Absorption and Isomerization of Azobenzene Guest Molecules in Polymeric Nanoporous Crystalline Phases
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. X-ray Diffraction
2.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.4. UV-Vis Spectroscopy
2.5. Trans → Cis Photo-Isomerization
3. Results and Discussion
3.1. Formation of PPO/Azobenzene Co-Crystalline Phases
3.2. Trans → Cis Photo-Isomerization of Azobenzene Molecules
3.3. Selective Sorption of Azobenzene in PPO Films
3.4. Spontaneous Cis → Trans Isomerization of Azobenzene Molecules
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuznicki, S.M.; Bell, V.A.; Nair, S.; Hillhouse, H.W.; Jacubinas, R.M.; Braunbarth, C.M.; Toby, B.H.; Tsapatsis, M. A Titanosilicate Molecular Sieve with Adjustable Pores for Size-Selective Adsorption of Molecules. Nature 2001, 412, 720–724. [Google Scholar] [CrossRef]
- Zecchina, A.; Bordiga, S.; Vitillo, J.G.; Ricchiardi, G.; Lamberti, C.; Spoto, G.; Bjørgen, M.; Lillerud, K.P. Liquid Hydrogen in Protonic Chabazite. J. Am. Chem. Soc. 2005, 127, 6361–6366. [Google Scholar] [CrossRef] [PubMed]
- Eddaoudi, M.; Li, H.; Yaghi, O.M. Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties. J. Am. Chem. Soc. 2000, 122, 1391–1397. [Google Scholar] [CrossRef]
- Pan, L.; Adams, K.M.; Hernandez, H.E.; Wang, X.; Zheng, C.; Hattori, Y.; Kaneko, K. Porous Lanthanide-Organic Frameworks: Synthesis, Characterization, and Unprecedented Gas Adsorption Properties. J. Am. Chem. Soc. 2003, 125, 3062–3067. [Google Scholar] [CrossRef] [PubMed]
- Kitaura, R.; Seki, K.; Akiyama, G.; Kitagawa, S. Porous Coordination-Polymer Crystals with Gated Channels Specific for Supercritical Gases. Angew. Chem. Int. Ed. 2003, 42, 428–431. [Google Scholar] [CrossRef]
- Millward, A.R.; Yaghi, O.M. Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. J. Am. Chem. Soc. 2005, 127, 17998–17999. [Google Scholar] [CrossRef]
- Soldatov, D.V.; Moudrakovski, I.L.; Ripmeester, J.A. Dipeptides as Microporous Materials. Angew. Chem. Int. Ed. 2004, 43, 6308–6311. [Google Scholar] [CrossRef]
- Blau, W.J. Designer Nanotubes by Molecular Self-Assembly. Science 2004, 304, 1457–1458. [Google Scholar] [CrossRef]
- Thallapally, P.K.; McGrail, B.P.; Atwood, J.L.; Gaeta, C.; Tedesco, C.; Neri, P. Carbon Dioxide Capture in a Self-Assembled Organic Nanochannels. Chem. Mater. 2007, 19, 3355–3357. [Google Scholar] [CrossRef]
- Sozzani, P.; Bracco, S.; Comotti, A.; Ferretti, L.; Simonutti, R. Methane and Carbon Dioxide Storage in a Porous van Der Waals Crystal. Angew. Chem. Int. Ed. 2005, 44, 1816–1820. [Google Scholar] [CrossRef]
- Reverchon, E.; Guerra, G.; Venditto, V. Regeneration of Nanoporous Crystalline Syndiotactic Polystyrene by Supercritical CO2. J. Appl. Polym. Sci. 1999, 74, 2077–2082. [Google Scholar] [CrossRef]
- Daniel, C.; Longo, S.; Fasano, G.; Vitillo, J.G.; Guerra, G. Nanoporous Crystalline Phases of Poly(2,6-Dimethyl-1,4-Phenylene)Oxide. Chem. Mater. 2011, 23, 3195–3200. [Google Scholar] [CrossRef]
- De Rosa, C.; Guerra, G.; Petraccone, V.; Pirozzi, B. Crystal Structure of the Emptied Clathrate Form (δe Form) of Syndiotactic Polystyrene. Macromolecules 1997, 30, 4147–4152. [Google Scholar] [CrossRef]
