Alternative Origin of Galactic Positrons Generated by Ultraperipheral Collisions of Cosmic Rays
Abstract
:1. Introduction
2. Ultraperipheral Electron–Positron Pairs from Collisions
2.1. General Review
2.2. The Born Approximation
2.3. The Equivalent Photon Approximation
3. Positron Production in the Galaxy
- What power sources of fast particles need to be supplied in order to produce sufficient amounts of positrons?
- How does injecting this many fast particles affect the background gas?
- What spectrum of byproduct emission is expected?
3.1. Power of Sources of Primary Particles
3.2. Byproduct -Ray Emission
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Churazov, E.; Bouchet, L.; Jean, P.; Jourdain, E.; Knödlseder, J.; Krivonos, R.; Roques, J.P.; Sazonov, S.; Siegert, T.; Strong, A.; et al. INTEGRAL results on the electron-positron annihilation radiation and X-ray & Gamma-ray diffuse emission of the Milky Way. New Astron. Rev. 2020, 90, 101548. [Google Scholar] [CrossRef]
- Frontera, F.; Virgilli, E.; Guidorzi, C.; Rosati, P.; Diehl, R.; Siegert, T.; Fryer, C.; Amati, L.; Auricchio, N.; Campana, R.; et al. Understanding the origin of the positron annihilation line and the physics of supernova explosions. Exp. Astron. 2021, 51, 1175–1202. [Google Scholar] [CrossRef]
- Siegert, T. The Positron puzzle. Astrophys. Space Sci. 2023, 368, 27. [Google Scholar] [CrossRef]
- Wang, W.; Pun, C.S.J.; Cheng, K.S. Could electron-positron annihilation lines in the Galactic center result from pulsar winds? Astron. Astrophys. 2006, 446, 943–948. [Google Scholar] [CrossRef]
- Istomin, Y.N.; Chernyshov, D.O.; Sob’yanin, D.N. Extinct radio pulsars as a source of subrelativistic positrons. Mon. Not. R. Astron. Soc. 2020, 498, 2089–2094. [Google Scholar] [CrossRef]
- Liang, E.P.; Dermer, C.D. Interpretation of the gamma-ray bump from Cygnus X-1. Astrophys. J. 1988, 325, L39–L42. [Google Scholar] [CrossRef]
- Bartels, R.; Calore, F.; Storm, E.; Weniger, C. Galactic binaries can explain the Fermi Galactic centre excess and 511 keV emission. Mon. Not. R. Astron. Soc. 2018, 480, 3826–3841. [Google Scholar] [CrossRef]
- Pshirkov, M.S. Positron excess in the center of the Milky Way from short-lived β+ emitting isotopes. Phys. Rev. D 2016, 94, 103002. [Google Scholar] [CrossRef]
- Prantzos, N.; Boehm, C.; Bykov, A.M.; Diehl, R.; Ferrière, K.; Guessoum, N.; Jean, P.; Knoedlseder, J.; Marcowith, A.; Moskalenko, I.V.; et al. The 511 keV emission from positron annihilation in the Galaxy. Rev. Mod. Phys. 2011, 83, 1001–1056. [Google Scholar] [CrossRef]
- Crocker, R.M.; Ruiter, A.J.; Seitenzahl, I.R.; Panther, F.H.; Sim, S.; Baumgardt, H.; Möller, A.; Nataf, D.M.; Ferrario, L.; Eldridge, J.J.; et al. Diffuse Galactic antimatter from faint thermonuclear supernovae in old stellar populations. Nat. Astron. 2017, 1, 0135. [Google Scholar] [CrossRef]
- Atoyan, A.M. Relativistic neutrons in active galactic nuclei. II. Gamma-rays of high and very high energies. Astron. Astrophys. 1992, 257, 476–488. [Google Scholar]
- Cheng, K.S.; Chernyshov, D.O.; Dogiel, V.A. Annihilation emission from the Galactic black hole. Astrophys. J. 2006, 645, 1138–1151. [Google Scholar] [CrossRef]
- Cheng, K.S.; Chernyshov, D.O.; Dogiel, V.A. Diffuse gamma-ray emission from the Galactic center—A multiple energy injection model. Astron. Astrophys. 2007, 473, 351–356. [Google Scholar] [CrossRef]
