Study on the Effects of Biologically Active Amino Acids on the Micellization of Anionic Surfactant Sodium Dodecyl Sulfate (SDS) at Different Temperatures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Conductometric Measurements
3.2. Surface Tension Measurements
3.3. Thermodynamics of Micellization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, T.; Li, J. Effects of Aspartic Acid and Lysine on Thermodynamic Functions of SDS Micellization. Chin. J. Chem. 2010, 28, 2162–2166. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Casettari, L.; Cespi, M.; Fini, F.; Man, D.K.; Giorgioni, G.; Canala, S.; Lam, J.K.W.; Bonacucina, G.; Palmieri, G.F. Chemical–physical properties and cytotoxicity of N-decanoyl amino acid-based surfactants: Effect of polar heads. Colloids Surf. A Physicochem. Eng. Asp. 2016, 492, 38–46. [Google Scholar] [CrossRef]
- Chauhan, M.S.; Chauhan, S.; Rana, D.S.; Umar, A. Effect of Temperature on Micellar Properties of Sodium Dodecyl Sulfate in Aqueous Solutions of Some Amino Acids (Glycine, Alanine, Valine and Leucine). Adv. Sci. Lett. 2012, 5, 1–9. [Google Scholar] [CrossRef]
- Md. Rahim, A.; Mahbub, S.; Md. Islam, K.; Sk. Md. Ahsan, A.S.R.; Rub, M.A.; Mah, A.K. Influence of Different Additives on the Interaction of Quinolone Antibiotic Drug with Surfactant: Conductivity and Cloud Point Measurement Study. J. Surfactants Deterg. 2020, 23, 457–470. [Google Scholar] [CrossRef]
- Miyazawa, T.; Itaya, M.; Burdeos, G.C.; Nakagawa, K.; Miyazawa, T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int. J. Nanomed. 2021, 16, 3937–3999. [Google Scholar] [CrossRef]
- Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and Their Potential Applications in Food Industry. Front. Sustain. Food Syst. 2019, 3, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Ansari, N.H. Studies on the Effect of Amino Acids/Peptide on Micellization of SDS at Different Temperatures. J. Surfactants Deterg. 2010, 13, 441–449. [Google Scholar] [CrossRef]
- Ali, A.; Malik, N.A.; Uzair, S.; Ali, M. Conductometric and fluorometric studies of sodium dodecyl sulphate in aqueous solution and in the presence of amino acids. Mol. Phys. 2014, 112, 2681–2693. [Google Scholar] [CrossRef]
- Pletnev, M.Y. Chemistry of Surfactants. In Surfactants Chemistry, Interfacial Properties, Applications; Fainerman, V.B., Möbius, D., Miller, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 1–97. [Google Scholar]
- Barzykin, A.V.; Tachiya, M. Reaction kinetics in microdisperse systems. Heterog. Chem. Rev. 1996, 3, 105–167. [Google Scholar] [CrossRef]
- Yan, Z.; Kang, Y.; Wen, X.; Xu, C.; Chu, W. Effect of Amino Acids and Glycyl Dipeptides on Micellization of Antibacterial Drug Domiphen Bromide. J. Surfactants Deterg. 2017, 20, 391–400. [Google Scholar] [CrossRef]
- Ali, A.; Bhushan, V.; Malik, N.A.; Behera, K. Study of Mixed Micellar Aqueous Solutions of Sodium Dodecyl Sulfate and Amino Acids. Colloid J. 2013, 75, 357–365. [Google Scholar] [CrossRef]
- Lehninger, A.L.; Nelson, D.L.; Cox, M.M. Principles of Biochemistry; Worth Publishers: New York, NY, USA, 1993. [Google Scholar]
- Carnero Ruiz, C.; Hierrezuelo, J.M.; Molina-Bolívar, J.A. Effect of glycine on the surface activity and micellar properties of N-decanoyl-N-methylglucamide. Colloid Polym. Sci. 2008, 286, 1281–1289. [Google Scholar] [CrossRef]
