradation of ciprofloxacin. Chin. Chem. Lett. 2021, 32, 2155–2158. [Google Scholar] [CrossRef]
- Du, X.; Zhao, T.; Xiu, Z.; Xing, Z.; Li, Z.; Pan, K.; Yang, S.; Zhou, W. BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots assembly all-solid-state direct Z-Scheme photocatalysts for efficient visible-light-driven overall water splitting. Appl. Mater. Today 2020, 20, 100719. [Google Scholar] [CrossRef]
- Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; et al. Fluorine-Free Synthesis of High-Purity Ti 3 C 2 T x (T=OH, O) via Alkali Treatment. Angew. Chem. 2018, 130, 6223–6227. [Google Scholar] [CrossRef]
- Xue, N.; Li, X.; Zhang, M.; Han, L.; Liu, Y.; Tao, X. Chemical-combined ball-milling synthesis of fluorine-free porous MXene for high-performance lithium ion batteries. ACS Appl. Energy Mater. 2020, 3, 10234–10241. [Google Scholar] [CrossRef]
- Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P.O.Å.; Eklund, P.; Hultman, L.; Li, M.; et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899. [Google Scholar] [CrossRef]
- Shi, L.; Wang, T.; Zhang, H.; Chang, K.; Meng, X.; Liu, H.; Ye, J. An Amine-Functionalized Iron(III) Metal–Organic Framework as Efficient Visible-Light Photocatalyst for Cr(VI) Reduction. Adv. Sci. 2015, 2, 1500006. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A.G.; Lohe, M.R.; Blom, P.W.M.; Feng, X. Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angew. Chem. 2018, 130, 15717–15721. [Google Scholar] [CrossRef]
- He, Y.; Zhang, M.; Shi, J.J.; Cen, Y.L.; Wu, M. Improvement of Visible-Light Photocatalytic Efficiency in a Novel InSe/Zr2CO2 Heterostructure for Overall Water Splitting. J. Phys. Chem. C 2019, 123, 12781–12790. [Google Scholar] [CrossRef]
- Zhao, M.Q.; Xie, X.; Ren, C.E.; Makaryan, T.; Anasori, B.; Wang, G.; Gogotsi, Y. Hollow MXene Spheres and 3D Macroporous MXene Frameworks for Na-Ion Storage. Adv. Mater. 2017, 29, 1702410. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Wang, L.; Meng, X.; Shi, J.; Qi, C.; Zhang, Z.; Feng, L.; Li, C. 2D/2D BiOBr/Ti3C2 heterojunction with dual applications in both water detoxification and water splitting. J. Photochem. Photobiol. A Chem. 2020, 386, 112099. [Google Scholar] [CrossRef]
- Feng, X.; Yu, Z.; Sun, Y.; Long, R.; Shan, M.; Li, X.; Liu, Y.; Liu, J. Review MXenes as a new type of nanomaterial for environmental applications in the photocatalytic degradation of water pollutants. Ceram. Int. 2021, 47, 7321–7343. [Google Scholar] [CrossRef]
- Sreedhar, A.; Noh, J.S. Recent advances in partially and completely derived 2D Ti3C2 MXene based TiO2 nanocomposites towards photocatalytic applications: A review. Solar Energy 2021, 222, 48–73. [Google Scholar] [CrossRef]
- Zulfiqar, M.; Sufian, S.; Mansor, N.; Rabat, N.E. Synthesis and characterization of TiO2-based nanostructures via fluorine-free solvothermal method for enhancing visible light photocatalytic activity: Experimental and theoretical approach. J. Photochem. Photobiol. A Chem. 2021, 404, 112834. [Google Scholar] [CrossRef]
- Saravanan, R.; Gracia, F.; Stephen, A. Nanocomposites for Visible Light-Induced Photocatalysis; Springer: Berlin/Heidelberg, Germany, 2017; pp. 19–40. [Google Scholar]
- Sharma, V.; Kumar, A.; Kumar, A.; Krishnan, V. Enhanced photocatalytic activity of two dimensional ternary nanocomposites of ZnO–Bi2WO6–Ti3C2 MXene under natural sunlight irradiation. Chemosphere 2022, 287, 132119. [Google Scholar] [CrossRef]
- Chen, L.; Ye, X.; Chen, S.; Ma, L.; Wang, Z.; Wang, Q.; Hua, N.; Xiao, X.; Cai, S.; Liu, X. Ti3C2 MXene nanosheet/TiO2 composites for efficient visible light photocatalytic activity. Ceram. Int. 2020, 46, 25895–25904. [Google Scholar] [CrossRef]
- Shahzad, A.; Rasool, K.; Nawaz, M.; Miran, W.; Jang, J.; Moztahida, M.; Mahmoud, K.A.; Lee, D.S. Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 2018, 349, 748–755. [Google Scholar] [CrossRef]
- Cao, Y.; Fang, Y.; Lei, X.; Tan, B.; Hu, X.; Liu, B.; Chen, Q. Fabrication of novel CuFe2O4/MXene hierarchical heterostructures for enhanced photocatalytic degradation of sulfonamides under visible light. J. Hazard. Mater. 2020, 387, 122021. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.A.; Ali, S.I.; Amin, F.; Tariq, A.; Iqbal, M.Z.; Rizwan, S. La-and Mn-Codoped Bismuth Ferrite/Ti3C2 MXene Composites for Efficient Photocatalytic Degradation of Congo Red Dye. ACS Omega 2019, 4, 8661–8668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, W.; Liu, Y.; Chen, M.; Zhou, Y.; Xie, Z.; Ma, L.; Li, L.; Yang, B. Carbon nitride coupled with Ti3C2-Mxene derived amorphous Ti-peroxo heterojunction for photocatalytic degradation of rhodamine B and tetracycline. Colloids Surf. A Physicochem. Eng. Asp. 2022, 640, 128448. [Google Scholar] [CrossRef]
- Zhang, C.; Li, C.; Chen, G.; Ji, F.; Shen, Y.; Peng, J.; Zhang, J. In situsynthesis of a hybrid Fe(Co)/MXene/ZSM-5 catalyst for phenol abatement. New J. Chem. 2021, 45, 16862–16871. [Google Scholar] [CrossRef]
- Ding, M.; Ao, W.; Xu, H.; Chen, W.; Tao, L.; Shen, Z.; Liu, H.; Lu, C.; Xie, Z. Facile construction of dual heterojunction CoO@TiO2/MXene hybrid with efficient and stable catalytic activity for phenol degradation with peroxymonosulfate under visible light irradiation. J. Hazard. Mater. 2021, 420, 126686. [Google Scholar] [CrossRef]
- Zulfiqar, M.; Sufian, S.; Bahadar, A.; Lashari, N.; Rabat, N.E.; Mansor, N. Surface-fluorination of TiO2 photocatalysts for remediation of water pollution: A review. J. Clean. Prod. 2021, 317, 128354. [Google Scholar] [CrossRef]
- Zulfiqar, M.; Sufian, S.; Rabat, N.E.; Mansor, N. Development of Photo-Fenton oxidation as green strategy for phenol degradation enhancement via DMF-controlled TiO2nanotubes under various oxidizing agents. J. Environ. Chem. Eng. 2021, 9, 104933. [Google Scholar] [CrossRef]
