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Abstract: The generation of photocatalytic hydrogen via water splitting under light irradiation
is attracting much attention as an alternative to solve such problems as global warming and to
increase interest in clean energy. However, due to the low efficiency and selectivity of photocatalytic
hydrogen production under solar energy, a major challenge persists to improve the performance of
photocatalytic hydrogen production through water splitting. In recent years, graphitic carbon nitride
(g-C3N4), a non-metal photocatalyst, has emerged as an attractive material for photocatalytic hydrogen
production. However, the fast recombination of photoexcited electron–hole pairs limits the rate of
hydrogen evolution and various methods such as modification, heterojunctions with semiconductors,
and metal and non-metal doping have been applied to solve this problem. In this review, we cover
the rational design of g-C3N4-based photocatalysts achieved using methods such as modification,
metal and non-metal doping, and heterojunctions, and we summarize recent achievements in their
application as hydrogen production photocatalysts. In addition, future research and prospects of
hydrogen-producing photocatalysts are also reviewed.
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1. Introduction

As interest in the fossil fuel depletion and environmental pollution has increased, the development
of clean energy has also recently attracted increased attention. It is important to find new alternative
energy sources because of the increased use of energy, depletion of fossil fuels, and the need for
sustainable energy development [1]. Among the many alternative energy sources, hydrogen-based
energy systems are considered candidates for future energy because they are nonpolluting, inexhaustible,
efficient, and can provide high-quality energy services in a wide range of applications [2,3]. However,
most hydrogen production processes are based on natural gas [4], coal [5], crude oil [6], or the
electrolysis of water [7], and unfortunately, the application of most of these processes is limited because
heat and electrical energy are required. Thus, photocatalytic hydrogen production using solar energy,
a clean energy resource for the foreseeable future, is considered to be an attractive way of solving the
global energy issue and environmental pollution [8,9].

The overall water splitting by a photocatalyst under sunlight irradiation enables the production
of environmentally friendly molecular hydrogen and does not use fossil fuel [10]. A photocatalytic
system should consider the following prerequisites. First, to absorb as many photons as possible,
the photocatalyst must have a narrow band-gap; to generate hydrogen from water splitting, the bottom
of the conduction band (CB) must be more negative than the reduction potential of H+/H2 and the top
of the valence band (VB) must be more positive than the oxidation potential of H2O/O2 [11]. Second,
efficient charge separation and fast charge transport that simultaneously avoid bulk and surface charge
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recombination are essential to transfer the photogenerated charge to the surface reaction site [12].
Third, because the charge carriers at the interface lack the capacity to boost the transportation process,
the charge carriers mostly move via a random path and require a surface chemical reaction that is
active between the charge carrier and the water or other molecules [13]. A variety of semiconductor
materials such as TiO2, ZnO, CdS, and WO3 have been extensively studied for hydrogen generation via
photocatalytic water splitting [14–17]. Among them, WO3 absorbs visible light but has a problem in that
the CB is not useful for hydrogen production because it is lower than the H reduction potential [18,19].
In addition, hydrogen evolution through photocatalytic water splitting has been extensively studied
for metal oxides, quantum dots, and metal–organic frameworks, etc. However, some methods are
difficult to use due to their low efficiency under visible light and the fast recombination rate of the
electron–hole pairs [20–25]. Therefore, it is a major challenge to develop photocatalysts that exhibit
stable water-splitting performance under visible-light irradiation for the efficient use of solar energy.

Recently, graphitic carbon nitride (g-C3N4) has attracted attention as a hydrogen-generating
photocatalyst via water splitting. g-C3N4 is synthesized by the thermal condensation of nitrogen-rich
precursors with a tri-s-triazine ring structure such as cyanamide, dicyandiamide, urea, or thiourea,
resulting in a graphene-like structure after exfoliation (Figure 1) [26]. In addition, it has a band gap of
~2.7 eV corresponding to 460 nm in the visible range and high thermal and chemical stability [27].
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Figure 1. Schematic illustration of the synthesis process from the possible precursors of g-C3N4.
Reproduced with permission from [26]; copyright (2016), the American Chemical Society.