- Sharma, K.S.; Hassan, P.A.; Rakshit, A.K. Surface activity and association behavior of nonaoxyethylene n-dodecylether in aquo amino acid medium: Tensiometry, small-angle neutron scattering, dynamic light scattering and viscosity studies. Colloids Surf. A 2007, 308, 100–110. [Google Scholar] [CrossRef]
- Koya, P.A.; Wagay, T.A.; Ismail, K. Conductometric Studies on Micellization of Cationic Surfactants in the Presence of Glycine. J. Solut. Chem. 2015, 44, 100–111. [Google Scholar] [CrossRef]
- Yu, L.; Lu, T.; Luan, Y.X.; Liu, J.; Xu, G.Y. Studies on the effects of amino acids on micellization of CTAB via surface tension measurements. Colloids Surf. A Physicochem. Eng. Asp. 2005, 257–258, 375–379. [Google Scholar] [CrossRef]
- Harutyunyan, L.R. Effect of Amino Acids on Micellization, Surface Activity and Micellar Properties of Nonionic Surfactant Hexadecyl Alcohol Ethoxylate (25EO) in Aqueous Solutions. J. Surfactants Deterg. 2015, 18, 73–81. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, J.; Kong, W.; Lu, J. Effect of temperature on volumetric and viscosity properties of some α-amino acids in aqueous calcium chloride solutions. Fluid Phase Equilibria 2014, 215, 143–150. [Google Scholar] [CrossRef]
- Malik, N.A. Surfactant–Amino Acid and Surfactant–Surfactant Interactions in Aqueous Medium: A Review. Appl. Biochem. Biotechnol. 2015, 176, 2077–2106. [Google Scholar] [CrossRef]
- Thermodynamics, J.C.; Kumar, K.; Patial, B.S.; Chauhan, S. Conductivity and fluorescence studies on the micellization properties of sodium cholate and sodium deoxycholate in aqueous medium at different temperatures: Effect of selected amino acids. J. Chem. Thermodyn. 2015, 82, 25–33. [Google Scholar]
- Aleiner, G.S.; Us, O.G. Conductivity of Micellar Solutions of Ionic Surfactants and Surface Conductivity of Micelles. Colloid J. 2010, 72, 588–594. [Google Scholar] [CrossRef]
- Velázquez, M.M.; López-Díaz, D. Variation of the Critical Micelle Concentration with Surfactant Structure: A Simple Method To Analyze the Role of Attractive-Repulsive Forces on Micellar Association. Chem. Educ. 2007, 12, 327–330. [Google Scholar]
- Usman, M.; Abid, M.; Mansha, A.; Siddiq, M. Thermodynamic solution properties of pefloxacin mesylate and its interactions with organized assemblies of anionic surfactant, sodium dodecyl sulphate. Thermochim. Acta. 2018, 573, 18–24. [Google Scholar] [CrossRef]
- Elarbi, F.M.; Janger, A.A.; Abu-sen, L.M.; Ettarhouni, Z.O. Determination of CMC and interfacial properties of anionic (SDS) and cationic (CPB) surfactants in aqueous solutions. Am. J. Eng. Res. AJER 2020, 9, 118–126. [Google Scholar]
- Ide, M.; Maeda, Y.; Kitano, H. Effect of Hydrophobicity of Amino Acids on the Structure of Water. J. Phys. Chem. B 1997, 101, 7022–7026. [Google Scholar] [CrossRef]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef] [Green Version]
- Rosen, M.J. Surfactants and Interfacial Phenomena, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- He, F.; Xu, G.; Pang, J.; Ao, M.; Han, T.; Gong, H. Effect of Amino Acids on Aggregation Behaviors of Sodium Deoxycholate at Air/Water Surface: Surface Tension and Oscillating Bubble Studies. Langmuir 2011, 27, 538–545. [Google Scholar] [CrossRef]
- Myers, D. Surfactant Science and Technology, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Tanford, C. The Hydrophobic Effect, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1980. [Google Scholar]