- Petraccone, V.; Ruiz de Ballesteros, O.; Tarallo, O.; Rizzo, P.; Guerra, G. Nanoporous Polymer Crystals with Cavities and Channels. Chem. Mater. 2008, 20, 3663–3668. [Google Scholar] [CrossRef]
- Nagendra, B.; Cozzolino, A.; Daniel, C.; Rizzo, P.; Guerra, G.; Auriemma, F.; De Rosa, C.; D’Alterio, M.C.; Tarallo, O.; Nuzzo, A. Two Nanoporous Crystalline Forms of Poly(2,6-Dimethyl-1,4-Phenylene)Oxide and Related Co-Crystalline Forms. Macromolecules 2019, 52, 9646–9656. [Google Scholar] [CrossRef]
- Nagendra, B.; Cozzolino, A.; Golla, M.; Daniel, C.; Rizzo, P.; Guerra, G. Guest Induced Transition from β to α Nanoporous Crystalline Forms of PPO. Polymer 2020, 187, 122083. [Google Scholar] [CrossRef]
- Golla, M.; Nagendra, B.; Fierro, F.; Rizzo, P.; Daniel, C.; Guerra, G. Axially Oriented Nanoporous Crystalline Phases of Poly(2,6-Dimethyl-1,4-Phenylene)Oxide. ACS Appl. Polym. Mater. 2020, 2, 3518–3524. [Google Scholar] [CrossRef]
- D’Aniello, C.; Rizzo, P.; Guerra, G. Polymorphism and Mechanical Properties of Syndiotactic Polystyrene Films. Polymer 2005, 46, 11435–11441. [Google Scholar] [CrossRef]
- Daniel, C.; Longo, S.; Ricciardi, R.; Reverchon, E.; Guerra, G. Monolithic Nanoporous Crystalline Aerogels. Macromol. Rapid Commun. 2013, 34, 1194–1207. [Google Scholar] [CrossRef]
- Mochizuki, J.; Sano, T.; Tokami, T.; Itagaki, H. Decisive Properties of Solvent Able to Form Gels with Syndiotactic Polystyrene. Polymer 2015, 67, 118–127. [Google Scholar] [CrossRef]
- Cheng, Y.-W.; Wang, C. Solvent-Induced Crystallization of Electrospun Syndiotactic Polystyrene Nanofibers and Its Re-versible Desorption/Sorption of Volatile Organic Vapors. J. Polym. Res. 2016, 23, 234. [Google Scholar] [CrossRef]
- Raut, P.; Liang, W.; Chen, Y.-M.; Zhu, Y.; Jana, S.C. Syndiotactic Polystyrene-Based Ionogel Membranes for High Temperature Electrochemical Applications. ACS Appl. Mater. Interfaces 2017, 9, 30933–30942. [Google Scholar] [CrossRef]
- Itagaki, H.; Sano, T.; Okabe, T.; Sano, S.; Ebihara, H.; Tomono, F.; Dohra, H. Polymerization of Aniline in Tubular Cavities of the Crystalline Phase of Syndiotactic Polystyrene: Proposal of a Preparation Method of Sophisticated Polymer Composites. ACS Macro Lett. 2017, 6, 1099–1103. [Google Scholar] [CrossRef]
- Guerra, G.; Milano, G.; Venditto, V.; Musto, P.; De Rosa, C.; Cavallo, L. Thermoplastic Molecular Sieves. Chem. Mater. 2000, 12, 363–368. [Google Scholar] [CrossRef]
- Mahesh, K.P.O.; Sivakumar, M.; Yamamoto, Y.; Tsujita, Y.; Yoshimizu, H.; Okamoto, S. Structure and Properties of the Mesophase of Syndiotactic Polystyrene. J. Membr. Sci. 2005, 262, 11–19. [Google Scholar] [CrossRef]
- Tarallo, O.; Auriemma, F.; de Ballesteros, O.R.; Di Girolamo, R.; Diletto, C.; Malafronte, A.; De Rosa, C. The Role of Shape and Size of Guest Molecules in the Formation of Clathrates and Intercalates of Syndiotactic Polystyrene. Macromol. Chem. Phys. 2013, 214, 1901–1911. [Google Scholar] [CrossRef]
- Larobina, D.; Sanguigno, L.; Venditto, V.; Guerra, G.; Mensitieri, G. Gas Sorption and Transport in Syndiotactic Polystyrene with Nanoporous Crystalline Phase. Polymer 2004, 45, 429–436. [Google Scholar] [CrossRef]
