Nanomedicine as a Promising Treatment Approach for Obesity
Abstract
1. Introduction
1.1. Obesity and the Impaired Role of Adipose Tissue
1.2. Complications of Obesity
Obesity and Cancer
1.3. The Cost of Obesity for Health Services
1.4. Current Treatments
2. Nanomedicine
2.1. Effective Strategies in the Fight Against Obesity Through Nanomedicine
2.1.1. Photothermal Lipolysis
2.1.2. Gene Nanotherapy for Obesity Treatment
2.1.3. Magnetic Hyperthermia Treatment for Obesity
2.1.4. Herbal Anti-Obesity Nanomedicine
Bioactive Compound | Anti-Obesity Effect | Benefits of Nanomedicine | References |
---|---|---|---|
Quercetin (Flavonol found in onions, citrus fruits, and tea) | Increases fatty acid β-oxidation and lipolysis by stimulating mitochondrial biogenesis, cyclic adenosine monophosphate (c-AMP), and hormone-sensitive lipase. | Insoluble in both hot and cold water; however, improved water solubility in nano-encapsulation and increased dissolution rate of nanoparticles due to their large surface area. | [50,76] |
Epigallocatechin gallate (Polyphenolic molecule abundantly found in green tea) | Promotes adipocyte apoptosis, lipolysis, and insulin sensitivity and inhibits adipocyte proliferation and differentiation. | Improved rapid oral metabolism is achieved through nanoencapsulation, which provides protection from degradation and addresses toxicity concerns. | [50,76] |
Curcumin (Polyphenolic molecule found in turmeric) | Disrupts leptin signalling and increases adiponectin expression for decreased preadipocyte differentiation, increased lipolysis, and increased insulin sensitivity. | Low aqueous solubility and poor bioavailability enhanced by nano-formulations of curcumin for improved anti-obesity effects. | [70,76] |
Resveratrol (Phytoalexin in red grapes, wine, and nuts) | Increases lipolysis, mitochondrial biogenesis (uncoupling protein-1 (UCP-1) and CD137 expression for WAT browning), and fatty acid β-oxidation and regulates adipocyte differentiation (suppresses insulin-like growth factor-binding protein 3 (IGFBP3)). | Photosensitive degradation, low thermal resistance, and negligible bioavailability after first-pass metabolism improved through nanoencapsulation in nanocarriers. | [3,67,76,80] |
2.2. Toxicity of Nanomedicine
2.3. Challenges Associated with Nanomedicines Restrict Their Translation into Clinical Use
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
WAT | white adipose tissue |
WHO | World Health Organization |
CVD | cardiovascular diseases |
DNL | novo lipogenesis |
ACC1 | acetyl-CoA carboxylase 1 |
SAT | subcutaneous adipose tissue |
MCP-1 | chemoattractant protein 1 |
BAT | brown adipose tissue |
T2DM | type 2 diabetes mellitus |
LDL | low-density lipoprotein |
VLDL | very low-density lipoprotein |
HDL | high-density lipoprotein |
IGF-1 | insulin-like growth factor |
BMI | body mass index |
RYGB | Roux-en-Y gastric bypass |
GLP-1 | glucagon-like peptide-1 |
NP | nanoparticles |
AHP | prohibitin-targeting ligand |
AHP-KLA | prohibitin-targeting ligand with a KLA peptide |
Rosi | Rosiglitazone |
PTT | Photothermal therapy |
NIR | near-infrared light |
Au NP | gold nanoparticles |
AuNS | gold nanospheres |
H-AuNS | Hollow gold nanospheres |
HA-HAuNS-ATP | adipocyte-targeting peptide |
FABP | fatty acid-binding proteins |
ATS-9R | Adipose-targeting sequence-9-arginine |
PVP-AgNPs | polyvinylpyrrolidone-coated silver nanoparticles |
References
- Pandeya, P.R.; Lamichhane, R.; Lee, K.H.; Lamichhane, G.; Kim, S.G.; Jung, H.J. Efficacy of a Novel Herbal Formulation (F2) on the Management of Obesity: In Vitro and In Vivo Study. Evid.-Based Complement. Altern. Med. 2021, 2021, 8854915. [Google Scholar] [CrossRef]
- Chooi, Y.C.; Ding, C.; Magkos, F. The Epidemiology of Obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef]
- Sibuyi, N.R.S.; Moabelo, K.L.; Meyer, M.; Onani, M.O.; Dube, A.; Madiehe, A.M. Nanotechnology Advances towards Development of Targeted-Treatment for Obesity. J. Nanobiotechnol. 2019, 17, 122. [Google Scholar] [CrossRef]
- Tsou, Y.H.; Wang, B.; Ho, W.; Hu, B.; Tang, P.; Sweet, S.; Zhang, X.Q.; Xu, X. Nanotechnology-Mediated Drug Delivery for the Treatment of Obesity and Its Related Comorbidities. Adv. Healthc. Mater. 2019, 8, 18011184. [Google Scholar] [CrossRef]
- Allison, J.R.; Ursula, W. Adipose Tissue: Physiology to Metabolic Dysfunction. In Endotext; MDText.com, Inc.: South Dartmouth, MA, USA, 2020. Available online: https://pubmed.ncbi.nlm.nih.gov/32255578/ (accessed on 4 May 2025).
