Interligand Charge-Transfer Processes in Zinc Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Remarks
2.2. Synthesis of Ligand
General Procedure
2.3. X-ray Crystallographic Studies
3. Results and Discussion
3.1. Synthesis and Absorption Properties of 2,6-di(imino)pyridine Ligands
3.2. Interaction with Zn2+: Spectrophotometric and ESI-MS Investigations
3.3. Crystallographic Studies
3.4. NMR Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briegleb, G. Elektronen-Donator-Acceptor-Komplexe, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1961. [Google Scholar]
- Mulliken, R.S. Structures of Complexes Formed by Halogen Molecules with Aromatic and with Oxygenated Solvents. J. Am. Chem Soc. 1950, 72, 600–608. [Google Scholar] [CrossRef]
- Mulliken, R.S. Molecular Compounds and their Spectra. II. J. Am. Chem. Soc. 1952, 74, 811–824. [Google Scholar] [CrossRef]
- Mulliken, R.S. Molecular compounds and their spectra. III. The interaction of electron donors and acceptors. J. Phys. Chem. 1952, 56, 501–522. [Google Scholar] [CrossRef]
- Boeyens, J.C.A. A Free-Electron Study of -Molecular Compounds. J. Phys. Chem. 1967, 71, 2969–2974. [Google Scholar] [CrossRef]
- Prout, C.K.; Wright, J.D. Observations on the Crystal Structures of Electron Donor-Acceptor Complexes. Angew. Chem. Int. Ed. English 1968, 7, 659–667. [Google Scholar] [CrossRef]
- Birks, J.B. Photophysics of Aromatic Molecules; John Wiley & Sons: London, UK, 1970. [Google Scholar]
- Foster, R. Organic Charge-Transfer Complexes; Academic Press: New York, NY, USA, 1928. [Google Scholar]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor—Acceptor Viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Rosokha, S.V.; Kochi, J.K. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex. Acc. Chem. Res. 2008, 41, 641–653. [Google Scholar] [CrossRef]
- Rabie, U.M. A review on electronic spectral studies of charge transfer complexes. J. Mol. Struct. 2013, 1034, 393–403. [Google Scholar] [CrossRef]
- Goetz, K.P.; Vermeulen, D.; Payne, M.E.; Kloc, C.; McNeil, L.E.; Jurchescu, O.D. Charge-transfer complexes: New perspectives on an old class of compounds. J. Mater. Chem. C 2014, 2, 3065–3076. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, W.; Sheng, P.; Zhao, G.; Zhu, D. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors. Acc. Chem. Res. 2017, 50, 1654–1662. [Google Scholar] [CrossRef]
- Jérome, D. Organic conductors: From charge density wave TTF-TCNQ to superconducting (TMTSF)2PF6. Chem. Rev. 2004, 104, 5565–5591. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev. 2012, 112, 2208–2267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Concannon, N.M.; Holmes, R.J. Migration of charge-transfer states at organic semiconductor heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 31677–31686. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, S.; Kobayashi, K.; Kumai, R.; Minami, N.; Kagawa, F.; Tokura, Y. Quantum ferroelectricity in charge-transfer complex crystals. Nat. Commun. 2015, 6, 7469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slifkin, M.A. Charge Transfer Interactions of Biomolecules; Academic Press: London, UK, 1971. [Google Scholar]
- Khan, I.M.; Ahmad, A. Synthesis, characterization, structural, spectrophotometric and antimicrobial activity of charge transfer complex of p-phenylenediamine with 3,5-dinitrosalicylic acid. J. Mol. Struct. 2010, 975, 381–388. [Google Scholar] [CrossRef]