- Uda, Y.; Kaneko, F.; Kawaguchi, T. Selective Guest Uptake from Solvent Mixtures in the Clathrate Phase of Syndiotactic Polystyrene. Macromol. Rapid Commun. 2004, 25, 1900–1904. [Google Scholar] [CrossRef]
- Tanigami, K.; Ishii, D.; Nakaoki, T.; Stroeve, P. Characterization of Toluene and 2-Methylnaphthalene Transport Separated by Syndiotactic Polystyrene Having Various Crystalline Forms. Polym. J. 2013, 45, 1135–1139. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Urakawa, O.; Kaneko, F.; Inoue, T. Dynamics of Polar Aromatic Molecules Confined in a Nanocavity of δ-Phase of Syndiotactic Polystyrene as Studied by Dielectric Spectroscopy. Chem. Phys. 2016, 479, 122–128. [Google Scholar] [CrossRef]
- Guerra, G.; Daniel, C.; Rizzo, P.; Tarallo, O. Advanced Materials Based on Polymer Cocrystalline Forms. J. Polym. Sci. B Polym. Phys. 2012, 50, 305–322. [Google Scholar] [CrossRef]
- Albunia, A.R.; Minucci, T.; Guerra, G. Ethylene Removal by Sorption from Polymeric Crystalline Frameworks. J. Mater. Chem. 2008, 18, 1046. [Google Scholar] [CrossRef]
- Venditto, V.; Pellegrino, M.; Califano, R.; Guerra, G.; Daniel, C.; Ambrosio, L.; Borriello, A. Monolithic Polymeric Aerogels with VOCs Sorbent Nanoporous Crystalline and Water Sorbent Amorphous Phases. ACS Appl. Mater. Interfaces 2015, 7, 1318–1326. [Google Scholar] [CrossRef]
- Daniel, C.; Antico, P.; Yamaguchi, H.; Kogure, M.; Guerra, G. Microporous-Crystalline Microfibers by Eco-Friendly Guests: An Efficient Tool for Sorption of Volatile Organic Pollutants. Microporous Mesoporous Mater. 2016, 232, 205–210. [Google Scholar] [CrossRef]
- Daniel, C.; Antico, P.; Guerra, G. Etched Fibers of Syndiotactic Polystyrene with Nanoporous-Crystalline Phases. Macromolecules 2018, 51, 6138–6148. [Google Scholar] [CrossRef]
- Galizia, M.; Daniel, C.; Fasano, G.; Guerra, G.; Mensitieri, G. Gas Sorption and Diffusion in Amorphous and Semicrystalline Nanoporous Poly(2,6-Dimethyl-1,4-Phenylene)Oxide. Macromolecules 2012, 45, 3604–3615. [Google Scholar] [CrossRef]
- Daniel, C.; Zhovner, D.; Guerra, G. Thermal Stability of Nanoporous Crystalline and Amorphous Phases of Poly(2,6-Dimethyl-1,4-Phenylene) Oxide. Macromolecules 2013, 46, 449–454. [Google Scholar] [CrossRef]
- Galizia, M.; Daniel, C.; Guerra, G.; Mensitieri, G. Solubility and Diffusivity of Low Molecular Weight Compounds in Semi-Crystalline Poly-(2,6-Dimethyl-1,4-Phenylene)Oxide: The Role of the Crystalline Phase. J. Membr. Sci. 2013, 443, 100–106. [Google Scholar] [CrossRef]
- Daniel, C.; Pellegrino, M.; Venditto, V.; Aurucci, S.; Guerra, G. Nanoporous-Crystalline Poly(2,6-Dimethyl-1,4-Phenylene)Oxide (PPO) Aerogels. Polymer 2016, 105, 96–103. [Google Scholar] [CrossRef]
- Figueroa-Gerstenmaier, S.; Daniel, C.; Milano, G.; Guerra, G.; Zavorotynska, O.; Vitillo, J.G.; Zecchina, A.; Spoto, G. Storage of Hydrogen as a Guest of a Nanoporous Polymeric Crystalline Phase. Phys. Chem. Chem. Phys. 2010, 12, 5369. [Google Scholar] [CrossRef]
- Mensitieri, G.; Venditto, V.; Guerra, G. Polymeric Sensing Films Absorbing Organic Guests into a Nanoporous Host Crystalline Phase. Sens. Actuators B Chem. 2003, 92, 255–261. [Google Scholar] [CrossRef]