- Hibi, M.; Oishi, S.; Matsushita, M.; Yoneshiro, T.; Yamaguchi, T.; Usui, C.; Yasunaga, K.; Katsuragi, Y.; Kubota, K.; Tanaka, S.; et al. Brown Adipose Tissue Is Involved in Diet-Induced Thermogenesis and Whole-Body Fat Utilization in Healthy Humans. Int. J. Obes. 2016, 40, 1655–1661. [Google Scholar] [CrossRef]
- Song, Z.; Xiaoli, A.M.; Yang, F. Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients 2018, 10, 1383. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose Tissue Inflammation and Metabolic Dysfunction in Obesity. Am. J. Physiol. Cell Physiol. 2021, 320, 375–391. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Inflammation, Metaflammation and Immunometabolic Disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Wang, Y.; Mao, J.; Yuan, Y.; Luo, P.; Wang, G.; Zhou, S. Features, Functions, and Associated Diseases of Visceral and Ectopic Fat: A Comprehensive Review. Obesity 2025, 33, 825–838. [Google Scholar] [CrossRef]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef]
- Gómez-Hernández, A.; Beneit, N.; Díaz-Castroverde, S.; Escribano, Ó. Differential Role of Adipose Tissues in Obesity and Related Metabolic and Vascular Complications. Int. J. Endocrinol. 2016, 16, 1216783. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.D.; Blüher, M.; Tschöp, M.H.; DiMarchi, R.D. Anti-Obesity Drug Discovery: Advances and Challenges. Nat. Rev. Drug Discov. 2022, 21, 201–223. [Google Scholar] [CrossRef] [PubMed]
- Colditz, G.A.; Lindsay, L. Obesity and Cancer: Evidence, Impact, and Future Directions. Clin. Chem. 2018, 64, 154–162. [Google Scholar] [CrossRef]
- Vucenik, I.; Stains, J.P. Obesity and Cancer Risk: Evidence, Mechanisms, and Recommendations. Ann. N. Y. Acad. Sci. 2012, 1271, 37–43. [Google Scholar] [CrossRef]
- Malnick, S.D.H.; Knobler, H. The Medical Complications of Obesity. QJM Int. J. Med. 2006, 99, 565–579. [Google Scholar] [CrossRef]
- Ansari, S.; Haboubi, H.; Haboubi, N. Adult Obesity Complications: Challenges and Clinical Impact. Ther. Adv. Endocrinol. Metab. 2020, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Hampl, S.E.; Hassink, S.G.; Skinner, A.C.; Armstrong, S.C.; Barlow, S.E.; Bolling, C.F.; Avila Edwards, K.C.; Eneli, I.; Hamre, R.; Joseph, M.M.; et al. Clinical Practice Guideline for the Evaluation and Treatment of Children and Adolescents With Obesity. Pediatrics 2023, 151, e2022060640. [Google Scholar] [CrossRef]
- Harvey, A.E.; Lashinger, L.M.; Hursting, S.D. The Growing Challenge of Obesity and Cancer: An Inflammatory Issue. Ann. N. Y. Acad. Sci. 2011, 1229, 45–52. [Google Scholar] [CrossRef]
- Chen, J. Multiple Signal Pathways in Obesity-Associated Skin Cancer. Toxicol. Appl. Pharmacol. 2010, 247, 166. [Google Scholar] [CrossRef]
- Dee, A.; Callinan, A.; Doherty, E.; O’Neill, C.; McVeigh, T.; Sweeney, M.R.; Staines, A.; Kearns, K.; Fitzgerald, S.; Sharp, L.; et al. Overweight and Obesity on the Island of Ireland: An Estimation of Costs. BMJ Open 2015, 5, e006189. [Google Scholar] [CrossRef]
- Tsai, A.G.; Williamson, D.F.; Glick, H.A. Direct Medical Cost of Overweight and Obesity in the USA: A Quantitative Systematic Review. Obes. Rev. 2011, 12, 50–61. [Google Scholar] [CrossRef]
- Andreyeva, T.; Sturm, R.; Ringel, J.S. Moderate and Severe Obesity Have Large Differences in Health Care Costs. Obes. Res. 2004, 12, 1936–1943. [Google Scholar] [CrossRef]