- Zulfiqar, M.; Chowdhury, S.; Omar, A.A.; Siyal, A.A.; Sufian, S. Response surface methodology and artificial neural network for remediation of acid orange 7 using TiO2-P25: Optimization and modeling approach. Environ. Sci. Pollut. Res. 2020, 27, 34018–34036. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Q.; Xing, Y.; Liu, K.; Ling, W.; Yang, J.; Yang, Q.; Wu, T.; Zhang, J.; Pei, Z.; et al. Review of research on migration, distribution, biological effects, and analytical methods of microfibers in the environment. Sci. Total Environ. 2022, 855, 158922. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Li, R.; Geng, H.; Dong, C. Investigation of fine chalk dust particles’ chemical compositions and toxicities on alveolar macrophages in vitro. Chemosphere 2015, 120, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Yue, R.; Sun, X. A Self-cleaning, catalytic titanium carbide (MXene) membrane for efficient tetracycline degradation through peroxymonosulfate activation: Performance evaluation and mechanism study. Sep. Purif. Technol. 2021, 279, 119796. [Google Scholar] [CrossRef]
- Fang, Y.; Cao, Y.; Chen, Q. Synthesis of an Ag2WO4/Ti3C2 Schottky composite by electrostatic traction and its photocatalytic activity. Ceram. Int. 2019, 45, 22298–22307. [Google Scholar] [CrossRef]
- Sukidpaneenid, S.; Chawengkijwanich, C.; Pokhum, C.; Isobe, T.; Opaprakasit, P.; Sreearunothai, P. Multi-function adsorbent-photocatalyst MXene-TiO2 composites for removal of enrofloxacin antibiotic from water. J. Environ. Sci. 2021, 124, 414–428. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Tao, F.; Huang, Z.; Yan, W.; Zhang, Y.; Dong, X.; Wu, Y.; Zhou, G. Ti3C2 MXene-bridged Ag/Ag3PO4 hybrids toward enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 2021, 535, 147354. [Google Scholar] [CrossRef]
- Xu, D.; Ma, Y.; Wang, J.; Chen, W.; Tang, Y.; Li, X.; Li, L. Interfacial engineering of 2D/2D MXene heterostructures: Face-to-face contact for augmented photodegradation of amoxicillin. Chem. Eng. J. 2021, 426, 131246. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, N.; Tang, Z.R.; Anpo, M.; Xu, Y.J. Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl. Catal. B 2018, 237, 43–49. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Xiao, T.; Yuan, X.; Zeng, G.; Tu, W.; Wu, S.; Lee, H.Y.; Tan, Y.Z.; Chew, J.W. Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl. Catal. B 2018, 233, 213–225. [Google Scholar] [CrossRef]
- Ding, X.; Li, Y.; Li, C.; Wang, W.; Wang, L.; Feng, L.; Han, D. 2D visible-light-driven TiO2@Ti3C2/g-C3N4 ternary heterostructure for high photocatalytic activity. J. Mater. Sci. 2019, 54, 9385–9396. [Google Scholar] [CrossRef]
- Peng, C.; Wang, H.; Yu, H.; Peng, F. (111) TiO2-x/Ti3C2: Synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Mater. Res. Bull. 2017, 89, 16–25. [Google Scholar] [CrossRef]
- Cheng, X.; Zu, L.; Jiang, Y.; Shi, D.; Cai, X.; Ni, Y.; Lin, S.; Qin, Y. A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO2-x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes. Chem. Commun. 2018, 54, 11622–11625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, H.; Pan, Y.; Yin, M.; Xu, L.; Zhu, Y.; Pan, C. Facile synthesis of ternary Ti3C2−OH/ln2S3/CdS composite with efficient adsorption and photocatalytic performance towards organic dyes. J. Solid State Chem. 2019, 280, 120981. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, P.; Dai, L.; Bu, Z.; Li, X.; Yu, W.; Cao, Y.; Guan, J. Removal of pollutants via synergy of adsorption and photocatalysis over MXene-based nanocomposites. Chem. Eng. J. Adv. 2022, 10, 100285. [Google Scholar] [CrossRef]
- Li, K.; Lu, X.; Zhang, Y.; Liu, K.; Huang, Y.; Liu, H. Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants. Environ. Res. 2020, 185, 109409. [Google Scholar] [CrossRef]
- Song, H.; Wang, Y.; Ling, Z.; Zu, D.; Li, Z.; Shen, Y.; Li, C. Enhanced photocatalytic degradation of perfluorooctanoic acid by Ti3C2 MXene-derived heterojunction photocatalyst: Application of intercalation strategy in DESs. Sci. Total Environ. 2020, 746, 141009. [Google Scholar] [CrossRef]
- Zulfiqar, M.; Samsudin, M.F.R.; Sufian, S. Modelling and optimization of photocatalytic degradation of phenol via TiO2 nanoparticles: An insight into response surface methodology and artificial neural network. J. Photochem. Photobiol. A Chem. 2019, 384, 112039. [Google Scholar] [CrossRef]
- Ghani, A.A.; Shahzad, A.; Moztahida, M.; Tahir, K.; Jeon, H.; Kim, B.; Lee, D.S. Adsorption and electrochemical regeneration of intercalated Ti3C2Tx MXene for the removal of ciprofloxacin from wastewater. Chem. Eng. J. 2021, 421, 127780. [Google Scholar] [CrossRef]
- Cai, C.; Wang, R.; Liu, S.; Yan, X.; Zhang, L.; Wang, M.; Tong, Q.; Jiao, T. Synthesis of self-assembled phytic acid-MXene nanocomposites via a facile hydrothermal approach with elevated dye adsorption capacities. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124468. [Google Scholar] [CrossRef]
- Hao, C.; Li, G.; Wang, G.; Chen, W.; Wang, S. Preparation of acrylic acid modified alkalized MXene adsorbent and study on its dye adsorption performance. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127730. [Google Scholar] [CrossRef]
- Jun, B.M.; Her, N.; Park, C.M.; Yoon, Y. Effective removal of Pb(ii) from synthetic wastewater using Ti3C2T: X MXene. Environ. Sci. 2020, 6, 173–180. [Google Scholar]
- Hu, X.; Chen, C.; Zhang, D.; Xue, Y. Kinetics, isotherm and chemical speciation analysis of Hg(Ⅱ) adsorption over oxygen-containing MXene adsorbent. Chemosphere 2021, 278, 130206. [Google Scholar] [CrossRef] [PubMed]