However, there are some drawbacks to using g-C3N4 as a water-splitting photocatalyst.
The relatively large band-gap and low charge-carrier mobility limit the electron and hole separation
and transport and thus limit the effective use of visible light [28]. Thus, increasing hydrogen production
during photocatalytic water splitting under visible-light irradiation is necessary through a variety of
methods such as creating heterojunctions with semiconductors and doping with other elements [29–33].
As a result, the focus of this review is on summarizing the current and prospective advances in
photocatalysis research based on g-C3N4 that make it effective even under visible-light irradiation.

2. The Principles of H2 Generation via Water Splitting

Photocatalytic reactions can be divided into three parts. The first step is to obtain photons with
energies that exceed the photocatalyst’s band gap of the electron–hole pairs, the second step is the
separation of the carrier in the photocatalyst by transfer, and the third step is the reaction between
the carrier and H2O. In addition, the electron–hole pairs are concurrently combined with each other.
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The photocatalyst is involved in the production of hydrogen, but the lowest position of the CB should
be lower than the reduction position of H2O/H2 and the position of the VB should be higher than the
potential of H2O/O2 [34–40].

Figure 2 shows the band gap and band edge positions of various semiconductor photocatalysts [41].
A variety of these, such as ZnO, TiO2, and WO3 have been studied for solar hydrogen production
and degradation of organic pollutants [42–45]. However, although there are exceptions for some
semiconductor photocatalysts, most of the semiconductor photocatalysts have low efficiency under
visible-light irradiation. Therefore, it is a major challenge to develop photocatalysts that efficiently
exploit solar energy.
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Figure 2. A schematic illustration of the band-gap energy of several typical semiconductor
photocatalysts. Reproduced with permission from [41].

Recently, g-C3N4, which has a unique electron band structure for photo-oxidation and reduction,
has been confirmed by several researchers as an efficient photocatalyst for visible-light activation for
photochemical reactions [46]. This achieves the photoexcited state when creating electron–hole pairs
where photogenerated electrons are involved in the reduction process while the holes are consumed
in the oxidation process [47]. The excited electrons and holes act as reactive species that are highly
oxidizing and reducing. The excited electrons and holes travel to the active sites on the surface,
thereby splitting the water into oxygen and hydrogen (Figure 3) [48]. However, despite its excellent
electron and optical properties, g-C3N4 has low efficiency for visible-light utilization and a high
recombination speed of photoelectric carrier, resulting in the poor formation of radical species causing
redox reaction during the photocatalytic reaction [49]. It has a low specific surface area, provides fewer
reactive sites, and reduces light harvesting. In addition, the low bandgap (2.7 eV) of g-C3N4 is still
quite large for efficient visible-light harvesting and has limited use, leaving much of the visible-light
spectrum unexploited.
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3. Hydrogen Generation of g-C3N4-Based Photocatalysts

In recent years, a review of the technological improvements of the photocatalytic efficiency of
g-C3N4-based materials has been published, mostly focusing on contaminant removal, the reaction
mechanisms, principles of photocatalysis, and the effects of operational parameters [50,51]. Therefore,
the aim of this review is to summarize recent trends in the improvement of hydrogen production
by photocatalysts using various methods for the purpose of improving g-C3N4-based photocatalytic
hydrogen production: (1) modification of g-C3N4; (2) heterojunctions from g-C3N4/semiconductors;
and (3) metal- and non-metal-doped g-C3N4.

3.1. Modification of g-C3N4

Improving the photocatalytic activity of g-C3N4 by introducing various nanostructures such
as nanoparticles, nanosheets, nanorods, and nanowires has recently been studied [52–56]. Surface
modification of the catalytic structure and morphology has the potential to promote charge separation
and narrow the band gap due to increased surface area and efficient charge-carrier separation [57,58].