- Dee, A.P.; Perry, I.J.; O’Neill, C.; Doherty, E.; Callan, A.; Kearns, K.; O’Dwyer, V.; Staines, A.; McVeigh, T.; Sweeney, M.R.; et al. The Cost of Overweight and Obesity on the Island of Ireland. J. Epidemiol. Community Health 2013, 67. [Google Scholar] [CrossRef]
- Nagi, M.A.; Ahmed, H.; Rezq, M.A.A.; Sangroongruangsri, S.; Chaikledkaew, U.; Almalki, Z.; Thavorncharoensap, M. Economic Costs of Obesity: A Systematic Review. Int. J. Obes. 2024, 48, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Aldubikhi, A. Obesity Management in the Saudi Population. Saudi Med. J. 2023, 44, 725–731. [Google Scholar] [CrossRef]
- Matthias, B.; Mohini, A.; Louis, J. New Insights into the Treatment of Obesity. Diabetes Obes. Metab. 2023, 25, 2058–2072. [Google Scholar]
- Semlitsch, T.; Stigler, F.L.; Jeitler, K.; Horvath, K.; Siebenhofer, A. Management of Overweight and Obesity in Primary Care—A Systematic Overview of International Evidence-Based Guidelines. Obes. Rev. 2019, 20, 1218–1230. [Google Scholar] [CrossRef]
- Breen, C.; O’connell, J.; Geoghegan, J.; O’shea, D.; Birney, S.; Tully, L.; Gaynor, K.; O’kelly, M.; O’malley, G.; O’donovan, C.; et al. Obesity in Adults: A 2022 Adapted Clinical Practice Guideline for Ireland. Obes. Facts 2022, 15, 736–752. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, B.M.; Kvach, E.; Eckel, R.H. Treatment of Obesity. Circ. Res. 2016, 118, 1844–1855. [Google Scholar] [CrossRef]
- Arterburn, D.E.; Telem, D.A.; Kushner, R.F.; Courcoulas, A.P. Benefits and Risks of Bariatric Surgery in Adults: A Review. JAMA-J. Am. Med. Assoc. 2020, 324, 879–887. [Google Scholar] [CrossRef]
- Aderinto, N.; Olatunji, G.; Kokori, E.; Olaniyi, P.; Isarinade, T.; Yusuf, I.A. Recent Advances in Bariatric Surgery: A Narrative Review of Weight Loss Procedures. Ann. Med. Surg. 2023, 85, 6091–6104. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhou, Z.; Lyu, X.; Xu, H.; Zhu, H.; Pan, H.; Wang, L.; Yang, H.; Gong, F. The Antiobesity Effect and Safety of GLP-1 Receptor Agonist in Overweight/Obese Patients Without Diabetes: A Systematic Review and Meta-Analysis. Horm. Metab. Res. 2022, 54, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Bray, G.A.; Heisel, W.E.; Afshin, A.; Jensen, M.D.; Dietz, W.H.; Long, M.; Kushner, R.F.; Daniels, S.R.; Wadden, T.A.; Tsai, A.G.; et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr. Rev. 2018, 39, 79–132. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Qiang, L.; Gu, Z. Nanomedicine for Obesity Treatment. Sci. China Life Sci. 2018, 61, 373–379. [Google Scholar] [CrossRef]
- Montesi, L.; El Ghoch, M.; Brodosi, L.; Calugi, S.; Marchesini, G.; Grave, R.D. Long-Term Weight Loss Maintenance for Obesity: A Multidisciplinary Approach. Diabetes Metab. Syndr. Obes. 2016, 9, 37–46. [Google Scholar] [CrossRef]
- Hussain, S.S.; Bloom, S.R. The Pharmacological Treatment and Management of Obesity. Postgrad. Med. 2011, 123, 34–44. [Google Scholar] [CrossRef]
- Hall, K.D.; Kahan, S. Maintenance of Lost Weight and Long-Term Management of Obesity. Med. Clin. N. Am. 2018, 102, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Who European Regional Obesity Report 2022. Available online: https://iris.who.int/bitstream/handle/10665/353747/9789289057738-eng.pdf (accessed on 5 May 2025).