- Kadhom, M.; Kalash, K.; Al-Furaiji, M. Performance of 2D MXene as an adsorbent for malachite green removal. Chemosphere 2022, 290, 133256. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, M.; Lee, S.Y.; Mafize, A.A.; Kahar, N.A.M.A.; Johari, K.; Rabat, N.E. Efficient removal of PB(II) from aqueous solutions by using oil palm bio-waste/MWCNTs reinforced pva hydrogel composites: Kinetic, isotherm and thermodynamic modeling. Polymers 2020, 12, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Hu, X.; Liang, J.; Huang, Q.; Dou, J.; Tian, J.; Deng, F.; Liu, M.; Zhang, X.; Wei, Y. Surface functionalization of MXene with chitosan through in-situ formation of polyimidazoles and its adsorption properties. J. Hazard. Mater. 2021, 419, 126220. [Google Scholar] [CrossRef] [PubMed]
- Jun, B.M.; Kim, S.; Rho, H.; Park, C.M.; Yoon, Y. Ultrasound-assisted Ti3C2Tx MXene adsorption of dyes: Removal performance and mechanism analyses via dynamic light scattering. Chemosphere 2020, 254, 126827. [Google Scholar] [CrossRef]
- Dao, X.; Hao, H.; Bi, J.; Sun, S.; Huang, X. Surface Complexation Enhanced Adsorption of Tetracycline by ALK-MXene. Ind Eng Chem Res 2022, 61, 6028–6036. [Google Scholar] [CrossRef]
- Ma, D.; Yi, H.; Lai, C.; Liu, X.; Huo, X.; An, Z.; Li, L.; Fu, Y.; Li, B.; Zhang, M.; et al. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere 2021, 275, 130104. [Google Scholar] [CrossRef]
- Wei, Z.; Peigen, Z.; Wubian, T.; Xia, Q.; Yamei, Z.; ZhengMing, S. Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Mater. Chem. Phys. 2018, 206, 270–276. [Google Scholar] [CrossRef]
- Lei, Y.; Cui, Y.; Huang, Q.; Dou, J.; Gan, D.; Deng, F.; Liu, M.; Li, X.; Zhang, X.; Wei, Y. Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue. Ceram. Int. 2019, 45, 17653–17661. [Google Scholar] [CrossRef]
- Vakili, M.; Cagnetta, G.; Huang, J.; Yu, G.; Yuan, J. Synthesis and regeneration of a MXene-based pollutant adsorbent by mechanochemical methods. Molecules 2019, 24, 2478. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Zhu, Z.; Qiu, Y.; Yu, F.; Zhou, T.; Ma, J.; Zhao, J. Enhanced adsorption performance of alginate/MXene/CoFe2O4 for antibiotic and heavy metal under rotating magnetic field. Chemosphere 2021, 284, 131284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, J.; Zhang, Y.; Yu, Z.; Ji, R.; Zhou, X. Activation of peracetic acid with cobalt anchored on 2D sandwich-like MXenes (Co@MXenes) for organic contaminant degradation: High efficiency and contribution of acetylperoxyl radicals. Appl. Catal. B 2021, 297, 120475. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, M.; Huang, H.; Zhang, D.; Chen, J.; Mao, L.; Zhou, N.; Deng, F.; Zhang, X.; Wei, Y. A novel one-step strategy for preparation of Fe3O4-loaded Ti3C2 MXenes with high efficiency for removal organic dyes. Ceram. Int. 2020, 46, 11593–11601. [Google Scholar] [CrossRef]
- Peng, C.; Wei, P.; Chen, X.; Zhang, Y.; Zhu, F.; Cao, Y.; Wang, H.; Yu, H.; Peng, F. A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance. Ceram. Int. 2018, 44, 18886–18893. [Google Scholar] [CrossRef]
- Shahzad, A.; Nawaz, M.; Moztahida, M.; Jang, J.; Tahir, K.; Kim, J.; Lim, Y.; Vassiliadis, V.S.; Woo, S.H.; Lee, D.S. Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions. Chem. Eng. J. 2019, 368, 400–408. [Google Scholar] [CrossRef]
- Wang, L.; Song, H.; Yuan, L.; Li, Z.; Zhang, P.; Gibson, J.K.; Zheng, L.; Wang, H.; Chai, Z.; Shi, W. Effective Removal of Anionic Re(VII) by Surface-Modified Ti2CTx MXene Nanocomposites: Implications for Tc(VII) Sequestration. Environ. Sci. Technol. 2019, 53, 3739–3747. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, Y.; Xu, J.; Dong, F.; Xiong, Y. Oxidation-Resistant Cyclodextrin-Encapsulated-MXene/Poly (N-isopropylacrylamide) composite hydrogel as a thermosensitive adsorbent for phenols. Sep. Purif. Technol. 2022, 286, 120506. [Google Scholar] [CrossRef]
- Zhang, K.N.; Wang, C.Z.; Lü, Q.F.; Chen, M.H. Enzymatic hydrolysis lignin functionalized Ti3C2Tx nanosheets for effective removal of MB and Cu2+ ions. Int. J. Biol. Macromol. 2022, 209, 680–691. [Google Scholar] [CrossRef]
- Li, Y.; Ding, L.; Liang, Z.; Xue, Y.; Cui, H.; Tian, J. Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2. Chem. Eng. J. 2020, 383, 123178. [Google Scholar] [CrossRef]
- Li, W.; Zhuang, C.; Li, Y.; Gao, C.; Jiang, W.; Sun, Z.; Qi, K. Anchoring ultra-small TiO2 quantum dots onto ultra-thin and large-sized Mxene nanosheets for highly efficient photocatalytic water splitting. Ceram. Int. 2021, 47, 21769–21776. [Google Scholar] [CrossRef]
- Huang, J.; Tao, J.; Liu, G.; Lu, L.; Tang, H.; Qiao, G. In situ construction of 1D CdS/2D Nb2CTx MXene Schottky heterojunction for enhanced photocatalytic hydrogen production activity. Appl. Surf. Sci. 2022, 573, 151491. [Google Scholar] [CrossRef]
- Peng, C.; Zhou, T.; Wei, P.; Ai, H.; Zhou, B.; Pan, H.; Xu, W.; Jia, J.; Zhang, K.; Wang, H.; et al. Regulation of the rutile/anatase TiO2 phase junction in-situ grown on −OH terminated Ti3C2Tx (MXene) towards remarkably enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 439, 135685. [Google Scholar] [CrossRef]
- Cao, B.; Wan, S.; Wang, Y.; Guo, H.; Ou, M.; Zhong, Q. Highly-efficient visible-light-driven photocatalytic H2 evolution integrated with microplastic degradation over MXene/ZnxCd1-xS photocatalyst. J. Colloid Interface Sci. 2022, 605, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lv, X.; Li, R.; Tao, X.; Zheng, Y. Stable and efficient Ti3C2 MXene/MAPbI3-HI system for visible-light-driven photocatalytic HI splitting. J. Power Sources 2022, 522, 231006. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Zheng, T.; Sasaki, S.i.; Tamiaki, H.; Wang, X.F. Chlorophyll derivative sensitized monolayer Ti3C2Tx MXene nanosheets for photocatalytic hydrogen evolution. J. Photochem. Photobiol. A Chem. 2022, 427, 113792. [Google Scholar] [CrossRef]
- Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- Wang, H.; Peng, R.; Hood, Z.D.; Naguib, M.; Adhikari, S.P.; Wu, Z. Titania Composites with 2 D Transition Metal Carbides as Photocatalysts for Hydrogen Production under Visible-Light Irradiation. ChemSusChem 2016, 9, 1490–1497. [Google Scholar] [CrossRef]