- Pilla, P.; Cusano, A.; Cutolo, A.; Giordano, M.; Mensitieri, G.; Rizzo, P.; Sanguigno, L.; Venditto, V.; Guerra, G. Molecular Sensing by Nanoporous Crystalline Polymers. Sensors 2009, 9, 9816–9857. [Google Scholar] [CrossRef]
- Erdogan, M.; Özbek, Z.; Çapan, R.; Yagci, Y. Characterization of Polymeric LB Thin Films for Sensor Applications. J. Appl. Polym. Sci. 2012, 123, 2414–2422. [Google Scholar] [CrossRef]
- Lova, P.; Bastianini, C.; Giusto, P.; Patrini, M.; Rizzo, P.; Guerra, G.; Iodice, M.; Soci, C.; Comoretto, D. Label-Free Vapor Selectivity in Poly(p-Phenylene Oxide) Photonic Crystal Sensors. ACS Appl. Mater. Interfaces 2016, 8, 31941–31950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marlow, F.; Hoffmann, K.; Caro, J. Photoinduced Switching in Nanocomposites of Azobenzene and Molecular Sieves. Adv. Mater. 1997, 9, 567–570. [Google Scholar] [CrossRef]
- Zimmerman, H.E.; Nesterov, E.E. Quantitative Cavities and Reactivity in Stages of Crystal Lattices: Mechanistic and Exploratory Organic Photochemistry1,2. J. Am. Chem. Soc. 2002, 124, 2818–2830. [Google Scholar] [CrossRef]
- Garcia-Garibay, M.A. Engineering Carbene Rearrangements in Crystals: From Molecular Information to Solid-State Reactivity. Acc. Chem. Res. 2003, 36, 491–498. [Google Scholar] [CrossRef] [PubMed]
- MacGillivray, L.R.; Papaefstathiou, G.S.; Friščić, T.; Hamilton, T.D.; Bučar, D.-K.; Chu, Q.; Varshney, D.B.; Georgiev, I.G. Supramolecular Control of Reactivity in the Solid State: From Templates to Ladderanes to Metal−Organic Frameworks. Acc. Chem. Res. 2008, 41, 280–291. [Google Scholar] [CrossRef]
- Stegmaier, P.; De Girolamo Del Mauro, A.; Venditto, V.; Guerra, G. Optical Recording Materials Based on Photoisomerization of Guest Molecules of a Polymeric Crystalline Host Phase. Adv. Mater. 2005, 17, 1166–1168. [Google Scholar] [CrossRef]
- Albunia, A.R.; Rizzo, P.; Coppola, M.; De Pascale, M.; Guerra, G. Azobenzene Isomerization in Polymer Co-Crystalline Phases. Polymer 2012, 53, 2727–2735. [Google Scholar] [CrossRef]
- D’Aniello, C.; Dondi, D.; Faucitano, A.; Guerra, G. Intercalate Co-Crystals of Syndiotactic Polystyrene with Benzyl Methacrylate and Radiation-Induced Guest Polymerization. Macromolecules 2010, 43, 10560–10567. [Google Scholar] [CrossRef]
- Bandara, H.M.D.; Burdette, S.C. Photoisomerization in Different Classes of Azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825. [Google Scholar] [CrossRef]
- Shi, Z.; Peng, P.; Strohecker, D.; Liao, Y. Long-Lived Photoacid Based upon a Photochromic Reaction. J. Am. Chem. Soc. 2011, 133, 14699–14703. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Liu, X.-Y.; Cui, G.; Fang, W.-H.; Thiel, W. Photoisomerization of Arylazopyrazole Photoswitches: Stereospecific Excited-State Relaxation. Angew. Chem. Int. Ed. 2016, 55, 14009–14013. [Google Scholar] [CrossRef] [PubMed]
- Molla, M.R.; Rangadurai, P.; Antony, L.; Swaminathan, S.; de Pablo, J.J.; Thayumanavan, S. Dynamic Actuation of Glassy Polymersomes through Isomerization of a Single Azobenzene Unit at the Block Copolymer Interface. Nat. Chem. 2018, 10, 659–666. [Google Scholar] [CrossRef]