- dos Santos Moraes, A.; da Costa Padovani, R.; La Scala Teixeira, C.V.; Cuesta, M.G.S.; dos Santos Gil, S.; de Paula, B.; dos Santos, G.M.; Gonçalves, R.T.; Dâmaso, A.R.; Oyama, L.M.; et al. Cognitive Behavioral Approach to Treat Obesity: A Randomized Clinical Trial. Front. Nutr. 2021, 8, 611217. [Google Scholar] [CrossRef] [PubMed]
- Castelnuovo, G.; Pietrabissa, G.; Manzoni, G.M.; Cattivelli, R.; Rossi, A.; Novelli, M.; Varallo, G.; Molinari, E. Cognitive Behavioral Therapy to Aid Weight Loss in Obese Patients: Current Perspectives. Psychol. Res. Behav. Manag. 2017, 10, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswami, V.; Dwoskin, L.P. Obesity: Current and Potential Pharmacotherapeutics and Targets. Pharmacol. Ther. 2017, 170, 116–147. [Google Scholar] [CrossRef] [PubMed]
- Electronic Medicines Compendium. Xenical 120 mg Hard Capsules Summary of Product Characteristics and Patient Information Leaflet 2017. Available online: https://www.medicines.org.uk/emc/product/2592/smpc#gref (accessed on 3 March 2025).
- Tchang, B.G. Pharmacologic Treatment of Overweight and Obesity in Adults. In Endotext; MDText.com, Inc.: South Dartmouth, MA, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279038/ (accessed on 9 March 2025).
- Almeanazel, O.; Alanazi, F.; Alsarra, I.; Alshora, D.; Shakeel, F.; Almnaizel, A.; Alahmed, M.; Fouad, E. Nanotechnology as a Tool to Overcome the Bariatric Surgery Malabsorption. Saudi Pharm. J. 2020, 28, 565–573. [Google Scholar] [CrossRef]
- Avgerinos, K.I.; Spyrou, N.; Mantzoros, C.S.; Dalamaga, M. Obesity and Cancer Risk: Emerging Biological Mechanisms and Perspectives. Metabolism 2019, 92, 121–135. [Google Scholar] [CrossRef]
- Food and Drug Administration. Medical Devices for Weight Loss and Weight Management: What to Know. Available online: https://Www.Fda.Gov/Consumers/Consumer-Updates/Medical-Devices-Weight-Loss-and-Weight-Management-What-Know (accessed on 3 April 2025).
- Dayyeh, B.K. Intragastric Balloons for Obesity Management. Gastroenterol. Hepatol. 2017, 13, 737–739. Available online: https://pubmed.ncbi.nlm.nih.gov/29339949/ (accessed on 5 February 2025).