- AlRabiah, H.; Abdel-Aziz, H.A.; Mostafa, G.A.E. Charge transfer complexes of brucine with chloranilic acid, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and tetracyanoquinodimethane: Synthesis, spectroscopic characterization and antimicrobial activity. J. Mol. Liq. 2019, 286, 110754. [Google Scholar] [CrossRef]
- Saravanabhavan, M.; Sathya, K.; Puranik, V.G.; Sekar, M. Synthesis, spectroscopic characterization and structural investigations of new adduct compound of carbazole with picric acid: DNA binding and antimicrobial studies. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2014, 118, 399–406. [Google Scholar] [CrossRef]
- Manojkumar, P.; Mahipal, V.; Suresh, G.; Venkatesh, N.; Ramesh, M.; Parthasarathy, T. Exploring Interaction Dynamics of Designed Organic Charge Transfer Complex of 6-Aminoindole and Chloranilic Acid: Spectrophotometric, Characterization, Computational, Antimicrobial, and DNA Binding Properties. J. Mol. Struct. 2022, 1258, 132666. [Google Scholar] [CrossRef]
- Adam, A.M.A. Synthesis, spectroscopic, thermal and antimicrobial investigations of charge-transfer complexes formed from the drug procaine hydrochloride with quinol, picric acid and TCNQ. J. Mol. Struct. 2012, 1030, 26–39. [Google Scholar] [CrossRef]
- Alanazi, A.; Abounassif, M.; Alrabiah, H.; Mostafa, G.A.H. Development of two charge transfer complex spectrophotometric methods for determination of tofisopam in tablet dosage form. Trop. J. Pharm. Res. 2016, 15, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Shehab, O.R.; AlRabiah, H.; Abdel-Aziz, H.A.; Mostafa, G.A.E. Charge-transfer complexes of cefpodoxime proxetil with chloranilic acid and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone: Experimental and theoretical studies. J. Mol. Liq. 2018, 257, 42–51. [Google Scholar] [CrossRef]
- Adam, A.M.A.; Saad, H.A.; Alsuhaibani, A.M.; Refat, M.S.; Hegab, M.S. Charge-transfer chemistry of azithromycin, the antibiotic used worldwide to treat the coronavirus disease (COVID-19). Part II: Complexation with several π-acceptors (PA, CLA, CHL). J. Mol. Liq. 2021, 325, 115121. [Google Scholar] [CrossRef] [PubMed]
- Darwish, I.A.; Khalil, N.Y.; Darwish, H.W.; Alzoman, N.Z.; Al-Hossaini, A.M. Spectrophotometric and computational investigations of charge transfer complexes of chloranilic acid with tyrosine kinase inhibitors and application to development of novel universal 96-microwell assay for their determination in pharmaceutical formulation. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2021, 252, 119482. [Google Scholar] [CrossRef]
- Wong, E.L.S.; Gooding, J.J. Charge transfer through DNA: A selective electrochemical DNA biosensor. Anal. Chem. 2006, 78, 2138–2144. [Google Scholar] [CrossRef]
- Xu, J.; Liu, K.; Di, D.; Shao, S.; Guo, Y. A selective colorimetric chemosensor for detecting SO32- in neutral aqueous solution. Inorg. Chem. Commun. 2007, 10, 681–684. [Google Scholar] [CrossRef]
- Chen, J.L.; Yan, X.P.; Meng, K.; Wang, S.F. Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine. Anal. Chem. 2011, 83, 8787–8793. [Google Scholar] [CrossRef]