- Totani, T. A RIAF Interpretation for the past higher activity of the Galactic center black hole and the 511 keV annihilation emission. Publ. Astron. Soc. Jpn. 2006, 58, 965–977. [Google Scholar] [CrossRef]
- Aharonian, F.A.; Atoyan, A.M. On the Origin of the Galactic Annihilation Radiation. Astron. Lett. 1981, 7, 395–398. [Google Scholar]
- Beacom, J.F.; Yüksel, H. Stringent constraint on Galactic positron production. Phys. Rev. Lett. 2006, 97, 071102. [Google Scholar] [CrossRef]
- Sizun, P.; Cassé, M.; Schanne, S. Continuum γ-ray emission from light dark matter positrons and electrons. Phys. Rev. D 2006, 74, 063514. [Google Scholar] [CrossRef]
- Budnev, V.M.; Ginzburg, I.F.; Meledin, G.V.; Serbo, V.G. The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation. Phys. Rep. 1975, 15, 181–282. [Google Scholar] [CrossRef]
- Dremin, I.M. Ultraperipheral nuclear interactions. Phys. Uspekhi 2020, 63, 758–765. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. On the production of electrons and positrons by a collision of two particles. Phys. Z. Sowjet. 1934, 6, 244–257, Reprinted in Perspectives in Theoretical Physics. The Collected Papers of E.M. Lifshitz; Pitaevskii, L.P., Ed.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 27–38. [Google Scholar] [CrossRef]
- Berestetskii, V.B.; Lifshits, E.M.; Pitaevskii, L.P. Quantum Electrodynamics; Pergamon Press Ltd.: Oxford, UK, 1982. [Google Scholar] [CrossRef]
- Lee, R.N.; Mingulov, K.T. Total Born cross section of e+e−-pair production in relativistic ion collisions from differential equations. Phys. Lett. B 2016, 757, 207–210. [Google Scholar] [CrossRef]
- Racah, G. Sulla nascita di coppie per urti di particelle elettrizzate. Nuovo Cim. 1937, 14, 93–113. [Google Scholar] [CrossRef]
- Dremin, I.M. Ultraperipheral production of lepton pairs (perturbative and nonperturbative effects). Int. J. Mod. Phys. A 2022, 37, 2250098. [Google Scholar] [CrossRef]
- Froissart, M. Asymptotic behavior and subtractions in the Mandelstam representation. Phys. Rev. 1961, 123, 1053–1057. [Google Scholar] [CrossRef]
- Vysotsky, M.I.; Zhemchugov, E.V. Equivalent photons in proton-proton and ion-ion collisions at the Large Hadron Collider. Phys. Uspekhi 2019, 62, 910–919. [Google Scholar] [CrossRef]
- Godunov, S.I.; Karkaryan, E.K.; Novikov, V.A.; Rozanov, A.N.; Vysotsky, M.I.; Zhemchugov, E.V. pp scattering at the LHC with the lepton pair production and one proton tagging. Eur. Phys. J. C 2022, 82, 1055. [Google Scholar] [CrossRef]
- Dremin, I.M.; Gevorkyan, S.R.; Madigozhin, D.T. Enhancement of low-mass dileptons in ultraperipheral collisions. Eur. Phys. J. C 2021, 81, 276. [Google Scholar] [CrossRef]
- Bertulani, C.A.; Baur, G. Electromagnetic processes in relativistic heavy ion collisions. Phys. Rep. 1988, 163, 299–408. [Google Scholar] [CrossRef]
- Obraztsov, I.V.; Milstein, A.I. Quadrupole radiation and e+e- pair production in the collision of nonrelativistic nuclei. Phys. Lett. B 2021, 820, 136514. [Google Scholar] [CrossRef]
- Fermi, E. Sull’equilibrio termico di ionizzazione. Nuovo Cim. 1924, 1, 153–158. [Google Scholar] [CrossRef]
- Fermi, E. Über die Theorie des Stoßes zwischen Atomen und elektrisch geladenen Teilchen. Z. Phys. 1924, 29, 315–327. [Google Scholar] [CrossRef]