- Lari, E.; Burhamah, W.; Lari, A.; Alsaeed, T.; Al-Yaqout, K.; Al-Sabah, S. Intra-Gastric Balloons—The Past, Present and Future. Ann. Med. Surg. 2021, 63, 102138. [Google Scholar] [CrossRef]
- Ash, G.I.; Kim, D.; Choudhury, M. Promises of Nanotherapeutics in Obesity. Trends Endocrinol. Metab. 2019, 30, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the Clinic: An Update. Bioeng. Transl. Med. 2019, 4, 10143. [Google Scholar] [CrossRef] [PubMed]
- Salata, O.V. Applications of Nanoparticles in Biology and Medicine. J. Nanobiotechnol. 2004, 2, 3. Available online: http://www.jnanobiotechnology.com/content/2/1/3 (accessed on 12 April 2025). [CrossRef] [PubMed]
- Heiligtag, F.J.; Niederberger, M. The Fascinating World of Nanoparticle Research. Mater. Today 2013, 16, 262–271. [Google Scholar] [CrossRef]
- Trandafir, L.M.; Dodi, G.; Frasinariu, O.; Luca, A.C.; Butnariu, L.I.; Tarca, E.; Moisa, S.M. Tackling Dyslipidemia in Obesity from a Nanotechnology Perspective. Nutrients 2022, 14, 3774. [Google Scholar] [CrossRef]
- Sibuyi, N.R.S.; Meyer, M.; Onani, M.O.; Skepu, A.; Madiehe, A.M. Vascular Targeted Nanotherapeutic Approach for Obesity Treatment. Int. J. Nanomed. 2018, 13, 7915–7929. [Google Scholar] [CrossRef]
- Hossen, M.N.; Kajimoto, K.; Akita, H.; Hyodo, M.; Harashima, H. A Comparative Study between Nanoparticle-Targeted Therapeutics and Bioconjugates as Obesity Medication. J. Control. Release 2013, 171, 104–112. [Google Scholar] [CrossRef]
- Sangwai, M.; Sardar, S.; Vavia, P. Nanoemulsified Orlistat-Embedded Multi-Unit Pellet System (MUPS) with Improved Dissolution and Pancreatic Lipase Inhibition. Pharm. Dev. Technol. 2014, 19, 31–41. [Google Scholar] [CrossRef]
- Chen, Y.L.; Zhu, S.; Zhang, L.; Feng, P.J.; Yao, X.K.; Qian, C.G.; Zhang, C.; Jiang, X.Q.; Shen, Q.D. Smart Conjugated Polymer Nanocarrier for Healthy Weight Loss by Negative Feedback Regulation of Lipase Activity. Nanoscale 2016, 8, 3368–3375. [Google Scholar] [CrossRef]
- Johnson, J.A.; Trasino, S.E.; Ferrante, A.W.; Vasselli, J.R. Prolonged Decrease of Adipocyte Size after Rosiglitazone Treatment in High- and Low-Fat-Fed Rats. Obesity 2007, 15, 2653–2663. [Google Scholar] [CrossRef]
- Xue, Y.; Xu, X.; Zhang, X.Q.; Farokhzad, O.C.; Langer, R. Preventing Diet-Induced Obesity in Mice by Adipose Tissue Transformation and Angiogenesis Using Targeted Nanoparticles. Proc. Natl. Acad. Sci. USA 2016, 113, 5552–5557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Q.; Yu, J.; Yu, S.; Wang, J.; Qiang, L.; Gu, Z. Locally Induced Adipose Tissue Browning by Microneedle Patch for Obesity Treatment. ACS Nano 2017, 11, 9223–9230. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; El-Sayed, M.A. Gold Nanoparticles: Optical Properties and Implementations in Cancer Diagnosis and Photothermal Therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Zhao, R.; Zheng, G.; Fan, L.; Shen, Z.; Jiang, K.; Guo, Y.; Shao, J.W. Carrier-Free Nanodrug by Co-Assembly of Chemotherapeutic Agent and Photosensitizer for Cancer Imaging and Chemo-Photo Combination Therapy. Acta Biomater. 2018, 70, 197–210. [Google Scholar] [CrossRef]
- Wanner, M.; Avram, M.; Gagnon, D.; Mihm, M.C.; Zurakowski, D.; Watanabe, K.; Tannous, Z.; Anderson, R.R.; Manstein, D. Effects of Non-Invasive, 1,210 Nm Laser Exposure on Adipose Tissue: Results of a Human Pilot Study. Lasers Surg. Med. 2009, 41, 401–407. [Google Scholar] [CrossRef]
- Sheng, W.; Alhasan, A.H.; DiBernardo, G.; Almutairi, K.M.; Rubin, J.P.; DiBernardo, B.E.; Almutairi, A. Gold Nanoparticle-Assisted Selective Photothermolysis of Adipose Tissue (NanoLipo). Plast. Reconstr. Surg. Glob. Open 2014, 2, e283. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeong, H.S.; Lee, D.H.; Beack, S.; Kim, T.; Lee, G.H.; Park, W.C.; Kim, C.; Kim, K.S.; Hahn, S.K. Targeted Hyaluronate-Hollow Gold Nanosphere Conjugate for Anti-Obesity Photothermal Lipolysis. ACS Biomater. Sci. Eng. 2017, 3, 3646–3653. [Google Scholar] [CrossRef]