- Adam, A.M.A.; Refat, M.S.; Saad, H.A. Utilization of charge-transfer complexation for the detection of carcinogenic substances in foods: Spectroscopic characterization of ethyl carbamate with some traditional π-acceptors. J. Mol. Struct. 2013, 1037, 376–392. [Google Scholar] [CrossRef]
- Shakya, S.; Khan, I.M. Charge transfer complexes: Emerging and promising colorimetric real-time chemosensors for hazardous materials. J. Hazard. Mater. 2021, 403, 123537. [Google Scholar] [CrossRef]
- Amabilino, D.B.; Stoddart, J.F. Interlocked and Intertwined Structures and Superstructures. Chem. Rev. 1995, 95, 2725–2828. [Google Scholar] [CrossRef]
- Hamilton, D.G.; Davies, J.E.; Prodi, L.; Sanders, J.K.M. Synthesis, structure and photophysics of neutral π-associated [2]catenanes. Chem.-A Eur. J. 1998, 4, 608–620. [Google Scholar] [CrossRef]
- Balzani, V.; Credi, A.; Raymo, F.M.; Stoddart, J.F. Artificial Molecular Machines. Angew. Chem.-Int. Ed. 2000, 39, 3348–3391. [Google Scholar] [CrossRef]
- Goodnow, T.T.; Reddington, M.V.; Stoddart, J.F.; Kaifer, A.E. Cyclobis (paraquat-p-phenylene): A novel synthetic receptor for amino acids with electron-rich aromatic moieties. J. Am. Chem. Soc. 1991, 113, 4335–4337. [Google Scholar] [CrossRef]
- Jeon, W.S.; Kim, E.; Ko, Y.H.; Hwang, I.; Lee, J.W.; Kim, S.-Y.; Kim, H.-J.; Kim, K. Molecular Loop Lock: A Redox-Driven Molecular Machine Based on a Host-Stabilized Charge-Transfer Complex. Angew. Chem. 2005, 117, 89–93. [Google Scholar] [CrossRef]
- Amabilino, D.B.; Dietrich-Buchecker, C.O.; Livoreil, A.; Pérez-García, L.; Sauvage, J.P.; Stoddart, J.F. A switchable hybrid [2]-catenane based on transition metal complexation and π-electron donor-acceptor interactions. J. Am. Chem. Soc. 1996, 118, 3905–3913. [Google Scholar] [CrossRef] [Green Version]
- Balzani, V.; Credi, A.; Mattersteig, G.; Matthews, O.A.; Raymo, F.M.; Stoddart, J.F.; Venturi, M.; White, A.J.P.; Williams, D.J. Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs. J. Org. Chem. 2000, 65, 1924–1936. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, X.; Chen, Y.; Zhao, C.X.; Jiang, X.K.; Li, Z.T. Self-assembly of novel [3]- and [2]rotaxanes based on donor-acceptor and hydrogen-bonding interactions. Intensified inter-ring repulsion interaction and shuttling behavior. J. Org. Chem. 2003, 68, 2704–2712. [Google Scholar] [CrossRef]
- Peng, X.; Wang, L.; Chen, S. Donor–acceptor charge transfer assemblies based on naphthalene diimides(NDIs). J. Incl. Phenom. Macrocycl. Chem. 2021, 99, 131–154. [Google Scholar] [CrossRef]
- Oswald, I.D.H.; Motherwell, W.D.S.; Parsons, S. Formation of quinol co-crystals with hydrogen-bond acceptors. Acta Crystallogr. Sect. B Struct. Sci. 2005, 61, 46–57. [Google Scholar] [CrossRef]
- Bertolasi, V.; Gilli, P.; Gilli, G. Hydrogen bonding and electron donor-acceptor (EDA) interactions controlling the crystal packing of picric acid and its adducts with nitrogen bases. Their rationalization in terms of the p K a equalization and electron-pair saturation concepts. Cryst. Growth Des. 2011, 11, 2724–2735. [Google Scholar] [CrossRef]
- Miyan, L.; Zulkarnain; Ahmad, A. Spectroscopic and spectrophotometric studies on hydrogen bonded charge transfer complex of 2-amino-4-methylthiazole with chloranilic acid at different temperatures. J. Mol. Liq. 2018, 262, 514–526. [Google Scholar] [CrossRef]
