The Photophysical Properties of Triisopropylsilyl-ethynylpentacene—A Molecule with an Unusually Large Singlet-Triplet Energy Gap—In Solution and Solid Phases
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Photophysics in Dilute Solution
3.2. Luminescence from Crystalline Samples
3.3. Fluorescence from Concentrated Solution
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Greyson, E.C.; Stepp, B.R.; Chen, X.D.; Schwerin, A.F.; Paci, I.; Smith, M.B.; Akdag, A.; Johnson, J.C.; Nozik, A.J.; Michl, J.; et al. Singlet exciton fission for solar cell applications. Energy aspects of interchromophore coupling. J. Phys. Chem. 2010, 114, 14223–14232. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.B.; Michl, J. Recent advances in singlet fission. Ann. Rev. Phys. Chem. 2013, 64, 361–386. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.B.; Michl, J. Singlet fission. Chem. Rev. 2010, 110, 6891–6936. [Google Scholar] [CrossRef] [PubMed]
- Thampi, A.; Stern, H.L.; Cheminal, A.; Tayebjee, M.J.Y.; Petty, A.J., II; Anthony, J.E.; Rao, A. Elucidation of excitation energy dependent correlated triplet pair formation pathways in an endothermic singlet fission system. J. Am. Chem. Soc. 2018, 140, 4613–4622. [Google Scholar] [CrossRef] [Green Version]
- Berkelbach, T.C.; Hybertsen, M.S.; Reichman, D.R. Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange. J. Chem. Phys. 2013, 138, 114103. [Google Scholar] [CrossRef]
- Busby, E.; Berkelbach, T.C.; Kumar, B.; Chernikov, A.; Zhong, Y.; Zhu, X.-Y.; Heinz, T.F.; Hybertsen, M.S.; Sfeir, M.Y.; Reichman, D.R.; et al. Multiphonon relaxation slows singlet fission in crystalline hexacene. J. Am. Chem. Soc. 2014, 136, 10654–10660. [Google Scholar] [CrossRef]
- Ryerson, J.L.; Zaykov, A.; Suarez, L.E.A.; Havenith, R.W.A.; Stepp, B.R.; Dron, P.I.; Kaleta, J.; Akdag, A.; Teat, S.J.; Magnera, T.F.; et al. Structure and photophysics of indigoids for singlet fission: Cibalackrot. J. Chem. Phys. 2019, 151, 184903. [Google Scholar] [CrossRef]
- Buchanan, E.A.; Michl, J. Optimal arrangements of 1,3-diphenylisobenzofuran molecule pairs for fast singlet fission. Photochem. Photobiol. Sci. 2019, 18, 2112–2124. [Google Scholar] [CrossRef]
- Johnson, J.C.; Nozik, A.J.; Michl, J. The role of chromophore coupling in singlet fission. Acc. Chem. Res. 2013, 46, 1290–1299. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, K.; Liu, H.; Zhang, Y.; Zhang, H.; Yao, J.; Fu, H. Impact of intermolecular distance on singlet fission in a series of TIPS pentacene compounds. J. Phys. Chem. Lett. 2014, 5, 3451–3455. [Google Scholar] [CrossRef]
- Miyata, K.; Conrad-Burton, F.S.; Geyer, F.L.; Zhu, X.-Y. Triplet pair states in singlet fission. Chem. Rev. 2019, 119, 4261–4292. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Mazumdar, S. Theory of transient excited state absorptions in pentacene and derivatives: Triplet−triplet biexciton versus free triplets. J. Phys. Chem. Lett. 2017, 8, 5943–5948. [Google Scholar] [CrossRef] [PubMed]
- Greyson, E.C.; Vura-Weis, J.; Michl, J.; Ratner, M.A. Maximizing singlet fission in organic dimers. Theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. J. Phys. Chem. 2010, 114, 14168–14177. [Google Scholar] [CrossRef] [PubMed]
- Anthony, J.E.; Brooks, J.S.; Eaton, D.L.; Parkin, S.R. Functionalized pentacene: Improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 2001, 123, 9482–9483. [Google Scholar] [CrossRef]