In 2016, Han et al. [59] reported an atomically thin mesoporous nanomesh of g-C3N4 for hydrogen
evolution by highly efficient photocatalysts (Figure 4a) fabricated via the solvothermal exfoliation of
mesoporous g-C3N4 prepared by the thermal polymerization of freeze-dried nanostructured precursors.
The delamination of the layer material to provide the two-dimensional single-atom sheet has led to
unique physical properties such as a large surface area, a very high unique carrier mobility, and a
significant change in the energy band structure [60]. The mesoporous g-C3N4 nanomesh shows inherent
structural advantages, electron transfer capability, and efficient light harvesting. Figure 4b shows the
electronic band structure of the monolayer mesoporous g-C3N4 nanomesh and bulk counterparts.
The band gap is 2.75 eV for the monolayer mesoporous g-C3N4 nanomesh and 2.59 eV for the bulk
counterpart, as determined from optical absorption spectra. The VB of the monolayer mesoporous
g-C3N4 nanomesh (2.41 eV) identified via X-ray photoelectron spectroscopy is also 0.35 eV higher than
the bulk counterparts (2.06 eV). The CB is upshifted by 0.51 eV when considering the 0.16 eV increase
in the VB and a negative shift of 0.35 eV. The monolayer mesoporous g-C3N4 nanomesh exhibits
significantly improved the light-harvesting ability mainly due to the multiple scattering effect and the
presence of defect sites associated with the mesoporous surface. A 30 h reaction was performed with
intermittent evacuation every 5 h to confirm the hydrogen production ability of mesoporous g-C3N4
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nanomesh under visible-light irradiation (Figure 4c). As a result, the 2.6 mmol H2 gas (59 mL) produced
by the atomically thin mesoporous g-C3N4 nanomesh was not visibly deactivated and the H2 gas was
generated continuously. Wavelength-dependent H2 evolution shows the optical absorption spectrum
of monolayer g-C3N4 nanomesh, indicating that the H2 generation is driven by photoinduced electrons
in g-C3N4 (Figure 4d). In conclusion, the mesoporous g-C3N4 nanomesh produces an atomically thin
mesoporous layer during the freeze-dried assembly and solvothermal exfoliation. Its good application
benefits from structural advantages for light harvesting, electron transport, and accessible reaction
sites [61]. This new type of mesoporous g-C3N4 nanomesh could be applied to photocatalytic and
various engineering fields.
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and (b) a band gap schematic of the monolayer mesoporous g-C3N4 nanomesh and bulk counterparts.
(c) Hydrogen production rate of the monolayer mesoporous g-C3N4 nanomesh, the bulk counterpart,
and the traditional g-C3N4 bulk under visible-light irradiation. (d) H2 evolution rate on the monolayer
mesoporous g-C3N4 nanomesh with wavelength dependence. Reproduced with permission from [59];
copyright (2016), American Chemical Society.

In 2018, Zhao et al. [62] reported the fabrication of a mesoporous g-C3N4 consisting of hollow
nanospheres (MCNHN) via a simple vapor-deposition method that improved hydrogen production
under visible-light irradiation. Figure 5a shows the photocatalytic hydrogen evolution by MCNHN
under visible-light irradiation. Both MCNHN and bulk g-C3N4 achieved a stable average rate of
hydrogen production within 4 h, but the hydrogen evolution of MCNHN was 659.8 µmol g−1 h−1,
which is 22.3 times greater than bulk g-C3N4 (29.6 µmol g−1 h−1). The excellent hydrogen production
activity of MCNHN is due to its well-defined structure. The increased surface area provides more
active sites in the photocatalytic reaction, thereby allowing more light to be harvested. Moreover,
the planarized unit layer and the decreased interlayer space of g-C3N4 crystals facilitate the transfer
and separation of photoinduced charge carriers in MCNHN. As a result, photocatalytic hydrogen
generation is significantly improved due to the large surface area and decreased interlayer space
of g-C3N4. Figure 5b shows the proposed photocatalytic mechanism of H2 evolution for MCNHN
based on the aforementioned results and the literature. The active site of MCNHN absorbs visible
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light. Electrons in the VB are excited to the CB by absorption of photons, and are then transferred
to the Pt nanoparticles loaded on the surface of MCNHN; the corresponding photoexcited holes
remain in the VB. The electron-rich Pt nanoparticles become active sites where water can be split
into hydrogen. In addition, multiple reflections of visible light in the MCNHN with Pt nanoparticles
improves light absorption.Catalysts 2019, 9, x FOR PEER REVIEW 6 of 16 
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3.2. Heterojunctions and Photocatalysis