- Lohr, H.G.; Vogtle, F. Chromo- and Fluoroionophores. A New Class of Dye Reagents. Acc. Chem. Res. 1985, 18, 65–72. [Google Scholar] [CrossRef]
- Ghosh, S.; Ramakrishnan, S. Aromatic Donor–Acceptor Charge-Transfer and Metal-Ion-Complexation-Assisted Folding of a Synthetic Polymer. Angew. Chem. 2004, 116, 3326–3330. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, N.B.; Banthia, S.; Das, A.; Samanta, A. Fluorescence signaling of transition metal ions: A new approach. New, J. Chem. 2002, 26, 1529–1531. [Google Scholar] [CrossRef]
- Barboiu, M.; Prodi, L.; Montalti, M.; Zaccheroni, N.; Kyritsakas, N.; Lehn, J.M. Dynamic chemical devices: Modulation of photophysical properties by reversible, ion-triggered, and proton-fuelled nanomechanical shape-flipping molecular motions. Chem.-A Eur. J. 2004, 10, 2953–2959. [Google Scholar] [CrossRef]
- Legrand, Y.M.; Van Der Lee, A.; Barboiu, M. Self-optimizing charge-transfer energy phenomena in metallosupramolecular complexes by dynamic constitutional self-sorting. Inorg. Chem. 2007, 46, 9540–9547. [Google Scholar] [CrossRef]
- Kocsis, I.; Dumitrescu, D.; Legrand, Y.M.; van der Lee, A.; Grosu, I.; Barboiu, M. Self-sorting of dynamic metallosupramolecular libraries (DMLs) via metal-driven selection. Chem. Commun. 2014, 50, 2621–2623. [Google Scholar] [CrossRef] [Green Version]
- Boiocchi, M.; Colucci, G.; Licchelli, M.; Monzani, E.; Sacchi, D. Light-emitting charge transfer species promoted by metal ion coordination. Chem. Commun. 2003, 3, 2906–2907. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753. [Google Scholar] [CrossRef]
- Gans, P.; Sabatini, A.; Vacca, A. Determination of equilibrium constants from spectrophometric data obtained from solutions of known pH: The program pHab. Ann. Chim. 1999, 89, 45–49. [Google Scholar]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- North, A.C.T.; Phillips, D.C.; Mathews, F.S. A semi-empirical method of absorption correction. Acta Crystallogr. Sect. A 1968, 24, 351–359. [Google Scholar] [CrossRef]
- Bruker. SAINT Software Reference Manual, Version 6; Bruker AXS Inc.: Madison, WI, USA, 2003. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Altomare, A.; Burla, M.C.; Camalli, M.; Cascarano, G.L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.G.G.; Polidori, G.; Spagna, R. SIR97: A new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 1999, 32, 115–119. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Licchelli, M.; Linati, L.; Orbelli Biroli, A.; Perani, E.; Poggi, A.; Sacchi, D. Metal-induced assembling/disassembling of fluorescent naphthalenediimide derivatives signalled by excimer emission. Chem.-A Eur. J. 2002, 8, 5161–5169. [Google Scholar] [CrossRef]
- Licchelli, M.; Orbelli Biroli, A.; Poggi, A.; Sacchi, D.; Sangermani, C.; Zema, M. Excimer emission induced by metal ion coordination in 1,8-naphthalimide-tethered iminopyridine ligands. Dalt. Trans. 2003, 4537–4545. [Google Scholar] [CrossRef]
- Erxleben, A. Structures and properties of Zn(II) coordination polymers. Coord. Chem. Rev. 2003, 246, 203–228. [Google Scholar] [CrossRef]
- Berry, S.M.; Bebout, D.C.; Butcher, R.J. Solid-state and solution-state coordination chemistry of the zinc triad with the mixed N,S donor ligand bis(2-methylpyridyl) sulfide. Inorg. Chem. 2005, 44, 27–39. [Google Scholar] [CrossRef]