- Jin, C.; Rao, S.; Xie, J.; Sun, Z.; Gao, J.; Li, Y.; Li, B.; Liu, S.; Liu, L.; Liu, Q.; et al. Enhanced photocatalytic antibacterial performance by hierarchical TiO2/W18O49 Z-scheme heterojunction with Ti3C2Tx-MXene cocatalyst. Chem. Eng. J. 2022, 447, 137369. [Google Scholar] [CrossRef]
- Mun, S.J.; Park, S.J. Graphitic carbon nitride materials for photocatalytic hydrogen production via water splitting: A short review. Catalysts 2019, 9, 805. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Xu, W.; Wei, P.; Liu, M.C.; Guo, L.; Wu, P.; Zhang, K.; Cao, Y.; Wang, H.; Yu, H.; et al. Manipulating photocatalytic pathway and activity of ternary Cu2O/(001)TiO2@Ti3C2Tx catalysts for H2 evolution: Effect of surface coverage. Int. J. Hydrogen. Energy 2019, 44, 29975–29985. [Google Scholar] [CrossRef]
- Yang, J.X.; Yu, W.B.; Li, C.F.; Dong, W.D.; Jiang, L.Q.; Zhou, N.; Zhuang, Z.P.; Liu, J.; Hu, Z.Y.; Zhao, H.; et al. PtO nanodots promoting Ti3C2 MXene in-situ converted Ti3C2/TiO2 composites for photocatalytic hydrogen production. Chem. Eng. J. 2021, 420, 129695. [Google Scholar] [CrossRef]
- Chang, H.; Li, X.; Shi, L.; Zhu, Y.R.; Yi, T.F. Towards high-performance electrocatalysts and photocatalysts: Design and construction of MXenes-based nanocomposites for water splitting. Chem. Eng. J. 2021, 421, 129944. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Xing, D.; Wang, J.; Zheng, L.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; et al. 2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall Water splitting. Appl. Catal. B 2021, 285, 119855. [Google Scholar] [CrossRef]
- Li, Y.; Deng, X.; Tian, J.; Liang, Z.; Cui, H. Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl. Mater. Today 2018, 13, 217–227. [Google Scholar] [CrossRef]
- Su, T.; Hood, Z.D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C.M.; Ivanov, I.N.; Ji, H.; Qin, Z.; Wu, Z. Monolayer Ti3C2Tx as an Effective Co-catalyst for Enhanced Photocatalytic Hydrogen Production over TiO2. ACS Appl. Energy Mater. 2019, 2, 4640–4651. [Google Scholar] [CrossRef]
- Yao, Z.; Sun, H.; Sui, H.; Liu, X. Construction of bpqds/Ti3C2@TiO2 composites with favorable charge transfer channels for enhanced photocatalytic activity under visible light irradiation. Nanomaterials 2020, 10, 452. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Sun, Y.; Meng, X.; Gao, Y.; Dall’Agnese, Y.; Chen, G.; Dall’Agnese, C.; Wang, X.F. Eosin Y-sensitized partially oxidized Ti 3 C 2 MXene for photocatalytic hydrogen evolution. Catal. Sci. Technol. 2019, 9, 310–315. [Google Scholar] [CrossRef]
- Kong, X.; Gao, P.; Jiang, R.; Feng, J.; Yang, P.; Gai, S.; Chen, Y.; Chi, Q.; Xu, F.; Ye, W. Orderly layer-by-layered TiO2/carbon superstructures based on MXene’s defect engineeringfor efficient hydrogen evolution. Appl. Catal. A Gen 2020, 590, 117341. [Google Scholar] [CrossRef]
- Wang, J.; Shen, Y.; Liu, S.; Zhang, Y. Single 2D MXene precursor-derived TiO2 nanosheets with a uniform decoration of amorphous carbon for enhancing photocatalytic water splitting. Appl. Catal. B 2020, 270, 118885. [Google Scholar] [CrossRef]
- Han, X.; An, L.; Hu, Y.; Li, Y.; Hou, C.; Wang, H.; Zhang, Q. Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation. Appl. Catal. B 2020, 265, 118539. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, C.; Shi, F. MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation. Int. J. Hydrogen. Energy 2020, 45, 6291–6301. [Google Scholar] [CrossRef]
- Xiao, R.; Zhao, C.; Zou, Z.; Chen, Z.; Tian, L.; Xu, H.; Tang, H.; Liu, Q.; Lin, Z.; Yang, X. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl. Catal. B 2020, 268, 118382. [Google Scholar] [CrossRef]
- Zuo, G.; Wang, Y.; Teo, W.L.; Xie, A.; Guo, Y.; Dai, Y.; Zhou, W.; Jana, D.; Xian, Q.; Dong, W.; et al. Ultrathin ZnIn2S4 Nanosheets Anchored on Ti3C2Tx MXene for Photocatalytic H2 Evolution. Angew. Chem. 2020, 59, 11287–11292. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Coussens, L.M. Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell 2012, 21, 309–322. [Google Scholar] [CrossRef] [Green Version]
- Opoku, F.; Govender, K.K.; Gertina, C.; Elizabeth, C.; Govender, P.P. Recent Progress in the Development of Semiconductor- Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants. Adv. Sustain. Syst. 2017, 1, 1700006. [Google Scholar] [CrossRef]
- Guo, H.; Zhu, B.; Zhang, F.; Li, H.; Zheng, K.; Qiu, J.; Wu, L.; Yu, J.; Chen, X. Type-II AsP/Sc2CO2 van der Waals heterostructure: An excellent photocatalyst for overall water splitting. Int. J. Hydrogen. Energy 2021, 46, 32882–32892. [Google Scholar] [CrossRef]
- Meng, A.; Yu, J. Interface Science and Technology; Elsevier B.V.: Amsterdam, The Netherlands, 2020; pp. 161–191. [Google Scholar]
- Wang, Y.; Bayazit, M.K.; Moniz, S.J.A.; Ruan, Q.; Lau, C.C.; Martsinovich, N.; Tang, J. Linker-controlled polymeric photocatalyst for highly efficient hydrogen evolution from water. Energy Environ. Sci. 2017, 10, 1643–1651. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Wang, Z.; Yang, Q.; Tan, L.; Dong, L.; Dong, M. Ultrathin Ti3C2Tx (MXene) Nanosheet-Wrapped NiSe2 Octahedral Crystal for Enhanced Supercapacitor Performance and Synergetic Electrocatalytic Water Splitting. Nanomicro Lett. 2019, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, Y. Potential environmental applications of MXenes: A critical review. Chemosphere 2021, 271, 129578. [Google Scholar] [CrossRef]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. [Google Scholar] [CrossRef]