- Sheraw, C.D.; Jackson, T.N.; Eaton, D.L.; Anthony, J.E. Functionalized pentacene active layer organic thin-film transistors. Adv. Mater. 2003, 15, 2009–2011. [Google Scholar] [CrossRef]
- Yang, L.; Tabachnyk, M.; Bayliss, S.L.; Bohm, M.L.; Broch, K.; Greenham, N.C.; Friend, R.H.; Ehrler, B. Solution-Processable Singlet Fission Photovoltaic Devices. Nano Lett. 2015, 15, 354–358. [Google Scholar] [CrossRef]
- Ramanan, C.; Smeigh, A.L.; Anthony, J.E.; Marks, T.J.; Wasielewski, M.R. Competition between singlet fission and charge separation in solution-processed blend films of 6,13-bis(triisopropylsilylethynyl)pentacene with sterically-encumbered perylene-3,4:9,10-bis(dicarboximide)s. J. Am. Chem. Soc. 2012, 134, 386–397. [Google Scholar] [CrossRef]
- Walker, B.J.; Musser, A.J.; Beljonne, D.; Friend, R.H. Singlet exciton fission in solution. Nat. Chem. 2013, 5, 1019–1024. [Google Scholar] [CrossRef]
- Zirzlmeier, J.; Lehnherr, D.; Coto, P.B.; Chernick, E.T.; Casillas, R.; Basel, B.S.; Thoss, M.; Tykwinski, R.R.; Guldi, D.M. Singlet fission in pentacene dimers. Proc. Natl. Acad. Sci. USA 2015, 112, 5325–5330. [Google Scholar] [CrossRef] [Green Version]
- Alagna, N.; Lustres, J.L.P.; Wollscheid, N.; Luo, Q.Q.; Han, J.; Dreuw, A.; Geyer, F.L.; Brosius, V.; Bunz, U.H.F.; Buckup, T.; et al. Singlet fission in tetraaza-TIPS-pentacene oligomers: From fs excitation to μs triplet decay via the biexcitonic state. J. Phys. Chem. 2019, 123, 10780–10793. [Google Scholar] [CrossRef]
- Sakuma, T.; Sakai, H.; Araki, Y.; Mori, T.; Wada, T.; Tkachenko, N.V.; Hasobe, T. Long-lived triplet excited states of bent-shaped pentacene dimers by intramolecular singlet fission. J. Phys. Chem. 2016, 120, 1867–1875. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, J.K.G.; Atahan, A.; Harriman, A.; Tojo, S.; Fujitsuka, M.; Majima, T. Pulse radiolysis of TIPS-pentacene and a fluorene-bridged bis(pentacene): Evidence for intramolecular singlet-exciton fission. J. Phys. Chem. Lett. 2018, 9, 3934–3938. [Google Scholar] [CrossRef] [PubMed]
- Herz, J.; Buckup, T.; Paulus, F.; Engelhart, J.U.; Bunz, U.H.F.; Motzkus, M. Unveiling singlet fission mediating states in TIPS-pentacene and its aza derivatives. J. Phys. Chem. A 2015, 119, 6602–6610. [Google Scholar] [CrossRef] [PubMed]
- Korovina, N.; Pompetti, N.; Johnson, J.C. Lessons from intramolecular singlet fission with covalently bound chromophores. J. Chem. Phys. 2020, 152, 040904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, H.L.; Musser, A.J.; Gelinas, S.; Parkinson, P.; Herz, L.M.; Bruzek, M.J.; Anthony, J.; Friend, R.H.; Walker, B.J. Identification of a triplet pair intermediate in singlet exciton fission in solution. Proc. Natl. Acad. Sci. USA 2015, 112, 7656–7661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaton, S.W.; Shoer, L.E.; Karlen, S.D.; Dyar, S.M.; Margulies, E.A.; Veldkamp, B.S.; Ramanan, C.; Hartzler, D.A.; Savikhin, S.; Marks, T.J.; et al. Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J. Am. Chem. Soc. 2013, 135, 14701–14712. [Google Scholar] [CrossRef]
- Nijegorodov, N.; Ramachandran, V.; Winkoun, D.P. The dependence of the absorption and fluorescence parameters, the intersystem crossing and internal conversion rate constants on the number of rings in polyacene molecules. Spectrochim. Acta Part A: Mol. Biomol. Spectr. 1997, 53, 1813–1824. [Google Scholar] [CrossRef]
- Zimmerman, P.M.; Zhang, Z.; Musgrave, C.B. Singlet fission in pentacene through multi-exciton quantum states. Nat. Chem. 2010, 2, 648–652. [Google Scholar] [CrossRef]