Electron–hole charge pairs formed by the photocatalytic hydrogen evolution reaction are
transferred to the surface of the photocatalyst or else recombine with each other. To better understand
this point, let us illustrate it by reviewing the presentation in [63]: a comparison of the influence
of gravitational force on a man jumping off the ground and electrons jumping from the VB to the
CB (Figure 6a,b, respectively). If a man (electron) jumps from the ground (VB) into the sky (CB),
it will return to the floor quickly (recombine with the hole) due to gravitational force. However,
a stool (semiconductor B) can be provided to get the man off the ground (separate the photogenerated
electron–hole pair), as illustrated in Figure 6c,d, respectively. Subsequently, the aforementioned man
will land again on the stool rather than the ground (the electron–hole pair recombination will be
inhibited). Preventing electron–hole recombination is an urgent issue, but it can be achieved by the
proper design of materials [64–66]. Many methods have been proposed to achieve better separation of
the photogenerated electron–hole pairs in semiconductor photocatalysts, such as element combining,
metal and non-metal doping, and heterojunctions [67–72]. Among these strategies, heterojunctions
in photocatalysts have proved to be one of the most promising methods for efficient photocatalyst
preparation due to their improved separation of electron–hole pairs [73].
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3.2.1. Semiconductor Heterojunction Photocatalysts

Suppressing the electron–hole recombination rate is the most important solution to increase
photocatalytic efficiency. Bulk g-C3N4 has low ability to collect visible light, low charge-transport
properties, and small surface area, so there have been many studies to make it an efficient
photocatalyst [74]. Various strategies have been proposed to achieve better electron–hole pair separation
such as element combining, metal doping, and creating heterojunctions. Among these strategies,
g-C3N4/semiconductor heterojunctions have shown the improved separation capability of electron–hole
pairs; the charge carrier is transferred through the heterostructure interface to inhibit recombination,
thereby improving the photocatalytic performance [75–77]. In addition, a g-C3N4/semiconductor
heterostructure can be formed by combining a visible-light excited photocatalyst semiconductor
material having a narrow band-gap and a photoexcited photocatalyst having a large band-gap in a
coupling process; the connection between the two different kinds of photocatalyst having different
band structures induces a new band arrangement [78,79].

In 2017, Zhang et al. [80] reported the in situ synthesis of a g-C3N4/TiO2 heterostructure
photocatalyst which greatly improved the hydrogen evolution performance under visible light.
The g-C3N4 nanosheets were synthesized by calcining urea at 550 ◦C for 4 h. Two hundred milligrams
of the as-prepared g-C3N4 nanosheets were dispersed in 20 mL ethanol and sonicated for 1 hour to
obtain a homogeneous suspension. Under continuous stirring, 40 mL of ammonia solution (~28 wt%)
and tetrabutyl titanate (TBT) (0, 100, 200, 300 and 400 µL) were added and stirred for 12 h to achieve
the in situ synthesis of amorphous TiO2. The obtained products were expressed as CNTO-x (x =