- Pianowski, Z.L. Recent Implementations of Molecular Photoswitches into Smart Materials and Biological Systems. Chem. Eur. J. 2019, 25, 5128–5144. [Google Scholar] [CrossRef] [PubMed]
- Feringa, B.L. The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). Angew. Chem. Int. Ed. 2017, 56, 11060–11078. [Google Scholar] [CrossRef] [Green Version]
- Kassem, S.; Lee, A.T.L.; Leigh, D.A.; Marcos, V.; Palmer, L.I.; Pisano, S. Stereodivergent Synthesis with a Programmable Molecular Machine. Nature 2017, 549, 374–378. [Google Scholar] [CrossRef]
- Katsonis, N.; Lubomska, M.; Pollard, M.; Feringa, B.; Rudolf, P. Synthetic Light-Activated Molecular Switches and Motors on Surfaces. Prog. Surf. Sci. 2007, 82, 407–434. [Google Scholar] [CrossRef]
- Weston, C.E.; Krämer, A.; Colin, F.; Yildiz, Ö.; Baud, M.G.J.; Meyer-Almes, F.-J.; Fuchter, M.J. Toward Photopharmacological Antimicrobial Chemotherapy Using Photoswitchable Amidohydrolase Inhibitors. ACS Infect. Dis. 2017, 3, 152–161. [Google Scholar] [CrossRef]
- Asano, T.; Okada, T.; Shinkai, S.; Shigematsu, K.; Kusano, Y.; Manabe, O. Temperature and Pressure Dependences of Thermal Cis-to-Trans Isomerization of Azobenzenes Which Evidence an Inversion Mechanism. J. Am. Chem. Soc. 1981, 103, 5161–5165. [Google Scholar] [CrossRef]
- Ishikawa, T.; Noro, T.; Shoda, T. Theoretical Study on the Photoisomerization of Azobenzene. J. Chem. Phys. 2001, 115, 7503–7512. [Google Scholar] [CrossRef]
- Hugel, T. Single-Molecule Optomechanical Cycle. Science 2002, 296, 1103–1106. [Google Scholar] [CrossRef]
- Alemani, M.; Peters, M.V.; Hecht, S.; Rieder, K.-H.; Moresco, F.; Grill, L. Electric Field-Induced Isomerization of Azobenzene by STM. J. Am. Chem. Soc. 2006, 128, 14446–14447. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, Y.; Oishi, S. Mechanism of Thermal Isomerization of Azobenzene in Zeolite Cavities. Chem. Lett. 1999, 28, 1045–1046. [Google Scholar] [CrossRef]
- Hoffmann, K.; Resch-Genger, U.; Marlow, F. Photoinduced Switching of Nanocomposites Consisting of Azobenzene and Molecular Sieves: Investigation of the Switching States. Microporous Mesoporous Mater. 2000, 41, 99–106. [Google Scholar] [CrossRef]
- Weh, K.; Noack, M.; Hoffmann, K.; Schröder, K.-P.; Caro, J. Change of Gas Permeation by Photoinduced Switching of Zeolite-Azobenzene Membranes of Type MFI and FAU. Microporous Mesoporous Mater. 2002, 54, 15–26. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Zhan, C.; You, Y.; Zhang, H.; Ma, J.; Xiong, Z.; Liu, X.; Wei, R. Synthesis and Photoinduced Anisotropy of Polymers Containing Nunchaku-Like Unit with an Azobenzene and a Mesogen. Polymers 2019, 11, 600. [Google Scholar] [CrossRef] [Green Version]
- Al-Bataineh, Q.M.; Ahmad, A.A.; Alsaad, A.M.; Telfah, A. New Insight on Photoisomerization Kinetics of Photo-Switchable Thin Films Based on Azobenzene/Graphene Hybrid Additives in Polyethylene Oxide. Polymers 2020, 12, 2954. [Google Scholar] [CrossRef]
- Pesce, L.; Perego, C.; Grommet, A.B.; Klajn, R.; Pavan, G.M. Molecular Factors Controlling the Isomerization of Azobenzenes in the Cavity of a Flexible Coordination Cage. J. Am. Chem. Soc. 2020, 142, 9792–9802. [Google Scholar] [CrossRef]