- Zhang, Y.-D.; Wu, Y.; Xu, Y.; Wang, Q.; Liu, K.; Chen, J.-W.; Cao, J.J.; Zhang, C.; Fu, H.; Zhang, H.-L. Excessive exoergicity reduces singlet exciton fission efficiency of heteroacenes in solutions. J. Am. Chem. Soc. 2016, 138, 6739–6745. [Google Scholar] [CrossRef]
- Grieco, C.; Doucette, G.S.; Munson, K.T.; Swartzfager, J.R.; Munro, J.M.; Anthony, J.E.; Dabo, I.; Asbury, J.B. Vibrational probe of the origin of singlet exciton fission in TIPS-pentacene solutions. J. Chem. Phys. 2019, 151, 154701. [Google Scholar] [CrossRef] [Green Version]
- Yago, T.; Ishikawa, K.; Katoh, R.; Wakasa, M. Magnetic field effects on triplet pair generated by singlet fission in an organic crystal: Application of radical pair model to triplet pair. J. Phys. Chem. C 2016, 120, 27858–27870. [Google Scholar] [CrossRef]
- Kaur, I.; Jia, W.; Kopreski, R.P.; Selvarasah, S.; Dokmeci, M.R.; Pramanik, C.; McGruer, N.E.; Miller, G.P. Substituent effects in pentacenes: Gaining control over HOMO-LUMO gaps and photooxidative processes. J. Am. Chem. Soc. 2008, 130, 16274–16286. [Google Scholar] [CrossRef] [PubMed]
- Seybold, P.G.; Gouterman, M. Porphyrins XIII: Fluorescence spectra and quantum yields. J. Mol. Spectrosc. 1969, 31, 1–13. [Google Scholar] [CrossRef]
- Pineiro, M.; Gonsalves, A.M.D.R.; Pereira, M.M.; Formosinho, S.J.; Arnaut, L.G. New halogenated phenylbacteriochlorins and their efficiency in singlet-oxygen sensitization. J. Phys. Chem. 2002, 106, 3787–3795. [Google Scholar] [CrossRef] [Green Version]
- De Melo, J.S.S.; Burrows, H.D.; Serpa, C.; Arnaut, L.G. The triplet state of indigo. Angew. Chem. Int. Ed. 2007, 46, 2094–2096. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.J.S.; Serpa, C.; Arnaut, L.G. About biphenyl first excited triplet state energy. J. Photochem. Photobiol. Chem. 2006, 184, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Gallimore, P.J.; Davidson, N.M.; Kalberer, M.; Pope, F.D.; Ward, A.D. 1064 nm Dispersive Raman microspectroscopy and optical trapping of pharmaceutical aerosols. Anal. Chem. 2018, 90, 8838–8844. [Google Scholar] [CrossRef]
- Strickler, S.J.; Berg, R.A. Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 1962, 37, 814–822. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Biczok, L.; Linschitz, H. External heavy-atom induced phosphorescence emission of fullerenes—The energy of triplet C-60. J. Phys. Chem. 1992, 96, 5237–5239. [Google Scholar] [CrossRef]
- Porter, G.; Wilkinson, F. Energy transfer from the triplet state. Proc. R. Soc. Lond. 1961, 264, 1–18. [Google Scholar] [CrossRef]
- Arnaut, L.G.; Pereira, M.M.; Dabrowski, J.M.; Silva, E.F.F.; Schaberle, F.A.; Abreu, A.R.; Rocha, L.B.; Barsan, M.M.; Urbanska, K.; Stochel, G.; et al. Photodynamic therapy efficacy enhanced by dynamics: The role of charge transfer and photostability in the selection of photosensitizers. Chem. Eur. J. 2014, 20, 5346–5357. [Google Scholar] [CrossRef] [PubMed]
- Schaberle, F.A.; Abreu, A.R.; Gonçalves, P.F.; Sá, G.F.F.; Pereira, M.M.; Arnaut, L.G. Ultrafast dynamics of manganese(III), manganese(II), and free-base bacteriochlorin: Is there time for photochemistry? Inorg. Chem. 2017, 56, 2677–2689. [Google Scholar] [CrossRef] [PubMed]
- Arnaut, L.G.; Caldwell, R.A.; Elbert, J.E.; Melton, L.A. Recent advances in photoacoustic calorimetry—Theoretical basis and improvements in experimental design. Rev. Sci. Instrum. 1992, 63, 5381–5389. [Google Scholar] [CrossRef]