0–4) according to the TBT content. As shown in Figure 7a, the shape of the CNTO-2 sample seen in
a transmission electron microscopy (TEM) image shows that the TiO2 nanoparticles are uniformly
distributed in the g-C3N4 nanosheets. As a result, there is uniform interfacial contact between the
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TiO2 phase and the g-C3N4 phase. Figure 7b shows the average rate of hydrogen production within
3 h. Pure TiO2 does not react with visible light and produces negligible H2, while CNTO-0 exhibits
a low hydrogen production rate of 15 µmol h−1 due to the fast recombination of photogenerated
charge carriers. In contrast, the CNTO-2 sample exhibits significantly improved hydrogen production
performance at 40 µmol h−1. However, as the amount of TiO2 is further increased, TiO2 occupies
the surface of g-C3N4 resulting in less active sites for H2 evolution. The proposed mechanism of
heterostructure composites is also shown in Figure 7c. According to previous reports, the CB and
VB potentials of g-C3N4 and TiO2 are −1.12 and +1.58 V, and −0.29 and +2.91 V, respectively. Under
visible light irradiation, only g-C3N4 can absorb light to generate electron–hole pairs. However, in
pure g-C3N4, photogenerated electrons and holes recombine rapidly, and only a few of the electrons
participate in the reaction, resulting in low reactivity. When g-C3N4 is modified by TiO2 to form a
heterojunction structure, the CB edge of g-C3N4 is more negative than TiO2, so that electrons excited in
the CB of g-C3N4 can be injected directly into the CB of TiO2. Consequently, Pt2+ adsorbed on the
surface is reduced by electrons transferred from the CB of TiO2, and newly formed Pt nanoparticles are
deposited on the surface of TiO2 as an efficient cocatalyst for hydrogen production. The electrons then
accumulate in Pt nanoparticles and participate in hydrogen evolution. Therefore, the photocatalytic
activity of the g-C3N4/TiO2 composite with Pt nanoparticles as a cocatalyst is significantly improved.
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3.2.2. Z-Scheme Heterojunction Photocatalysts

In 2017, Lu et al. [81] reported a Z-scheme photocatalyst that improved the photocatalytic hydrogen
production of g-C3N4 nanosheets by loading porous silicon (PSi). The Z-scheme heterostructure
improved the photocatalytic H2 evolution performance by loading PSi onto the g-C3N4 photocatalyst.
g-C3N4/PSi composites were prepared by the facile polycondensation reaction of PSi with urea
at various PSi content ratios and included pure g-C3N4 that was not PSi loaded for comparison.
The photocatalytic performance of the g-C3N4/PSi composites and pure g-C3N4 in Figure 8a was
evaluated by H2 evolution from water under visible-light irradiation. For composite materials
loaded with PSi on g-C3N4 nanosheets, the rate of H2 evolution was better than that of pure g-C3N4

(427.28µmol g−1 h−1). In particular, the g-C3N4/2.50 wt% composite exhibited the highest photocatalytic
activity with a hydrogen evolution rate of 870.58 µmol g−1 h−1, which is around twice as high as that of
pure g-C3N4. However, in the case of the Si-based photocatalyst, a passive oxide film was formed on
the Si surface, and thus the stability suffered. When the PSi content was larger than 2.50 wt%, the H2

generation activity was reduced. Figure 8b depicts an energy band diagram of g-C3N4/PSi with the
redox potential of the photocatalytic reaction. The Z-scheme heterostructure system is recognized
as the photocatalytic mechanism for the g-C3N4/PSi composite, and the electrons excited from the
CB of PSi in the photocatalyst system can be transferred to the VB of g-C3N4. In addition, the holes
generated in g-C3N4 can move to the CB of PSi through the interface formed between g-C3N4 and PSi.
The recombination at the interface between the electrons and the holes accumulates a large number of
bonds and acts as a recombination center for the electron–hole pairs [82,83]. As a result, the efficiency
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of the photogenerated electron–hole pairs is improved, thereby improving photocatalytic hydrogen
production under visible-light irradiation.
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3.3. Metal- and Non-Metal-Doped g-C3N4