- Zong, S.; Liu, J.; Huang, Z.; Liu, L.; Liu, J.; Zheng, J.; Fang, Y. Mxene-TiO2 composite with exposed {101} facets for the improved photocatalytic hydrogen evolution activity. J. Alloys Compd. 2022, 896, 163039. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, B.; Yan, B.; Li, G.; Nie, H.; Yang, K.; Zhang, C.; He, J. Few-layer Ti 3 C 2 T x (T = O, OH, or F) saturable absorber for a femtosecond bulk laser. Opt. Lett. 2018, 43, 3862. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zeng, M.; Zhou, J.; Chen, H.; Cong, G.; Liu, H.; Ji, M.; Zhu, C.; Xu, J. A one-pot synthesis of nitrogen doped porous MXene/TiO2 heterogeneous film for high-performance flexible energy storage. Chem. Eng. J. 2021, 426, 130765. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Han, L.; Li, H.; Wang, J.; Lu, T.; Pan, L. In-situ fabrication of few-layered MoS2 wrapped on TiO2-decorated MXene as anode material for durable lithium-ion storage. J. Colloid Interface Sci. 2021, 604, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, P.; Zhu, Y.; Zhu, X.; Zhang, Y.; Liu, M.; Liu, Y. In situ growth of TiO2 nanowires on Ti3C2 MXenes nanosheets as highly sensitive luminol electrochemiluminescent nanoplatform for glucose detection in fruits, sweat and serum samples. Biosens. Bioelectron. 2021, 194, 113600. [Google Scholar] [CrossRef]
- Wang, F.; Ma, X.; Zou, P.; Wang, G.; Xiong, Y.; Liu, Y.; Ren, F.; Xiong, X. Nitrogen-doped carbon decorated TiO2/Ti3C2Tx MXene composites as anode material for high-performance sodium-ion batteries. Surf. Coat. Technol. 2021, 422, 127568. [Google Scholar] [CrossRef]
- Yang, W.; Ma, G.; Fu, Y.; Peng, K.; Yang, H.; Zhan, X.; Yang, W.; Wang, L.; Hou, H. Rationally designed Ti3C2 MXene@TiO2/CuInS2 Schottky/S-scheme integrated heterojunction for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 429, 132381. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Fakhrul Ridhwan Samsudin, M.; Bacho, N.; Sufian, S. Nanocatalysts; IntechOpen: London, UK, 2019. [Google Scholar]
- Jo, W.K.; Lee, J.Y.; Selvam, N.C.S. Synthesis of MoS2 nanosheets loaded ZnO-g-C3N4 nanocomposites for enhanced photocatalytic applications. Chem. Eng. J. 2016, 289, 306–318. [Google Scholar] [CrossRef]
- Masih, D.; Ma, Y.; Rohani, S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal. B 2017, 206, 556–588. [Google Scholar] [CrossRef]
- Huang, K.; Li, C.; Wang, L.; Wang, W.; Meng, X. Layered Ti3C2 MXene and silver co-modified g-C3N4 with enhanced visible light-driven photocatalytic activity. Chem. Eng. J. 2021, 425, 131493. [Google Scholar] [CrossRef]
- Lu, Y.; He, J.; Luo, G. An improved synthesis of chitosan bead for Pb(II) adsorption. Chemical Engineering Journal 2013, 226, 271–278. [Google Scholar] [CrossRef]
- Nasri, M.S.I.; Samsudin, M.F.R.; Tahir, A.A.; Sufian, S. Effect of MXene Loaded on g-C3N4 Photocatalyst for the Photocatalytic Degradation of Methylene Blue. Energies 2022, 15, 955. [Google Scholar] [CrossRef]
- Li, Y.; Ding, L.; Guo, Y.; Liang, Z.; Cui, H.; Tian, J. Boosting the Photocatalytic Ability of g-C3N4 for Hydrogen Production by Ti3C2 MXene Quantum Dots. ACS Appl. Mater. Interfaces 2019, 11, 41440–41447. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, M.; Zhan, R.; Wang, X.; Peng, G.; Niu, J. Ti3C2 MXene-induced interface electron separation in g-C3N4/Ti3C2 MXene/MoSe2 Z-scheme heterojunction for enhancing visible light-irradiated enoxacin degradation. Sep. Purif. Technol. 2021, 275, 119194. [Google Scholar] [CrossRef]
- Liu, W.; Sun, M.; Ding, Z.; Gao, B.; Ding, W. Ti3C2 MXene embellished g-C3N4 nanosheets for improving photocatalytic redox capacity. J. Alloys Compd. 2021, 877, 160223. [Google Scholar] [CrossRef]
- Huang, K.; Li, C.; Zhang, X.; Wang, L.; Wang, W.; Meng, X. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution. Green Energy Environ. 2021, 27, R713–R715. [Google Scholar] [CrossRef]
- Li, X.; Bai, Y.; Shi, X.; Huang, J.; Zhang, K.; Wang, R.; Ye, L. Mesoporous g-C3N4/MXene (Ti3C2Tx) heterojunction as a 2D electronic charge transfer for efficient photocatalytic CO2 reduction. Appl. Surf. Sci. 2021, 546, 149111. [Google Scholar] [CrossRef]
- Xu, H.; Xiao, R.; Huang, J.; Jiang, Y.; Zhao, C.; Yang, X. In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production. Chin. J. Catal. 2020, 42, 107–114. [Google Scholar] [CrossRef]
- Tan, H.L.; Amal, R.; Ng, Y.H. Exploring the Different Roles of Particle Size in Photoelectrochemical and Photocatalytic Water Oxidation on BiVO4. ACS Appl. Mater. Interfaces 2016, 8, 28607–28614. [Google Scholar] [CrossRef]
- Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121, 11459–11467. [Google Scholar] [CrossRef]
- Liu, C.; Fu, Y.; Zhao, J.; Wang, H.; Huang, H.; Liu, Y.; Dou, Y.; Shao, M.; Kang, Z. All-solid-state Z-scheme system of NiO/CDs/BiVO4 for visible light-driven efficient overall water splitting. Chem. Eng. J. 2019, 358, 134–142. [Google Scholar] [CrossRef]
- Yu, F.; Li, F.; Yao, T.; Du, J.; Liang, Y.; Wang, Y.; Han, H.; Sun, L. Fabrication and Kinetic Study of a Ferrihydrite-Modified BiVO4 Photoanode. ACS Catal. 2017, 7, 1868–1874. [Google Scholar] [CrossRef]
- Chang, X.; Wang, T.; Zhang, P.; Zhang, J.; Li, A.; Gong, J. Enhanced Surface Reaction Kinetics and Charge Separation of p-n Heterojunction Co3O4/BiVO4 Photoanodes. J. Am. Chem. Soc. 2015, 137, 8356–8359. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Fu, X.; Shang, Z.; Liu, J.; Luo, H. A BiVO4 film photoanode with re-annealing treatment and 2D thin Ti3C2Tx flakes decoration for enhanced photoelectrochemical water oxidation. Chem. Eng. J. 2019, 361, 853–861. [Google Scholar] [CrossRef]
- Soomro, R.A.; Jawaid, S.; Kalawar, N.H.; Tunesi, M.; Karakuş, S.; Kilislioğlu, A.; Willander, M. In-situ engineered MXene-TiO2/BiVO4 hybrid as an efficient photoelectrochemical platform for sensitive detection of soluble CD44 proteins. Biosens. Bioelectron. 2020, 166, 112439. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, H.; Wei, X.; Wu, Y.; Gu, W.; Hu, L.; Zhu, C. Efficient BiVO4 photoanode decorated with Ti3C2Tx MXene for enhanced photoelectrochemical sensing of Hg(II) ion. Anal. Chim. Acta 2020, 1119, 11–17. [Google Scholar] [CrossRef]