- Schaberle, F.A.N.; Numes, R.M.D.; Barroso, M.; Serpa, C.; Arnaut, L.G. Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions. Photochem. Photobiol. Sci. 2010, 9, 812–822. [Google Scholar] [CrossRef]
- Braslavsky, S.E.; Heibel, G.E. Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution. Chem. Rev. 1992, 92, 1381–1410. [Google Scholar] [CrossRef]
- Pineiro, M.; Carvalho, A.L.; Pereira, M.M.; Gonsalves, A.M.D.R.; Arnaut, L.G.; Formosinho, S. Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies. Chem. Eur. J. 1998, 4, 2299–2307. [Google Scholar] [CrossRef] [Green Version]
- Schaberle, F.A.; Rego Filho, F.A.M.G.; Reis, L.A.; Arnaut, L.G. Assessment of lifetime resolution limits in time-resolved photoacoustic calorimetry vs. transducer frequencies: Setting the stage for picosecond resolution. Photochem. Photobiol. Sci. 2016, 15, 204–210. [Google Scholar] [CrossRef]
- Levy, D.; Avnir, D. Room-temperature phosphorescence and delayed fluorescence of organic molecules trapped in silica sol-gel glasses. J. Photochem. Photobiol. Chem. 1991, 57, 41–63. [Google Scholar] [CrossRef]
- Lubert-Perquel, D.; Salvadori, E.; Dyson, M.; Stavrinou, P.N.; Montis, R.; Nagashima, H.; Kobori, Y.; Heutz, S.; Kay, C.W.M. Identifying triplet pathways in dilute pentacene films. Nat. Commun. 2018, 9, 4222. [Google Scholar] [CrossRef] [Green Version]
- Niu, M.S.; Zheng, F.; Yang, X.Y.; Bi, P.Q.; Feng, L.; Hao, X.T. Molecular packing correlated fluorescence in TIPS-pentacene films. Org. Electron. 2017, 49, 340–346. [Google Scholar] [CrossRef]
- Grieco, C.; Doucette, G.S.; Pensack, R.D.; Payne, M.M.; Rimshaw, A.; Scholes, G.D.; Anthony, J.E.; Asbury, J.B. Dynamic exchange during triplet transport in nanocrystalline TIPS-pentacene films. J. Am. Chem. Soc. 2016, 138, 16069–16080. [Google Scholar] [CrossRef] [PubMed]
- Sharifzadeh, S.; Wong, C.Y.; Wu, H.; Cotts, B.L.; Kronik, L.; Ginsberg, N.S.; Neaton, J.B. Relating the physical structure and optoelectronic function of crystalline TIPS-pentacene. Adv. Funct. Mater. 2015, 25, 2038–2046. [Google Scholar] [CrossRef]
- Wilson, M.W.B.; Rao, A.; Ehrler, B.; Friend, R.H. Singlet exciton fission in polycrystalline pentacene: From photophysics toward devices. Acc. Chem. Res. 2013, 46, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Tayebjee, M.J.Y.; Schwarz, K.N.; MacQueen, R.W.; Dvorak, M.; Lam, A.W.C.; Ghiggino, K.P.; McCamey, D.R.; Schmidt, T.W.; Conibeer, G.J. Morphological evolution and singlet fission in aqueous suspensions of TIPS-pentacene nanoparticles. J. Phys. Chem. 2016, 120, 157–165. [Google Scholar] [CrossRef]
- Platt, A.D.; Day, J.; Subramanian, S.; Anthony, J.E.; Ostroverkhova, O. Optical, fluorescent, and (photo)conductive properties of high-performance functionalized pentacene and anthradithiophene derivatives. J. Phys. Chem. 2009, 113, 14006–14014. [Google Scholar] [CrossRef]
- Wong, C.Y.; Penwell, S.B.; Cotts, B.L.; Noriega, R.; Wu, H.; Ginsberg, N.S. Revealing exciton dynamics in a small-molecule organic semiconducting film with subdomain transient absorption microscopy. J. Phys. Chem. 2013, 117, 22111–22122. [Google Scholar] [CrossRef]
- Casillas, R.; Adam, M.; Coto, P.B.; Waterloo, A.R.; Zirzlmeier, J.; Reddy, S.R.; Hampel, F.; McDonald, R.; Tykwinski, R.R.; Thoss, M.; et al. Intermolecular singlet fission in unsymmetrical derivatives of pentacene in solution. Adv. Ener. Mater. 2019, 9, 1802221. [Google Scholar] [CrossRef]
- Schrauben, J.N.; Ryerson, J.L.; Michl, J.; Johnson, J.C. Mechanism of singlet fission in thin films of 1,3-diphenylisobenzofuran. J. Amer. Chem. Soc. 2014, 136, 7363–7373. [Google Scholar] [CrossRef]