- Li, J.; Cha, R.; Luo, H.; Hao, W.; Zhang, Y.; Jiang, X. Nanomaterials for the Theranostics of Obesity. Biomaterials 2019, 223, 119474. [Google Scholar] [CrossRef]
- Liao, Z.X.; Liu, M.C.; Kempson, I.M.; Fa, Y.C.; Huang, K.Y. Light-Triggered Methylcellulose Gold Nanoparticle Hydrogels for Leptin Release to Inhibit Fat Stores in Adipocytes. Int. J. Nanomed. 2017, 12, 7603–7611. [Google Scholar] [CrossRef] [PubMed]
- Angelidi, A.M.; Belanger, M.J.; Kokkinos, A.; Koliaki, C.C.; Mantzoros, C.S. Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocr. Rev. 2022, 43, 507–557. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, C.O.; Michael, O.S.; Rathee, S.; Singh, K.R.; Ajayi, O.O.; Adetunji, J.B.; Ojha, A.; Singh, J.; Singh, R.P. Potentialities of Nanomaterials for the Management and Treatment of Metabolic Syndrome: A New Insight. Mater. Today Adv. 2022, 13, 100198. [Google Scholar] [CrossRef]
- Park, H.; Cho, S.; Han, Y.H.; Janat-Amsbury, M.M.; Boudina, S.; Bae, Y.H. Combinatorial Gene Construct and Non-Viral Delivery for Anti-Obesity in Diet-Induced Obese Mice. J. Control. Release 2015, 207, 154–162. [Google Scholar] [CrossRef]
- Fatima, H.; Charinpanitkul, T.; Kim, K.S. Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy. Nanomaterials 2021, 11, 1203. [Google Scholar] [CrossRef]
- Rivera-Chaverra, M.J.; Restrepo-Parra, E.; Acosta-Medina, C.D.; Mello, A.; Ospina, R. Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications. Nanomaterials 2020, 10, 2099. [Google Scholar] [CrossRef]
- Marinozzi, M.R.; Pandolfi, L.; Malatesta, M.; Colombo, M.; Collico, V.; Lievens, P.M.J.; Tambalo, S.; Lasconi, C.; Vurro, F.; Boschi, F.; et al. Innovative Approach to Safely Induce Controlled Lipolysis by Superparamagnetic Iron Oxide Nanoparticles-Mediated Hyperthermic Treatment. Int. J. Biochem. Cell Biol. 2017, 93, 62–73. [Google Scholar] [CrossRef]
- Su, Y.; Jin, M.; Chen, F.; Xu, C.; Chen, L.; Li, L.; Li, Y.; Zhao, M.; Zhu, G.; Lin, Z. Promote Lipolysis in White Adipocytes by Magnetic Hyperthermia Therapy with Fe3O4 Microsphere-Doped Hydrogel. Nanotechnology 2024, 35, 155101. [Google Scholar] [CrossRef]
- Goktas, Z.; Zu, Y.; Abbasi, M.; Galyean, S.; Wu, D.; Fan, Z.; Wang, S. Recent Advances in Nanoencapsulation of Phytochemicals to Combat Obesity and Its Comorbidities. J. Agric. Food Chem. 2020, 68, 8119–8131. [Google Scholar] [CrossRef] [PubMed]
- Shende, P.; Narvenker, R. Herbal Nanotherapy: A New Paradigm over Conventional Obesity Treatment. J. Drug Deliv. Sci. Technol. 2021, 61, 102291. [Google Scholar] [CrossRef]
- Zu, Y.; Overby, H.; Ren, G.; Fan, Z.; Zhao, L.; Wang, S. Resveratrol Liposomes and Lipid Nanocarriers: Comparison of Characteristics and Inducing Browning of White Adipocytes. Colloids Surf. B Biointerfaces 2018, 164, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Gani, A. Development of Novel Functional Snacks Containing Nano-Encapsulated Resveratrol with Anti-Diabetic, Anti-Obesity and Antioxidant Properties. Food Chem. 2021, 352, 129323. [Google Scholar] [CrossRef]
- Mongioì, L.M.; La Vignera, S.; Cannarella, R.; Cimino, L.; Compagnone, M.; Condorelli, R.A.; Calogero, A.E. The role of resveratrol administration in human obesity. Int. J. Mol. Sci. 2021, 22, 4362. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, J.; Zhu, M.; Yang, Y.; Shen, J.; Gentile, E.; Paolino, D.; Fresta, M.; Nie, G.; Chen, C.; Shen, H.; et al. Safety of Nanoparticles in Medicine. Curr. Drug Targets 2015, 16, 1671–1681. [Google Scholar] [CrossRef]