- Golla, M.; Nagendra, B.; Rizzo, P.; Daniel, C.; Guerra, G. Axial Orientation of Co-Crystalline Phases of Poly(2,6-Dimethyl-1,4-Phenylene)Oxide Films. Polymers 2020, 12, 2394. [Google Scholar] [CrossRef]
- Rizzo, P.; Gallo, C.; Vitale, V.; Tarallo, O.; Guerra, G. Nanoporous-Crystalline Films of PPO with Parallel and Perpendicular Polymer Chain Orientations. Polymer 2019, 167, 193–201. [Google Scholar] [CrossRef]
- Biswas, N.; Umapathy, S. Density Functional Calculations of Structures, Vibrational Frequencies, and Normal Modes of Trans- and Cis-Azobenzene. J. Phys. Chem. A 1997, 101, 5555–5566. [Google Scholar] [CrossRef]
- Fliegl, H.; Köhn, A.; Hättig, C.; Ahlrichs, R. Ab Initio Calculation of the Vibrational and Electronic Spectra of Trans- and Cis-Azobenzene. J. Am. Chem. Soc. 2003, 125, 9821–9827. [Google Scholar] [CrossRef]
- Fu, L.; Yang, J.; Dong, L.; Yu, H.; Yan, Q.; Zhao, F.; Zhai, F.; Xu, Y.; Dang, Y.; Hu, W.; et al. Solar Thermal Storage and Room-Temperature Fast Release Using a Uniform Flexible Azobenzene-Grafted Polynorborene Film Enhanced by Stretching. Macromolecules 2019, 52, 4222–4231. [Google Scholar] [CrossRef]
- Ladányi, V.; Dvořák, P.; Al Anshori, J.; Vetráková, Ľ.; Wirz, J.; Heger, D. Azobenzene Photoisomerization Quantum Yields in Methanol Redetermined. Photochem. Photobiol. Sci. 2017, 16, 1757–1761. [Google Scholar] [CrossRef]
- Forber, C.L.; Kelusky, E.C.; Bunce, N.J.; Zerner, M.C. Electronic Spectra of Cis- and Trans-Azobenzenes: Consequences of Ortho Substitution. J. Am. Chem. Soc. 1985, 107, 5884–5890. [Google Scholar] [CrossRef]
- Zimmerman, G.; Chow, L.-Y.; Paik, U.-J. The Photochemical Isomerization of Azobenzene. J. Am. Chem. Soc. 1958, 80, 3528–3531. [Google Scholar] [CrossRef]
- Rau, H. Photochemistry and Photophysics. In Progress in Photochemistry and Photophysics; Rabek, J.F., Ed.; CRC Press: Boca Raton, FL, USA, 1990; Volume 2, pp. 119–141. [Google Scholar]
- Lei, Z.; Vaidyalingam, A.; Dutta, P.K. Photochemistry of Azobenzene in Microporous Aluminophosphate AlPO4-5. J. Phys. Chem. B 1998, 102, 8557–8562. [Google Scholar] [CrossRef]
- Kazunori, S.; Masato, K.; Reiko, O.; Teruo, F. Quaternization of Poly(Tertiary Aminostyrene)s and Characterization of the Quaternized Polymers. Polymer 1997, 38, 5755–5760. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coscia, N.; Cozzolino, A.; Golla, M.; Rizzo, P. Absorption and Isomerization of Azobenzene Guest Molecules in Polymeric Nanoporous Crystalline Phases. Chemistry 2021, 3, 1074-1088. https://doi.org/10.3390/chemistry3030078
Coscia N, Cozzolino A, Golla M, Rizzo P. Absorption and Isomerization of Azobenzene Guest Molecules in Polymeric Nanoporous Crystalline Phases. Chemistry. 2021; 3(3):1074-1088. https://doi.org/10.3390/chemistry3030078
Chicago/Turabian StyleCoscia, Nicola, Antonietta Cozzolino, Manohar Golla, and Paola Rizzo. 2021. "Absorption and Isomerization of Azobenzene Guest Molecules in Polymeric Nanoporous Crystalline Phases" Chemistry 3, no. 3: 1074-1088. https://doi.org/10.3390/chemistry3030078
APA StyleCoscia, N., Cozzolino, A., Golla, M., & Rizzo, P. (2021). Absorption and Isomerization of Azobenzene Guest Molecules in Polymeric Nanoporous Crystalline Phases. Chemistry, 3(3), 1074-1088. https://doi.org/10.3390/chemistry3030078