- Dron, P.I.; Michl, J.; Johnson, J.C. Singlet fission and excimer formation in disordered solids of alkyl-substituted 1,3-diphenylisobenzofurans. J. Phys. Chem. A 2017, 121, 8596–8603. [Google Scholar] [CrossRef]
- Felter, K.M.; Dubey, R.K.; Grozema, F.C. Relation between molecular packing and singlet fission in thin films of brominated perylenediimides. J. Chem. Phys. 2019, 151, 094301. [Google Scholar] [CrossRef]
- Dover, C.B.; Gallaher, J.K.; Frazer, L.; Tapping, P.C.; Petty, A.J.; Crossley, M.J.; Anthony, J.E.; Kee, T.W.; Schmidt, T.W. Endothermic singlet fission is hindered by excimer formation. Nat. Chem. 2018, 10, 305–310. [Google Scholar] [CrossRef]
- Miller, C.E.; Wasielewski, M.R.; Schatz, G.C. Modeling singlet fission in rylene and diketopyrrolopyrrole derivatives: The role of the charge transfer state in superexchange and excimer formation. J. Phys. Chem. C 2017, 121, 10345–10350. [Google Scholar] [CrossRef]
- Burgos, J.; Pope, M.; Swenberg, C.E.; Alfano, R.R. Hetero-fission in pentacene-doped tetracene single crystals. Phys. Status Solidi 1977, 83, 249–256. [Google Scholar] [CrossRef]
- Friend, R.H.; Phillips, M.; Rao, A.; Wilson, M.W.N. Excitons and charges at organic semiconductor heterojunctions. Faraday Discuss. 2012, 155, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Weis, E. Chlorophyll fluorescence at 77K in intact leaves—Characterization of a technique to eliminate artifacts related to self-absorption. Photosynthsis Res. 1985, 6, 73–86. [Google Scholar] [CrossRef]
- He, R.; Tassi, N.G.; Blanchet, G.B.; Pinczuk, A. Intense photoluminescence from pentacene monolayers. Appl. Phys. Lett. 2010, 96, 263303. [Google Scholar] [CrossRef]
[TIPS-P]/mM | φ2 | ET/cm−1 1 |
---|---|---|
1.00 | 0.0527 ± 0.0079 | 7940 ± 1190 |
2.50 | 0.0519 ± 0.0072 | 7940 ± 1080 |
[TIPS-P]/μM | Emax × ΦF/cm−1 1 | φ1 | ΦΤ 2 |
---|---|---|---|
5.2 | 11,505 | 0.2556 ± 0.0119 | 0.0087 ± 0.0004 |
8.4 | 11,505 | 0.2636 ± 0.0060 | −0.0068 ± 0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schaberle, F.A.; Serpa, C.; Arnaut, L.G.; Ward, A.D.; Karlsson, J.K.G.; Atahan, A.; Harriman, A. The Photophysical Properties of Triisopropylsilyl-ethynylpentacene—A Molecule with an Unusually Large Singlet-Triplet Energy Gap—In Solution and Solid Phases. Chemistry 2020, 2, 545-564. https://doi.org/10.3390/chemistry2020033
Schaberle FA, Serpa C, Arnaut LG, Ward AD, Karlsson JKG, Atahan A, Harriman A. The Photophysical Properties of Triisopropylsilyl-ethynylpentacene—A Molecule with an Unusually Large Singlet-Triplet Energy Gap—In Solution and Solid Phases. Chemistry. 2020; 2(2):545-564. https://doi.org/10.3390/chemistry2020033
Chicago/Turabian StyleSchaberle, Fabio A., Carlos Serpa, Luis G. Arnaut, Andrew D. Ward, Joshua K. G. Karlsson, Alparslan Atahan, and Anthony Harriman. 2020. "The Photophysical Properties of Triisopropylsilyl-ethynylpentacene—A Molecule with an Unusually Large Singlet-Triplet Energy Gap—In Solution and Solid Phases" Chemistry 2, no. 2: 545-564. https://doi.org/10.3390/chemistry2020033
APA StyleSchaberle, F. A., Serpa, C., Arnaut, L. G., Ward, A. D., Karlsson, J. K. G., Atahan, A., & Harriman, A. (2020). The Photophysical Properties of Triisopropylsilyl-ethynylpentacene—A Molecule with an Unusually Large Singlet-Triplet Energy Gap—In Solution and Solid Phases. Chemistry, 2(2), 545-564. https://doi.org/10.3390/chemistry2020033