- Laureano-Anzaldo, C.M.; Robledo-Ortíz, J.R.; Manríquez-González, R. Zwitterionic cellulose as a promising sorbent for anionic and cationic dyes. Mater. Lett. 2021, 300, 130236. [Google Scholar] [CrossRef]
- Zhong, Q.; Li, Y.; Zhang, G. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chem. Eng. J. 2021, 409, 128099. [Google Scholar] [CrossRef]
- Ran, J.; Gao, G.; Li, F.T.; Ma, T.Y.; Du, A.; Qiao, S.Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Jin, D.; Sun, Y.; Meng, X.; Gao, Y.; Dall’Agnese, Y.; Chen, G.; Wang, X.F. G-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A Mater. 2018, 6, 9124–9131. [Google Scholar] [CrossRef]
- Dong, Y.; Sang, D.; He, C.; Sheng, X.; Lei, L. Mxene/alginate composites for lead and copper ion removal from aqueous solutions. RSC Adv. 2019, 9, 29015–29022. [Google Scholar] [CrossRef] [PubMed]
Ti3AlC2 Mass (g) | Etching Concentration | Etching Temp. (°C) | Etching Time (hr) | Reference |
---|---|---|---|---|
5.0 | HF-40 wt. %, 100 mL | RT | 48 | [30] |
2.0 | HF-49 wt. %, 100 mL | RT | 20 | [31] |
2.0 | HF-48 wt. %, 60 mL | RT | 5 | [32] |
3.0 | LiF-2 g, HCl-9 M, 40 mL | 35 | 24 | [33] |
2.0 | HF-40 wt. %, 20 mL | 35 | 24 | [24] |
0.5 | HF-30 wt. %, 10 mL | RT | 12 | [26] |
0.5 | HF-30 wt. %, 10 mL | RT | 24 | [34] |
1.0 | HF-40 wt. %, 20 mL | RT | 24 | [27] |
3.0 | HF-49 wt. %, 84 mL | 50 | 24 | [35] |
5.0 | LiF-8 g, HCl-9 M, 100 mL | 35 | 48 | [36] |
0.5 | HF-5 wt. %, 10 mL | RT | 24 | [37] |
2.5 | HF-48 wt. %, 40 mL | RT | 20 | [38] |
Photocatalyst | Experimental Details | Pollutants | Performance | Reference |
---|---|---|---|---|
Bi2WO6/S-Ti3C2 | Dose = 20 mg, Co = 20 ppm, rpm = 400, λ = 300 W Xe lamp | Amoxicillin | ~100% in 40 min | [68] |
Ag2WO4/M-Ti3C2 | Dose = 0.4 g/L, Co = 20 mg/L, λ = 300 W Xe lamp | Tetracyline hydrochloride | ~80% in 30 min | [65] |
CdS/S-Ti3C2Tx | Dose = 0.5 g/L, Co = 20 mg/L, λ = 300 W Xe arc lamp | 4-nitroaniline | ~90% in 10 min | [69] |
Ag2WO4/M-Ti3C2 | Dose = 0.2 g/L, Co = 20 mg/L, λ = 300 W Xe lamp | Sulfadimidine | 88.6% in 40 min | [65] |
CuFe2O4/M-Ti3C2 | Dose = 25 mg, Co = 40 mg/L, λ = 300 W Xe lamp, T = 25 °C | Sulfadimidine | 59.4% in 60 min | [54] |
TiO2/M-Ti3C2 | Dose = 5 mg, Co = 5 mg/L, λ = 100 W medium pressure lamp | Carbamazepine | 98.67% in 4 h | [53] |
TiO2/Ti3C2/NaCl | Dose = 150 mg, Co 10 mg/L, V = 150 mL, λ = 2.1 mW/cm2 lamp intensity | Enrofloxacin | 93.4% in 5 h | [66] |
ZnO/Bi2VO6/M-Ti3C2 | Dose = 10 mg, Co = 5 × 10−5 M, V = 20 mL, λ = sunlight | Ciprofloxacin | 77% in 160 min | [51] |
g-C3N4/S-Ti3C2 | Dose = 20 mg, Co = 20 mg/L, V = 100 mL, λ = 270 W Xe lamp | TC & RhB | 86.34 & 97.87% in 60 min | [56] |
In2S3/TiO2@metallic M-Ti3C2Tx | Dose = 0.6 g/L, Co = 20 m/L, λ = 300 W Xenon lamp | MO | 92.1% in 60 min | [70] |
TiO2@M-Ti3C2/g-C3N4 | Dose = 0.1 g/L, Co = 10 g/L, λ = 300 W Xe lamp | RhB | ~100% in 60 min | [71] |
TiO2-x/M-Ti3C2 | Dose = 0.05 g/L, Co = 20 mg/L, λ = 500 W Xe lamp | MB | 75% in 150 min | [72] |
Microporous-S-MXene/TiO2-x | Dose = Ti-150 ppm, H2O2 =0.7 mM, Co = 30 mg/L | RhB | 96% in 10 min | [73] |
M-Ti3C2−OH/ln2S3/CdS | Dose = 200 mg/L, Co = 20 mg/L, λ = 300 W Xe lamp | MO & RhB | 96% in 30 min & 99.1% in 10 min | [74] |
TiO2/M-Ti3C2 | Dose = 20 mg, Co = 20 mg/L, V = 50 mL, λ = 300 W Xe lamp | RhB | 93.7% in 60 min | [52] |
Fe(Co)/M-Ti3C2/ZSM-5 | Dose = 0.3 g, Co = 20 mg/L, V = 100 mL, λ = 300 W Xe lamp | Phenol | 99% in 25 min | [57] |
CoO@TiO2/M-Ti3C2 hybrid | Dose = 20 mg, Co = 20 mg/L, V = 100 mL, λ = 300 W Xe lamp | Phenol | 96% in 15 min | [58] |
ZnO-ML/M-Ti3C2 | Dose = 0.05 g, 4-CP-Co = 20 mg/L, MB-V = 100 mL, λ = 300 W Xe lamp | MB & 4-CP | 85.2 in 4 h & 56.1% in 5 h | [75] |
BLFMO-5/M-Ti3C2 hybrid | Dose = 100 mg, Co = 100 mg/L, V = 100 mL, λ = 300 W Xe lamp | Congo red | 93% in 20 min | [55] |
Bi3TaO7/M-Ti3C2 | Dose = 0.05 g, Co = 10 mg/L, V = 100 mL, λ = 300 W Xe lamp | MB | 99% in 2 h | [76] |
Ag/Ag3PO4-M-Ti3C2 hybrid | Dose = 50 mg, metal: Co = 10 mg/L, V = 80 mL, MO: Co = 20 mg/L, V = 100 mL, λ = 300 W Xe lamp | MO & Cr(IV) | 93 & 61% in 1 h | [67] |
HF-M-Ti3C2 | Dose = 200 mg/L, Co = 20 μM, λ = 20 mW/cm2 lamp intensity | PFOA | 100% in 16 h | [77] |
Adsorbent | Experimental Details | Pollutants | Performance | Reference |
---|---|---|---|---|
Alginate/ M-MXene/CoFe2O4 | Dose = 4.5 mg, Co = 200 mg/L, pH = 5.3, rpm = 400 | Ciprofloxacin | 231.71 mg/g in 48 h | [93] |
Co@M-MXenes | Dose = 30 mg, Co = 20 μM, pH = 7.0, rpm = 400 | 2,4 DCP | ~100% in 15 min | [94] |
Co2+/M-MXenes membrane | Area = 3.14 cm2, Co= 10 mg/L, rpm = 50 rpm | Tetracycline | 97% in 5 min | [64] |
M-Ti3C2TX | Dose = 20 mg/L, Co = 5 mg/L, pH = 7, US = 28 kHz | MB | ~60% in 30 min | [87] |
Fe3O4/M-Ti3C2 magnetic nanoparticles | Dose = 0.5 g/L, Co = 20 mg/L, pH = 3, rpm = 600, T = 25 °C | MB, RhB, MO, Congo red | 67.77, 74.82, 53.07, 57.29% in 30 min | [95] |
HF/M-MXene | Dose = 0.1g, Co = 50 mg/L, V = 0.2 L, rpm = 300 | MB | 24 mg/g in 2 h | [96] |
HF/M-Ti3C2TX | Dose = 10 mg, Co = 100 mg/L, V = 50 mL, pH = 7, rpm = 150 | MB | 209 mg/g n 4 h | [92] |
AA-Alk-S-Ti3C2 | Dose = 100 mg, Co = 90 mg/L, V = 30 mL, | CR, MB | 264.46, 193.92 mg/g | [81] |
Phytic acid/M-MXene | Dose = 20 mg, MB-Co = 12 mg/L, RhB-Co = 6 mg/L, V = 40 mL | MB, RhB | 26.77, 13.44 mg/g in 30 h | [80] |
S-MXene@IMIZ | Dose = 10 mg, Co = 30 mg/L, V = 50 mL | Cr(VI) | 119.5 mg/g in 80 min | [86] |
HF/M-MXene | Dose = 100 mg, Co = 100 mg/L, T = 293 K, V = 100 mL | Cr(VI) | 80 mg in 14 h | [23] |
M-Ti3C2TX | Dose = 50 mg/L, Co = 2 mg/L, pH = 6, T = 293 K | Pb (II) | 36.6 mg/g in 1440 min | [82] |
SA-M-MXene spheres | Co = 25 mg/L, V = 30 mL, rpm = 180, T = 293 K, pH = ~ 6 | Mercuric ion | 932.84 mg/g in 8 h | [97] |
M-Ti2CTX/PDDA | Dose = 0.4 g/L, Co = 100 mg/L, pH = 4 | Re(VII) | 363 mg/g | [98] |
M-Ti3C2 composite hydrogels | Dose = known, Co = 2 mg/mL, pH = 7, T = ambient | 4-NP | 162 mg/g in 48 h | [99] |