- Egbuna, C.; Parmar, V.K.; Jeevanandam, J.; Ezzat, S.M.; Patrick-Iwuanyanwu, K.C.; Adetunji, C.O.; Khan, J.; Onyeike, E.N.; Uche, C.Z.; Akram, M.; et al. Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. J. Toxicol. 2021, 2021, 9954443. [Google Scholar] [CrossRef]
- Hou, J.; Liu, H.; Zhang, S.; Liu, X.; Hayat, T.; Alsaedi, A.; Wang, X. Mechanism of Toxic Effects of Nano-ZnO on Cell Cycle of Zebrafish (Danio Rerio). Chemosphere 2019, 229, 206–213. [Google Scholar] [CrossRef]
- Radhakrishnan, V.S.; Dwivedi, S.P.; Siddiqui, M.H.; Prasad, T. In Vitro Studies on Oxidative Stress-Independent, Ag Nanoparticles-Induced Cell Toxicity of Candida Albicans, an Opportunistic Pathogen. Int. J. Nanomed. 2018, 13, 91–96. [Google Scholar] [CrossRef]
- Liu, J.Y.; Sayes, C.M. A Toxicological Profile of Silica Nanoparticles. Toxicol. Res. 2022, 11, 565–582. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Jenkins, G.J.S.; Asadi, R.; Doak, S.H. Potential Toxicity of Superparamagnetic Iron Oxide Nanoparticles (SPION). Nano Rev. 2010, 1, 5358. [Google Scholar] [CrossRef]
- Elsaesser, A.; Howard, C.V. Toxicology of Nanoparticles. Adv. Drug Deliv. Rev. 2012, 64, 129–137. [Google Scholar] [CrossRef]
- Younis, M.A.; Tawfeek, H.M.; Abdellatif, A.A.H.; Abdel-Aleem, J.A.; Harashima, H. Clinical Translation of Nanomedicines: Challenges, Opportunities, and Keys. Adv. Drug Deliv. Rev. 2022, 181, 114083. [Google Scholar] [CrossRef] [PubMed]
- Muthu, M.S.; Feng, S.S. Pharmaceutical Stability Aspects of Nanomedicines. Nanomedicine 2009, 4, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Desai, N. Challenges in Development of Nanoparticle-Based Therapeutics. AAPS J. 2012, 14, 282–295. [Google Scholar] [CrossRef]
- Metselaar, J.M.; Lammers, T. Challenges in Nanomedicine Clinical Translation. Drug Deliv. Transl. Res. 2020, 10, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Ragelle, H.; Danhier, F.; Préat, V.; Langer, R.; Anderson, D.G. Nanoparticle-Based Drug Delivery Systems: A Commercial and Regulatory Outlook as the Field Matures. Expert Opin. Drug Deliv. 2017, 14, 851–864. [Google Scholar] [CrossRef]
- Wang, L.; Jia, Q.; He, J.; Li, Y. Adipose Tissue-Targeting Nanomedicines for Obesity Pharmacotherapy. Trends Endocrinol. Metab. 2025, 13, 1–13. [Google Scholar] [CrossRef]
- Shortland, T.; McGranahan, M.; Stewart, D.; Oyebode, O.; Shantikumar, S.; Proto, W.; Malik, B.; Yau, R.; Cobbin, M.; Sabouni, A.; et al. A systematic review of the burden of, access to services for and perceptions of patients with overweight and obesity, in humanitarian crisis settings. PLoS ONE 2023, 18, e0282823. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Ryder-Burbidge, C.; McNeil, J. Physical activity, obesity and sedentary behavior in cancer etiology: Epidemiologic evidence and biologic mechanisms. Mol. Oncol. 2021, 15, 790–800. [Google Scholar] [CrossRef]
- Wang, H.; Yu, J.; Lu, X.; He, X. Nanoparticle systems reduce systemic toxicity in cancer treatment. Nanomedicine 2016, 11, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Sun, D.S.; Wang, K.L.; Shang, D.Y. Nanomedicine of plant origin for the treatment of metabolic disorders. Front. Bioeng. Biotechnol. 2022, 9, 811917. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.X.; Banga, A.K. Advanced transdermal drug delivery system: A comprehensive review of microneedle technologies, novel designs, diverse applications, and critical challenges. Int. J. Pharm. 2024, 670, 125118. [Google Scholar] [CrossRef]