- Weizsäcker, C.F.V. Ausstrahlung bei Stößen sehr schneller Elektronen. Z. Phys. 1934, 88, 612–625. [Google Scholar] [CrossRef]
- Williams, E.J. Nature of the high energy particles of penetrating radiation and status of ionization and radiation formulae. Phys. Rev. 1934, 45, 729–730. [Google Scholar] [CrossRef]
- Siegert, T.; Diehl, R.; Khachatryan, G.; Krause, M.G.H.; Guglielmetti, F.; Greiner, J.; Strong, A.W.; Zhang, X. Gamma-ray spectroscopy of positron annihilation in the Milky Way. Astron. Astrophys. 2016, 586, A84. [Google Scholar] [CrossRef]
- Kamae, T.; Karlsson, N.; Mizuno, T.; Abe, T.; Koi, T. Parameterization of γ, e±, and neutrino spectra produced by p-p interaction in astronomical environments. Astrophys. J. 2006, 647, 692–708. [Google Scholar] [CrossRef]
- Dai, L.; McKinney, J.C.; Roth, N.; Ramirez-Ruiz, E.; Miller, M.C. A Unified model for tidal disruption events. Astrophys. J. Lett. 2018, 859, L20. [Google Scholar] [CrossRef]
- Geballe, T.R.; McCall, B.J.; Hinkle, K.H.; Oka, T. Detection of in the diffuse interstellar medium: The Galactic center and Cygnus OB2 Number 12. Astrophys. J. 1999, 510, 251–257. [Google Scholar] [CrossRef]
- Ferrière, K.; Gillard, W.; Jean, P. Spatial distribution of interstellar gas in the innermost 3 kpc of our galaxy. Astron. Astrophys. 2007, 467, 611–627. [Google Scholar] [CrossRef]
- Ivlev, A.V.; Padovani, M.; Galli, D.; Caselli, P. Interstellar dust charging in dense molecular clouds: Cosmic ray effects. Astrophys. J. 2015, 812, 135. [Google Scholar] [CrossRef]
- Stone, E.C.; Cummings, A.C.; McDonald, F.B.; Heikkila, B.C.; Lal, N.; Webber, W.R. Voyager 1 observes low-energy Galactic cosmic rays in a region depleted of heliospheric ions. Science 2013, 341, 150–153. [Google Scholar] [CrossRef]
- Dirac, P.A.M. On the annihilation of electrons and protons. Proc. Camb. Philos. Soc. 1930, 26, 361–375. [Google Scholar] [CrossRef]
- Kafexhiu, E.; Aharonian, F.; Taylor, A.M.; Vila, G.S. Parametrization of gamma-ray production cross sections for pp interactions in a broad proton energy range from the kinematic threshold to PeV energies. Phys. Rev. D 2014, 90, 123014. [Google Scholar] [CrossRef]
- Strong, A.W.; Bloemen, H.; Diehl, R.; Hermsen, W.; Schönfelder, V. COMPTEL Skymapping: A new approach using parallel computing. Astrophys. Lett. Commun. 1999, 39, 209–212. Available online: https://ui.adsabs.harvard.edu/abs/1999ApL%26C..39..209S%2F/ (accessed on 9 January 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernyshov, D.; Dogiel, V.; Dremin, I. Alternative Origin of Galactic Positrons Generated by Ultraperipheral Collisions of Cosmic Rays. Physics 2024, 6, 251-263. https://doi.org/10.3390/physics6010018
Chernyshov D, Dogiel V, Dremin I. Alternative Origin of Galactic Positrons Generated by Ultraperipheral Collisions of Cosmic Rays. Physics. 2024; 6(1):251-263. https://doi.org/10.3390/physics6010018
Chicago/Turabian StyleChernyshov, Dmitry, Vladimir Dogiel, and Igor Dremin. 2024. "Alternative Origin of Galactic Positrons Generated by Ultraperipheral Collisions of Cosmic Rays" Physics 6, no. 1: 251-263. https://doi.org/10.3390/physics6010018
APA StyleChernyshov, D., Dogiel, V., & Dremin, I. (2024). Alternative Origin of Galactic Positrons Generated by Ultraperipheral Collisions of Cosmic Rays. Physics, 6(1), 251-263. https://doi.org/10.3390/physics6010018