SI-M-Ti3C2TX | Dose = 10 mg, Co = 10 mg/L, V = 25 mL, T = 25 °C, pH = 3–10 | Ciprofloxacin | 208.2 mg/g in 120 min | [79] |
O2-M-MXene | Dose = 0.01 g, Co = 100 mg/L, pH = 1–6, T = 10–30 °C | Hg(II) | 1057.3 mg/g | [83] |
M-MXene | Dose = 0–0.1 g, pH = 2–10, Co = 5–50 mg/L | Malachite green | 94.1% in 180 min | [84] |
M-Ti3C2TX-EHL nanosheets | Dose = 15 & 20 mg, MB-Co = 25 mL of 100 mg/L, Cu2+-Co = 15 mL of 50 mg/L | MB, Cu2+ | 293.7, 49.96 mg/g in 24 h | [100] |
ALK-M-MXene | Dose = 3.6 mg, Co = 40 mg/L, V = 10 mL, pH = 5.5, T = 25 °C | Tetracycline | 56.75 in 10 min | [88] |
MXene-Based Catalyst | Experimental Condition | H2 Evolution Rates | Stability | Reference |
---|---|---|---|---|
BiVO4@ZnIn2S4/M-MXene QDs | M = 60 mg, T = 285 K, λ = 300 W Xe | 102.67 μmol g−1 h−1 | 20 h/5 cycles | [38] |
BiVO4/S-Ti3C2 nanosheets | M = 10 mg, T = 25 °C, V = 100 mL, λ = 300 W Xe | 15.7 μmol | 24 h/3 cycles | [115] |
M-Ti3C2/TiO2 nanoflowers | M = 20 mg, V = 100 mL, λ = 300 W Xe | 783.1 μmol g−1 h−1 | 30 h/3 cycles | [116] |
M-Ti3C2/TiO2 nanoparticles | M = 30 mg, T = 25 °C, V = 40 mL, λ = 200 W Xe | 2.65 mmol g−1 h−1 | 16 h/4 cycles | [117] |
BPQDs/M-Ti3C2@TiO2 | M = 50 mg, V = 40 mL, λ = 300 W Xe | 684.5 µmol g−1 h−1 | 30 h/6 cycles | [118] |
BiOBr/S-Ti3C2 | M = 0.1 g, V = 100 mL, λ = 300 W Xe | 8.04 mmol g−1 | NA | [46] |
TiO2/M-Ti3C2@AC composites | M = 40 mg, V = 100 mL, λ = 350 W Xe | 33.4 µmol g−1 h−1 | NA | [119] |
S-Ti3C2/MAPbl3-HI | M =30 mg, V = 15 mL, λ = 300 mW/cm2 Xe | 3124 µmol g−1 h−1 | 5 h/10 cycles | [106] |
A/R TiO2/M-Ti3C2TX | M = 20 mg, λ = 300 W Xe | 4672 µmol g−1 h−1 | 25 h/5 cycles | [104] |
ZnXCd1-XS/M-MXene | M = 10 mg, V = 50 mL, λ = 300 W Xe | 14.17 mmol g−1 h−1 | NA | [105] |
PCN/M-MXene | M = 10 mg, V = 50 mL, λ = 300 W Xe | 2181 mmol g−1 h−1 | 15 h/5 cycles | [103] |
Chl@S-Ti3C2TX composites | M = 3 mg, λ = 300 W Xe | 106 μmol g−1 h−1 | NA | [107] |
NPT-TiO2/C/M-Ti3C2TX | M = 100 mg, V = 100 mL, λ = 300 W Xe | 87.2 μmol g−1 h−1 | 33 h/240 cycles | [120] |
C/TiO2/M-Ti3C2TX | M = 50 mg, V = 50 mL, λ = 300 W Xe | 69 μmol g−1 h−1 | 16 h/4 cycles | [121] |
C/TiO2/g-C3N4/M-Ti3C2TX | M = 20 mg, V = 100 mL, λ = 300 W Xe | 1409 μmol g−1 h−1 | 10 h/3 cycles | [122] |
g-C3N4/M-Ti3C2 | M = 50 mg, V = 100 mL, λ = 300 W Xe | 116.2 μmol g−1 h−1 | 15 h/5 cycles | [122] |
MoS2/M-Ti3C2 | M = 30 mg, V = 50 mL, λ = 300 W Xe | 6144.7 μmol g−1 h−1 | 20 h/4 cycles | [123] |
CDs/M-Ti3C2 | M = 10 mg, V = 50 mL, λ = 300 W Xe | 2407 μmol g−1 h−1 | 15 h/5 cycles | [124] |
Znln2S4/M-Ti3C2 | M = 20 mg, V = 40 mL, λ = 300 W Xe | 3475 μmol g−1 h−1 | NA | [125] |
M2S@TiO2@M-Ti3C2 | M = 10 mg, T = 25 °C, λ = 300 W Xe | 193 | 24 h/3 cycles | [101] |
TiO2QDs/S-Ti3C2 | M = 20 mg, V = 30 mL, λ = 300 W Xe | 62.50 | NA | [102] |
TiO2-MXene | Synthesis Technique | Key Finding | Reference |
---|---|---|---|
Safflower-shaped TiO2-M-Ti3C2 | Hydrothermal + Ion exchange + Heat treatment | The layered MXene is broken into small pieces and agglomerates uniformly during hydrothermal and ion exchange. Then upon heat treatment, nanorods grow, shaping into microscale safflowers. The safflower-shaped TiO2-M-Ti3C2 decomposes 88% of RhB in 15 min and 95% after 60 min. | [35] |
Nanoflower-shaped TiO2-M-Ti3C2 | Integrated oxidation | The photocurrent of TiO2-M-Ti3C2 is 700 μA cm−2, which is significantly higher than M-Ti3C2. Nanoflower-shaped TiO2-M-Ti3C2 achieve 97% removal efficiency of RhB within 40 min compared to pure TiO2 and pristine M-Ti3C2, only 36% and 29%, respectively. | [31] |
N-doped porous M-MXene/TiO2 | Hydrothermal | Nitrogen doping further enlarges the interlayer distance of the porous M-MXene/TiO2 heterogenous film to promote electrolyte penetration and provide more active sites for energy storage. N-doped porous M-MXene/TiO2 demonstrates excellent storage performance with a specific capacitance value of 2194.33 mF cm−2 and 74.39% capacitance performance after 10,000 cycles. | [136] |
M-Ti3C2/TiO2@f-MoS2 | Solvothermal + Annealing + Hydrothermal | Few layered MoS2 enlarged the interlayer of M-Ti3C2 and prevented restacking beneficial for lithium-ion diffusion, while TiO2 effectively improved the cycling stability. M-Ti3C2/TiO2@f-MoS2 shows high storage capacity of 403.1 mA h g−1 after 120 cycles at 2 A g−1. | [137] |
Glycine acid functionalized TiO2-S-Ti3C2 nano complex | In situ decoration | Luminol electrochemiluminescent (ECL) sensor for glucose constructed via covalent immobilization of glucose oxidase on glycine functionalized TiO2-S-Ti3C2. The ECL nano complex thrived and detected the glucose in human serum, fruits, and sweat were also consistent with D-glucose assay kits. The recovery rate of glucose was 98–100% for all samples. | [138] |
NC-TiO2/M-MXene | Impregnation + Hydrothermal | Optimum hydrothermal time could attain NC-TiO2/M-MXene with high TiO2 content, whereas a too lengthy hydrothermal time could destroy the MXene substrate. NC-TiO2/M-MXene retains an excellent cycling ability of 157.5 mA h g−1 after 1900 cycles at 2 A g−1 with rate performance in sodium-ion batteries 100.1 mA h g−1 at 10 A g−1. | [139] |
M-MXene@TiO2/ CuInS2 | Hydrothermal | Photoexcited electrons on CuInS2, ternary sulfide semiconductors flow to M-MXene until their Fermi levels reach equilibrium and suggest a robust interfacial contact between TiO2 and M-MXene. The photocatalytic hydrogen evolution rate was delivered up to 356.27 μmol g−1 h−1, 69 and 636 times higher than MXene@TiO2 and CuInS2, respectively. | [140] |
g-C3N4-Mxene | Synthesis Technique | Key Finding | References |
---|---|---|---|
g-C3N4/M-Ti3C2/MoSe2 (CMX) | Calcination treatment | M-Ti3C2 acts as a mediator, and interface electron separation plays a vital role in highly efficient degradation. Photo absorption of CMX broadened to 601 nm and presented better visible light response compared to the absorption edge of pure GCN and MoSe2. CMX achieved effective visible light-induced >90% for removal of Lanoxin within 60 min. | [149] |