Among the strategies for making g-C3N4 as a photocatalyst capable of effective hydrogen
production, sufficient doping with metallic and nonmetallic elements is known to enhance the
photocatalytic activity of g-C3N4. Metal doping is an effective strategy to adjust the electronic structure
of g-C3N4 and promotes surface kinetics to accelerate photogenerated electron transfer and provide
active sites for better photocatalytic hydrogen production. In addition, the light transmittance can be
maximized since the spatial distribution and the particle size of the metal can be finely controlled to
provide a sufficient active size.

In 2016, Li et al. [84] reported water splitting by Cu- and Fe-doped g-C3N4 visible-light-activated
photocatalysts. Figure 9a shows the mechanism of water splitting by light-driven catalysis with Fe- and
Cu-doped g-C3N4. Under visible-light irradiation, water is converted to H2 and H2O2, and then H2O2

is further converted to O2 and H2O via the photocatalytic imbalance path. After absorbing visible
light, g-C3N4 forms excited electrons and holes by electron catalysis, and the electrons move from the
energy potential difference between g-C3N4 and Fe or Cu to the metal Fe or Cu sites. The potential
of these electrons is around −0.25 eV and has enough force to induce H2O2 disproportionation to
form ·OH and OH−. In the hole catalytic process (HCP), OH− and H2O2 could form the ·O2

− and
H2O species reaction with the holes. Finally, O2

− and OH can recombine to form O2. Electron
catalysis is an energy-consuming process whereas HCP and recombination processes can be viewed as
energy-releasing processes. Figure 9b shows the oxygen and hydrogen evolution rates of Fe/C3N4

(0.37 wt%) and Cu/C3N4 (0.42 wt%) under visible-light irradiation (λ ≥ 420 nm) for 12 h. In this case,
the production of hydrogen and oxygen by the Cu/C3N4 and Fe/C3N4 photocatalysts were 1.4 and
0.5 µmol, and 2.1 and 0.8 µmol, respectively. In addition, the potential of the Fe/g-C3N4 photocatalyst
is obviously lower than those of the g-C3N4 and Cu/g-C3N4 photocatalysts, which leads to the O2

and H2 evolution activity over the Fe/g-C3N4 photocatalyst being clearly higher than that over the
g-C3N4 and Cu/g-C3N4 photocatalysts. The findings of this study give new insight into the designing
of efficient catalysts for overall water splitting.
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Non-metal doping is a useful strategy to adjust the electronic structure of g-C3N4 and to increase
the photocatalytic effect by promoting the reaction surface. When the non-metal elements B, N, O,
P, and S are used to dope g-C3N4, the photocatalyst is efficiently optimized by lowering the charge
recombination rate due to optical absorption and accelerated charge mobility, and thus the amount
of H2 produced can be increased [85,86]. Consequently, the potential of the Fe/g-C3N4 photocatalyst
is obviously lower than those of the g-C3N4 and Cu/g-C3N4 photocatalysts. This indicates that the
Fe/g-C3N4 photocatalyst has higher activity on photocatalytic hydrogen evolution than the g-C3N4

and Cu/g-C3N4 photocatalysts. The findings of this study give new insights into designing efficient
photocatalytic hydrogen generation and catalysts through overall water splitting.