- Liu, K.; Shi, W.; Cheng, P. The coordination chemistry of Zn(II), Cd(II) and Hg(II) complexes with 1,2,4-triazole derivatives. Dalt. Trans. 2011, 40, 8475–8490. [Google Scholar] [CrossRef]
- Tiekink, E.R.T. Perplexing coordination behaviour of potentially bridging bipyridyl-type ligands in the coordination chemistry of zinc and cadmium 1,1-dithiolate compounds. Crystals 2018, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Pellei, M.; Del Bello, F.; Porchia, M.; Santini, C. Zinc coordination complexes as anticancer agents. Coord. Chem. Rev. 2021, 445, 214088. [Google Scholar] [CrossRef]
- Verhoeven, J.W.; Dirkx, I.P.; De Boer, T.J. Studies of inter- and intra-molecular donor-acceptor interactions—IV: Intramolecular charge transfer phenomena in substituted N-aralkyl-pyridinium ions. Tetrahedron 1969, 25, 4037–4055. [Google Scholar] [CrossRef]
- Lee, K.Y.; Kochi, J.K. Charge-transfer structures of aromatic EDA complexes with N-heteroatom-substituted pyridinium cations. J. Chem. Soc. Perkin Trans. 2 1992, 1011–1017. [Google Scholar] [CrossRef]
- Hirsch, T.; Port, H.; Wolf, H.C.; Miehlich, B.; Effenberger, F. Intramolecular charge separation and transition state dynamics in anthracene/pyridinium supermolecules. J. Phys. Chem. B 1997, 101, 4525–4535. [Google Scholar] [CrossRef]
- Leigh, D.A.; Lusby, P.J.; Teat, S.J.; Wilson, A.J.; Wong, J.K.Y. Benzylic imine catenates: Readily accessible octahedral analogues of the sauvage catenates. Angew. Chem.-Int. Ed. 2001, 40, 1538–1543. [Google Scholar] [CrossRef]
- Edwards, D.A.; Mahon, M.F.; Martin, W.R.; Molloy, K.C.; Fanwick, P.E.; Walton, R.A. Manganese(II) Complex containing the Tridentate Ligands 2,6-Bis[1-(phenyl-imino)ethyl]pyridine, L1, or 2,6-Bis[l-(4-methoxyphenylimino)ethyl]pyridine, L2. The Molecluar Structures of Five-co-ordinate [MnBr,L1] and the Zinc Analogue [ZnC12L1]. J. Chem. Soc. Dalton Trans. 1990, 3161–3168. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge structural database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Moriuchi, T.; Nishiyama, M.; Hirao, T. A Zinc(II) Complex Composed of a Tridentate Ligand Bearing Podand Pyrenyl Moieties. Eur. J. Inorg. Chem. 2002, 447–451. [Google Scholar] [CrossRef]
- Saaby, S.; Nakama, K.; Lie, M.A.; Hazell, R.G.; Jørgensen, K.A. The First Catalytic Highly Enantioselective Alkylation of Ketimines-A Novel Approach to Optically Active Quaternary α-Amino Acids. Chem.-A Eur. J. 2003, 9, 6145–6154. [Google Scholar] [CrossRef]
- Vance, A.L.; Alcock, N.W.; Heppert, J.A.; Busch, D.H. An Octahedral Template Based on a New Molecular Turn: Synthesis and Structure of a Model Complex and a Reactive, Diphenolic Ligand and Its Metal Complexes. Inorg. Chem. 1998, 37, 6912–6920. [Google Scholar] [CrossRef]
[Zn(5b)2](CF3SO3)2⋅MeOH | [Zn(7a)2](CF3SO3)2 | [Zn(8a)2](CF3SO3)2 | |
---|---|---|---|
Formula | C57H66F6N6O15S2Zn | C56H62F6N6O18S2Zn | C48H38F6N6O14S2Zn |
M | 1318.67 | 1350.63 | 1166.35 |
Color | yellow | pale green | yellow-green |
Dimension (mm) | 0.72 × 0.58 × 0.43 | 0.50 × 0.40 × 0.05 | 0.70 × 0.50 × 0.20 |
Crystal system | monoclinic | monoclinic | triclinic |
Space group | P21/c (no. 14) | P21/c (no. 14) | P-1 (no. 2) |
a [Å] | 18.737(7) | 10.825 (1) | 10.759(4) |
b [Å] | 14.179(2) | 26.380(2) | 11.214(3) |
c [Å] | 24.740(6) | 21.484(2) | 23.274(2) |
α [°] | 90 | 90 | 87.79(1) |