- Khodaverdi, K.; Bakhshi, A.; Mozafari, M.R.; Naghib, S.M. A review of chitosan-based nanocarriers as drug delivery systems for brain diseases: Critical challenges, outlooks and promises. Int. J. Biol. Macromol. 2024, 278, 134962. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, F.D.; Monferrer, D.; Penon, O.; Rivera-Gil, P. Regulatory pathways and guidelines for nanotechnology-enabled health products: A comparative review of EU and US frameworks. Front. Med. 2025, 12, 1544393. [Google Scholar] [CrossRef]
- Balusamy, S.R.; Vijayalakshmi, S.; Sundaravadivelu, S.; Huq, M.A.; Nag, S.; Mohanto, S.; Sukweenadhi, J.; Oh, D.H.; Perumalsamy, H. Nutraceuticals enhanced by nanotechnology: A new frontier for obesity treatment. Process Biochem. 2025, 156, 217–235. [Google Scholar] [CrossRef]
- Gobbo, O.L. Tackling Obesity from a Nanomedicine Perspective. Rev. Clin. Pharmacol. Pharmacokinet. Int. Ed. 2024, 38, 15–17. [Google Scholar] [CrossRef]
Type of Treatment | Description | Advantages | Disadvantages | References |
---|---|---|---|---|
Weight-management programmes | Healthy diet, increased physical activity, and stress management, with the potential to combine pharmacotherapy or psychotherapy. | Positively impacts metabolic function and improves overall health; it is cost-effective. | Slow process, poor long-term adherence, majority gradually regain lost weight and high dependency on the multidisciplinary team. | [36,37] |
Cognitive behaviour therapy | Psychological intervention by identifying triggers, altering patient behaviour, and improving relapse prevention. | Enhances quality of life, improves eating habits, and alleviates symptoms of depression in individuals facing obesity. | Intense, time-consuming, conflicting results from several studies, and low availability. | [38,39,40,41] |
Weight-loss pharmacotherapy | Orlistat, liraglutide, bupropion-naltrexone, phentermine-topiramate, semaglutide, and setmelanotide. | Enhances insulin sensitivity, blood pressure, and lipid profiles. | Abdominal pain, fatty/oily stools, headaches, flatulence, cholelithiasis, subacute liver failure, safety and tolerability concerns, dependence and withdrawal concerns, foetal toxicity, heart palpitations, and suicidal ideation. | [4,42,43,44] |
Bariatric surgery | Gastric banding, vertical sleeve gastrectomy, and Roux-en-Y gastric bypass. | Reduces the number of medications and their costs per patient, decreases overall mortality and mortality from specific causes. | Highly invasive, expensive, and complications such as intestinal bleeding and malnutrition. | [4,37,45,46] |
Weight-loss devices | Gastric balloon systems are inserted by an endoscope or capsule connected to a catheter. | Protect the stomach’s anatomy, ease of administration. | Complications such as acute pancreatitis, abdominal pain, difficulty breathing, chest pain, and death. | [47,48,49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, A.; Craven, A.; Spirou, S.V.; Santos-Martinez, M.J.; Medina, C.; Gobbo, O.L. Nanomedicine as a Promising Treatment Approach for Obesity. J. Nanotheranostics 2025, 6, 21. https://doi.org/10.3390/jnt6030021
Alanazi A, Craven A, Spirou SV, Santos-Martinez MJ, Medina C, Gobbo OL. Nanomedicine as a Promising Treatment Approach for Obesity. Journal of Nanotheranostics. 2025; 6(3):21. https://doi.org/10.3390/jnt6030021
Chicago/Turabian StyleAlanazi, Abeer, Alexander Craven, Spiridon V. Spirou, Maria Jose Santos-Martinez, Carlos Medina, and Oliviero L. Gobbo. 2025. "Nanomedicine as a Promising Treatment Approach for Obesity" Journal of Nanotheranostics 6, no. 3: 21. https://doi.org/10.3390/jnt6030021
APA StyleAlanazi, A., Craven, A., Spirou, S. V., Santos-Martinez, M. J., Medina, C., & Gobbo, O. L. (2025). Nanomedicine as a Promising Treatment Approach for Obesity. Journal of Nanotheranostics, 6(3), 21. https://doi.org/10.3390/jnt6030021