In 2018, Feng et al. [87] reported P nanostructures with P-doped g-C3N4 as light photocatalysts
for H2 evolution. P nanostructures and P-doped g-C3N4 (P@P-g-C3N4) were synthesized via a
solid reaction, and P@P-g-C3N4 showed increased optical absorption, high-efficiency transmission,
and efficient separation of photogenerated electron–hole pairs. When C atoms are replaced with P
atoms (the gray and red balls in Figure 10a, respectively) in the base frame of g-C3N4, the extra electrons
are decentralized into a π-conjugated triazine ring and generate a positive-charge P+ center, thereby
facilitating rapid separation of the photogenerated excited electrons. Furthermore, efficient band gap
transfers between the P and P-doped g-C3N4 leads to a significant improvement in photoactivity
(Figure 10b). P-doped g-C3N4 photoexcited electrons can be delivered to phosphorus via intimate
contact because the CB edge of g-C3N4 (−1.2 V vs. normal hydrogen electrode (NHE)) is more negative
than P (−0.25 V vs. NHE) which provides an interface under the buildup of the internal electric field.
Thus, the extra electrons superimposed on the P surface can easily be captured by the oxygen molecules
in the solution and react with ·O2− and ·OH. Figure 10c,d shows the hydrogen evolution yield and the
improvement in hydrogen production ability of the photocatalysts prepared at different weight ratios
of P/g-C3N4. P@P-g-C3N4-15 showed the highest hydrogen production rate (941.80 µmol h−1 g−1),
which is around four times that of conventional g-C3N4.
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4. Summary and Perspectives

Photocatalytic action is a key factor for the future of environmental pollution and hydrogen
generation due to water splitting. Over the past several years, photocatalytic reactions have emerged
as a promising method to generate hydrogen, and interest in the photocatalyst g-C3N4 has received
attention in a variety of scientific disciplines. However, a major problem that limits the rate of production
of H2 by g-C3N4-based photocatalysis is the fast recombination of photoexcited electron–hole pairs.
This problem can be solved in a variety of ways, including modification, heterojunctions, and metal
and non-metal doping. Table 1 summarizes the literature on the photocatalytic H2 generation of
g-C3N4-based materials. We reviewed the rational design of photocatalysts for efficient H2 generation
though a variety of methods. Furthermore, the improvement of g-C3N4-based photocatalysts will
likely result from advances in science. Herein, we have covered the recent progress of g-C3N4-based
materials involved in hydrogen production in improving their overall photocatalytic activity and have
characterized their performance and importance. We hope that this report will support further research
efforts related to photocatalytic development.
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Table 1. Photocatalytic H2 generation of g-C3N4-based materials.

Entry Type Mass Fraction
of g-C3N4

Mass of
Photocatalyst Reactant Solution Light Source H2 Generation Rate

(µmol h−1)
Reference

Figure 4 Monolayer mesoporous g-C3N4
nanomesh 100 wt% 0.01 g

100 mL of 10 vol%
triethanolamine aqueous solution;

3 wt% Pt as a cocatalyst

300 W Xe lamp
(>420 nm) 85.10 [59]

Figure 5 Mesoporous g-C3N4
comprising hollow nanospheres 100 wt% 0.1 g

100 mL of 10 vol.%
triethanolamine aqueous solution;

3 wt% Pt as a cocatalyst

300 W Xe lamp
(>420 nm) 65.98 [62]

Figure 7 g-C3N4 nanosheets/TiO2 50 wt% 0.05 g
100 mL of 10 vol%

triethanolamine aqueous solution;
3 wt.% Pt as a cocatalyst

300 W Xe lamp
(>420 nm) 40 [80]

Figure 8 Porous Si-loaded g-C3N4 97.50 wt% 0.1 g
100 mL of 10 vol%

triethanolamine aqueous solution;
3 wt% Pt as a cocatalyst

300 W Xe lamp
(>400 nm) 87.05 [81]

Figure 9 Fe-doped g-C3N4
Cu-doped g-C3N4

99.63 wt%
99.58 wt% 0.01 g Pure water;

without other cocatalyst
300 W Xe lamp

(>420 nm) 0.175 [84]

Figure 10 P@P-doped g-C3N4 75 wt% 0.1 g
100 mL of 10 vol%

triethanolamine aqueous solution;
1 wt% Pt as a cocatalyst

300 W Xe lamp
(>420 nm) 94.18 [87]
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