- Harutyunyan, L.R.; Harutyunyan, R.S. Effect of Amino Acids on Micellization and Micellar Parameters of Anionic Surfactant Alpha Olefin Sulfonate C14−C16 in Aqueous Solutions: Surface Tension, Conductometric, Volumetric, and Fluorescence Studies. J. Chem. Eng. Data 2019, 64, 640–650. [Google Scholar] [CrossRef]
T/°C | 20 | 25 | 30 | 35 | 40 | 45 |
---|---|---|---|---|---|---|
Water [27] | 7.70 | 7.90 | 8.50 | 9.00 | 9.70 | 10.0 |
dl-Glu | 6.40 | 6.60 | 7.00 | 7.40 | 7.90 | 8.40 |
l-His | 5.20 | 5.90 | 6.70 | 7.40 | 7.90 | 8.30 |
l-Trp | 4.40 | 5.10 | 5.80 | 6.70 | 7.20 | 8.00 |
System | CMC/mM | Γmax × 106 mol/m2 | Amin/Molecule nm2 | γcmc mN/m | Πcmc mN/m | KJ/mol | CPP |
---|---|---|---|---|---|---|---|
Water [25] | 7.50 | 1.952 | 0.8507 | 40.20 | 32.00 | −50.34 | 0.247 |
l-Glu | 6.20 | 2.023 | 0.8208 | 25.35 | 47.05 | −64.33 | 0.256 |
l-His | 5.00 | 2.186 | 0.7596 | 29.40 | 43.40 | −62.79 | 0.276 |
l-Trp | 4.00 | 2.028 | 0.8188 | 31.13 | 41.47 | −56.86 | 0.256 |
T/K | α | KJ/mol | KJ/mol | KJ/mol K |
---|---|---|---|---|
Water | ||||
293.15 | 0.428 | −34.04 | −12.69 | 0.07283 |
298.15 | 0.438 | −34.30 | −13.04 | 0.07131 |
303.15 | 0.487 | −33.50 | −13.06 | 0.06743 |
308.15 | 0.515 | −33.21 | −13.25 | 0.06477 |
313.15 | 0.538 | −32.94 | −13.47 | 0.06217 |
318.15 | 0.559 | −32.87 | −13.70 | 0.06025 |
l-Trp | ||||
293.15 | 0.418 | −36.41 | −26.90 | 0.03241 |
298.15 | 0.494 | −34.70 | −26.49 | 0.02754 |
303.15 | 0.438 | −34.83 | −28.40 | 0.02035 |
308.15 | 0.365 | −37.80 | −30.72 | 0.02297 |
313.15 | 0.307 | −39.46 | −32.85 | 0.02111 |
318.15 | 0.256 | −40.81 | −34.93 | 0.01848 |
l-His | ||||
293.15 | 0.101 | −42.94 | −25.64 | 0.05901 |
298.15 | 0.176 | -41.37 | −25.48 | 0.05330 |
303.15 | 0.253 | −39.73 | −25.23 | 0.04783 |
308.15 | 0.225 | −40.58 | −26.48 | 0.04576 |
313.15 | 0.161 | −42.41 | −28.34 | 0.04493 |
318.15 | 0.163 | −42.80 | −29.22 | 0.04268 |
l-Glu | ||||
293.15 | 0.142 | −41.07 | −14.87 | 0.08937 |
298.15 | 0.133 | −41.83 | −15.45 | 0.08848 |
303.15 | 0.132 | −42.28 | −15.99 | 0.08672 |
308.15 | 0.128 | −42.80 | −16.55 | 0.08519 |
313.15 | 0.102 | −43.78 | −17.33 | 0.08446 |
318.15 | 0.078 | −44.74 | −18.12 | 0.08367 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elarbi, F.M.; Ettarhouni, Z.O.; Abdussalam-Mohammed, W.; Mezoughi, A.B. Study on the Effects of Biologically Active Amino Acids on the Micellization of Anionic Surfactant Sodium Dodecyl Sulfate (SDS) at Different Temperatures. Chemistry 2022, 4, 146-155. https://doi.org/10.3390/chemistry4010013
Elarbi FM, Ettarhouni ZO, Abdussalam-Mohammed W, Mezoughi AB. Study on the Effects of Biologically Active Amino Acids on the Micellization of Anionic Surfactant Sodium Dodecyl Sulfate (SDS) at Different Temperatures. Chemistry. 2022; 4(1):146-155. https://doi.org/10.3390/chemistry4010013
Chicago/Turabian StyleElarbi, Fatima M., Zaineb O. Ettarhouni, Wanisa Abdussalam-Mohammed, and Aysha B. Mezoughi. 2022. "Study on the Effects of Biologically Active Amino Acids on the Micellization of Anionic Surfactant Sodium Dodecyl Sulfate (SDS) at Different Temperatures" Chemistry 4, no. 1: 146-155. https://doi.org/10.3390/chemistry4010013
APA StyleElarbi, F. M., Ettarhouni, Z. O., Abdussalam-Mohammed, W., & Mezoughi, A. B. (2022). Study on the Effects of Biologically Active Amino Acids on the Micellization of Anionic Surfactant Sodium Dodecyl Sulfate (SDS) at Different Temperatures. Chemistry, 4(1), 146-155. https://doi.org/10.3390/chemistry4010013