β [°] | 110.02(2) | 93.79(1) | 87.89(1) |
γ [°] | 90 | 90 | 61.65(2) |
V [Å3] | 6175(3) | 6121.5(9) | 2468.9(12) |
Z | 4 | 4 | 2 |
ρcalcd [g cm−3] | 1.418 | 1.465 | 1.569 |
µ MoKα [mm−1] | 0.553 | 0.563 | 0.679 |
Absorption corr. type | psi-scan | multi-scan | psi-scan |
Min/max transmission | 0.748/0.788 | 0.781/0.972 | 0.712/0.875 |
Scan type | ω scans | ω scans | ω scans |
θ range [°] | 1.2–26.0 | 1.2–25.0 | 1.7–30.0 |
Measured reflections | 12849 | 43639 | 15199 |
Unique reflections | 12139 | 10721 | 14402 |
Rint | 0.0733 | 0.0270 | 0.0279 |
Strong data [IO>2σ(IO)] | 3905 | 7834 | 6800 |
R1, wR2 (strong data) | 0.1071, 0.2493 | 0.1083, 0.3402 | 0.0719, 0.1656 |
R1, wR2 (all data) | 0.2813, 0.3472 | 0.1305, 0.3659 | 0.1657, 0.2105 |
GOF | 1.021 | 1.606 | 1.014 |
Refined parameters | 790 | 802 | 694 |
Max/min residuals [eÅ−3] | 0.84/−0.48 | 2.02/−1.03 | 0.71/−0.51 |
Compound | λmax(nm) | ε(M−1cm−1) |
---|---|---|
2a | 286 | 6020 |
3b | 282 | 8000 |
4a | 284 | 11,960 |
4b | 278 | 9200 |
5a | 287 | 14,500 |
5b | 282 | 14,800 |
6a | 280 | 12,860 |
6b | 280 | 10,300 |
7a | 287 | 10,400 |
8a | 288 | 17,100 |
8b | 287 | 16,100 |
9a | 279 | 28,570 |
[Zn(5b)2](CF3SO3)2⋅MeOH | [Zn(7a)2](CF3SO3)2 | [Zn(8a)2](CF3SO3)2 | |
---|---|---|---|
Zn(1)-N(1) | 2.059(8) | 2.049(5) | 2.053(3) |
Zn(1)-N(4) | 2.068(8) | 2.071(6) | 2.047(3) |
Zn(1)-N(2) | 2.237(8) | 2.282(4) | 2.304(3) |
Zn(1)-N(3) | 2.195(9) | 2.261(4) | 2.225(4) |
Zn(1)-N(5) | 2.209(8) | 2.245(5) | 2.230(4) |
Zn(1)-N(6) | 2.201(8) | 2.264(4) | 2.275(3) |
N(1)-Zn(1)-N(2) | 74.0(3) | 74.4(2) | 74.1(1) |
N(1)-Zn(1)-N(3) | 75.6(3) | 75.3(2) | 75.5(1) |
N(1)-Zn(1)-N(4) | 175.0(3) | 174.6(2) | 169.7(1) |
N(1)-Zn(1)-N(5) | 103.4(3) | 109.5(2) | 113.1(1) |
N(1)-Zn(1)-N(6) | 106.5(3) | 102.0(2) | 97.5(1) |
N(2)-Zn(1)-N(3) | 149.6(3) | 149.7(2) | 148.7(1) |
N(2)-Zn(1)-N(4) | 101.2(3) | 101.7(2) | 100.0(1) |
N(2)-Zn(1)-N(5) | 91.2(3) | 92.8(2) | 92.1(1) |
N(2)-Zn(1)-N(6) | 96.6(3) | 94.9(2) | 98.7(1) |
N(3)-Zn(1)-N(4) | 109.1(3) | 108.6(2) | 111.2(1) |
N(3)-Zn(1)-N(5) | 94.9(3) | 96.0(2) | 93.2(1) |
N(3)-Zn(1)-N(6) | 92.8(3) | 92.5(2) | 92.2(1) |
N(4)-Zn(1)-N(5) | 74.8(3) | 74.2(2) | 75.0(1) |
N(4)-Zn(1)-N(6) | 75.3(3) | 74.3(2) | 74.9(1) |
N(5)-Zn(1)-N(6) | 150.1(3) | 148.5(2) | 149.4(1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciarrocchi, C.; Colucci, G.; Boiocchi, M.; Sacchi, D.; Weththimuni, M.L.; Orbelli Biroli, A.; Licchelli, M. Interligand Charge-Transfer Processes in Zinc Complexes. Chemistry 2022, 4, 717-734. https://doi.org/10.3390/chemistry4030051
Ciarrocchi C, Colucci G, Boiocchi M, Sacchi D, Weththimuni ML, Orbelli Biroli A, Licchelli M. Interligand Charge-Transfer Processes in Zinc Complexes. Chemistry. 2022; 4(3):717-734. https://doi.org/10.3390/chemistry4030051
Chicago/Turabian StyleCiarrocchi, Carlo, Guido Colucci, Massimo Boiocchi, Donatella Sacchi, Maduka L. Weththimuni, Alessio Orbelli Biroli, and Maurizio Licchelli. 2022. "Interligand Charge-Transfer Processes in Zinc Complexes" Chemistry 4, no. 3: 717-734. https://doi.org/10.3390/chemistry4030051
APA StyleCiarrocchi, C., Colucci, G., Boiocchi, M., Sacchi, D., Weththimuni, M. L., Orbelli Biroli, A., & Licchelli, M. (2022). Interligand Charge-Transfer Processes in Zinc Complexes. Chemistry, 4(3), 717-734. https://doi.org/10.3390/chemistry4030051