M-Ti3C2/g-C3N4 nanosheets (TC-CN) | Sonochemical method | Photocatalytic N2 reduction and antibiotic degradation performance of TC-CN were improved by 3.64 times and 3.35 times, respectively. The photocatalytic performance achieved 601 μmol L−1 gcat−1 h−1 for NH4+ production, and levofloxacin successfully removed 72% within 30 min under visible light illumination. | [150] |
g-C3N4/TiO2/ M-Ti3C2 | In-situ oxidation + Ultrasonication | M-Ti3C2 bonded with TiO2 benefits the transfer and aggregation of photo-induced holes, whereas g-C3N4/TiO2 enhances photo-generated charges’ separation, improving the visible light photocatalytic activity. The g-C3N4/TiO2/M-Ti3C2 possess 66.3%, the best NO degradation compared to g-C3N4 (34.0%) and TiO2/Ti3C2 (28.0%). | [36] |
Sm-doped g-C3N4/M-Ti3C2 | Polymerization + solid mixture-calcination method | Sm-doping plays a role in transferring the photogenerated electrons to suppress the recombination, and M-Ti3C2 improves the carrier migration efficiency. Sm-doped g-C3N4/M-Ti3C2 presented higher photocatalytic degradation of ciprofloxacin under visible light irradiation with over 99% within 60 min. | [37] |
P-doped tubular g-C3N4/S-Ti3C2 | Supramolecular + calcination + Electrostatic self-assembly | Photocatalytic H2 evolution rate reached 565 μmol g−1 h−1, which was over 4.3 and 2.0 fold higher than bulk g-C3N4 and P-doped tubular g-C3N4. S-Ti3C2 flake with exposed terminal metal sites as co-catalyst exhibited higher photocatalytic in H2 evolution compared to the carbon materials. | [151] |
Mesoporous g-C3N4/M-Ti3C2 (MCT) | Annealing | The large surface area of MCT (adsorption isotherm 43.2 m2/g) compared to M-Ti3C2 (adsorption isotherm 5.7 m2/g) provides abundant adsorption sites for CO2 molecules. The photocatalytic CO2 reduction reactions achieved excellent performance, producing 2.117 μmol g−1 h−1 CH4 and 3.98 μmol g−1 h−1 CO. | [152] |
Protonated g-C3N4/S-Ti3C2 | Acid treatment + Ultrasonication | Protonated g-C3N4/S-Ti3C2 exhibits narrower band energy of 2.41 eV, which is conducive to capturing visible light photons. As a result, in photocatalytic hydrogen production, the hydrogen evolution rate attained 2181 μmol g−1 h−1 compared to bulk g-C3N4 (393 μmol g−1 h−1) and protonated g-C3N4 (816 μmol g−1 h−1). | [153] |
BiVO4-MXene | Synthesis Technique | Key Finding | Reference |
---|---|---|---|
BiVO4@ZnIn2S4/M MXene QDs | Solvothermal + Hydrothermal + Ultrasonication | M-MXene QDs effectively promote light absorption, and the surface furnished with active sites enhances the redox reaction. BiVO4@ZnIn2S4/M MXene QDs accomplishes visible light-driven pure water splitting into O2 and H2 evolution rates up to 50.83 and 102.67 μmol g−1 h−1 (1:2). High photoactivity also achieved with 96.4% of Bisphenol A removal. | [38] |
BiVO4/S-Ti3C2 nanosheets | Electrostatic self-assembly | BiVO4/S-Ti3C2 nanosheets exhibited an increase in H2 production of 15.7 μmol after 8 h, which was 10 times that of pristine BiVO4. At the same time, the O2 production within the same timeframe was 10.28 μmol and two times that of pristine BiVO4. This composite also showed excellent stability and there was no noticeable decrease in gas generation after three cycles. | [115] |
M-Ti3C2Tx/BiVO4 electrodes | Spin coating + Annealing | The coating film of M-Ti3C2TX flakes onto the BiVO4 electrodes increased the photocurrent density to 3.45 mA cm−2 at 1.23 V. Therefore, M-Ti3C2TX/BiVO4 electrodes were observed at maximum photoconversion efficiency of 0.78% at 0.87 V and highest surface charge separation which reached 73% at 1.23 V compared to BiVO4 electrodes. | [159] |
TiO2-S-MXene/BiVO4 | H2O2 induced oxidation | The photoactive hybrid was applied to detect CD44 proteins (photoelectrochemical biosensors). TiO2-S-MXene/BiVO4 can recognise CD44 in wide concentrations of 2.2 × 10−4 ng mL−1 to 3.2 × 10−4 ng mL−1 with a low detection limit of 1.4 × 10−2 pg mL−1. | [160] |
BiVO4/S-Ti3C2TX electrodes | Spin coating + Annealing | S-Ti3C2TX flakes coated thinly on the surface of BiVO4 act as co-catalyst to promote the charge transfer of photo-generated carriers and alleviate the charge recombination. BiVO4/S-Ti3C2TX electrodes (photoelectrochemical biosensor) demonstrated a wide linear range from 1 pM to 2 nM of Hg2+ with satisfactory accuracy and repeatability in a practical sample water. | [161] |
Ultrathin BiVO4/M-Ti3C2TX | Electrostatic self-assembly | The essential feature of M-Ti3C2TX are large surface hydroxyl groups that can activate CO2 molecules. As a result, ultrathin BiVO4/M-Ti3C2TX reached 20.13 μmol g−1 h−1 of methanol production rate (4.1 times) higher than BiVO4. The recycling tests also exhibit reproducible photoactivity for all three cycles. | [162] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saafie, N.; Zulfiqar, M.; Samsudin, M.F.R.; Sufian, S. Current Scenario of MXene-Based Nanomaterials for Wastewater Remediation: A Review. Chemistry 2022, 4, 1576-1608. https://doi.org/10.3390/chemistry4040104
Saafie N, Zulfiqar M, Samsudin MFR, Sufian S. Current Scenario of MXene-Based Nanomaterials for Wastewater Remediation: A Review. Chemistry. 2022; 4(4):1576-1608. https://doi.org/10.3390/chemistry4040104
Chicago/Turabian StyleSaafie, Nabilah, Muhammad Zulfiqar, Mohamad Fakhrul Ridhwan Samsudin, and Suriati Sufian. 2022. "Current Scenario of MXene-Based Nanomaterials for Wastewater Remediation: A Review" Chemistry 4, no. 4: 1576-1608. https://doi.org/10.3390/chemistry4040104
APA StyleSaafie, N., Zulfiqar, M., Samsudin, M. F. R., & Sufian, S. (2022). Current Scenario of MXene-Based Nanomaterials for Wastewater Remediation: A Review. Chemistry, 4(4), 1576-1608. https://doi.org/10.3390/chemistry4040104