# Local Regions with Expanding Extra Dimensions

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Outlook

## 3. Field Equations

## 4. Can We Live in a Region with R → 0? Some Estimates

#### 4.1. The Einstein Frame

#### 4.2. The Jordan Frame

## 5. The Metric of a Region with R → 0. Numerical Simulations

## 6. Discussion and Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- van Elst, H.; Lidsey, J.E.; Tavakol, R. Quantum cosmology and higher-order Lagrangian theories. Class. Quantum Gravity
**1994**, 11, 2483–2497. [Google Scholar] [CrossRef][Green Version] - Bousso, R.; Linde, A. Quantum creation of a universe with Ω ≠ 1: Singular and nonsingular instantons. Phys. Rev. D
**1998**, 58, 083503. [Google Scholar] [CrossRef][Green Version] - Halliwell, J.J. Introductory lectures on quantum cosmology. arXiv
**1990**, arXiv:0909.2566. [Google Scholar] - Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B
**1998**, 429, 263–272. [Google Scholar] [CrossRef][Green Version] - Dienes, K.R.; Dudas, E.; Gherghetta, T. Grand unification at intermediate mass scales through extra dimensions. Nucl. Phys. B
**1999**, 537, 47–108. [Google Scholar] [CrossRef][Green Version] - Sahni, V.; Starobinsky, A. The Case for a positive cosmological Lambda term. Int. J. Mod. Phys. D
**2000**, 9, 373–444. [Google Scholar] [CrossRef] - Günther, U.; Moniz, P.; Zhuk, A. Nonlinear multidimensional cosmological models with form fields: Stabilization of extra dimensions and the cosmological constant problem. Phys. Rev. D
**2003**, 68, 044010. [Google Scholar] [CrossRef][Green Version] - Rubin, S.G. Inhomogeneous extra space as a tool for the top-down approach. Adv. High Energy Phys.
**2018**, 2018, 2767410. [Google Scholar] [CrossRef][Green Version] - Greene, B.; Levin, J. Dark energy and stabilization of extra dimensions. J. High Energy Phys.
**2007**, 2007, 96. [Google Scholar] [CrossRef] - Carroll, S.M.; Geddes, J.; Hoffman, M.B.; Wald, R.M. Classical stabilization of homogeneous extra dimensions. Phys. Rev. D
**2002**, 66, 024036. [Google Scholar] [CrossRef][Green Version] - Nasri, S.; Silva, P.J.; Starkman, G.; Trodden, M. Radion stabilization in compact hyperbolic extra dimensions. Phys. Rev. D
**2002**, 66, 045029. [Google Scholar] [CrossRef][Green Version] - Ketov, S.V.; Nakada, H. Inflation from (R + γR
^{n}− 2Λ) gravity in higher dimensions. Phys. Rev. D**2017**, 95, 103507. [Google Scholar] [CrossRef][Green Version] - Kihara, H.; Nitta, M.; Sasaki, M.; Yoo, C.-M.; Zaballa, I. Dynamical compactification and inflation in Einstein–Yang–Mills theory with higher derivative coupling. Phys. Rev. D
**2009**, 80, 066004. [Google Scholar] [CrossRef][Green Version] - Candelas, P.; Weinberg, S. Calculation of gauge couplings and compact circumferences from self-consistent dimensional reduction. Nucl. Phys. B
**1984**, 237, 397–441. [Google Scholar] [CrossRef] - Bolokhov, S.V.; Bronnikov, K.A. On cosmology in nonlinear multidimensional gravity with multiple factor spaces. Grav. Cosmol.
**2018**, 24, 154–160. [Google Scholar] [CrossRef][Green Version] - Freund, P.G.O.; Rubin, M.A. Dynamics of dimensional reduction. Phys. Lett. B
**1980**, 97, 233–235. [Google Scholar] [CrossRef] - Yoshimura, M. Effective action and cosmological evolution of scale factors in higher-dimensional curved spacetime. Phys. Rev. D
**1984**, 30, 344–356. [Google Scholar] [CrossRef] - Bronnikov, K.A.; Melnikov, V.N.; Rubin, S.G.; Svadkovsky, I.V. Nonlinear multidimensional gravity and the Australian dipole. Gen. Relativ. Gravit.
**2013**, 45, 2509–2528. [Google Scholar] [CrossRef][Green Version] - Starobinsky, A. A new type of isotropic cosmological models without singularity. Phys. Lett. B
**1980**, 91, 99–102. [Google Scholar] [CrossRef] - Paul, B. Removing the Ostrogradski ghost from degenerate gravity theories. Phys. Rev. D
**2017**, 96, 044035. [Google Scholar] [CrossRef][Green Version] - Donoghue, J.F. General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D
**1994**, 50, 3874–3888. [Google Scholar] [CrossRef][Green Version] - Burgess, C.P. An introduction to effective field theory. Annu. Rev. Nucl. Part. Sci.
**2007**, 57, 329–362. [Google Scholar] [CrossRef][Green Version] - Lyakhova, Y.; Popov, A.A.; Rubin, S.G. Classical evolution of subspaces. Eur. Phys. J. C
**2018**, 78, 764. [Google Scholar] [CrossRef] - Fabris, J.C.; Popov, A.A.; Rubin, S.G. Multidimensional gravity with higher derivatives and inflation. Phys. Lett. B
**2020**, 806, 135458. [Google Scholar] [CrossRef] - Bronnikov, K.A.; Rubin, S.G. Self-stabilization of extra dimensions. Phys. Rev. D
**2017**, 798, 012091. [Google Scholar] [CrossRef][Green Version] - Bronnikov, K.A.; Rubin, S.G. Black Holes, Cosmology and Extra Dimensions; World Scientific: Singapore, 2013. [Google Scholar]
- Bolokhov, S.V.; Bronnikov, K.A. On nonlinear multidimensional gravity and the Casimir effect. Grav. Cosmol.
**2016**, 22, 323–328. [Google Scholar] [CrossRef][Green Version] - Bolokhov, S.V.; Bronnikov, K.A. Cosmology in nonlinear multidimensional gravity and the Casimir effect. J. Phys. Conf. Ser.
**2017**, 798, 12091. [Google Scholar] [CrossRef][Green Version] - Ketov, S.V.; Starobinsky, A.A. Inflation and nonminimal scalar-curvature coupling in gravity and supergravity. J. Cosmol. Astropart. Phys.
**2012**, 2012, 022. [Google Scholar] [CrossRef][Green Version] - Bamba, K.; Odintsov, S.D. Inflationary cosmology in modified gravity theories. Symmetry
**2015**, 7, 220–240. [Google Scholar] [CrossRef][Green Version] - Bolokhov, S.V.; Bronnikov, K.A.; Skvortsova, M.V. The Schwarzschild singularity: A semiclassical bounce? Grav. Cosmol.
**2018**, 24, 315–320. [Google Scholar] [CrossRef][Green Version] - Bronnikov, K.A.; Bolokhov, S.V.; Skvortsova, M.V. Matter accretion versus semiclassical bounce in Schwarzschild interior. Universe
**2020**, 6, 178. [Google Scholar] [CrossRef] - Mueller, J.; Biskupek, L. Variations of the gravitational constant from lunar laser ranging data. Class. Quantum Gravity
**2007**, 24, 4533–4538. [Google Scholar] [CrossRef] - Pitjeva, E.V. Updated IAA RAS planetary ephemerides-EPM2011 and their use in scientific research. Astron. Vestn.
**2013**, 47, 386–402. [Google Scholar] [CrossRef][Green Version] - Khlopov, M.Y.; Rubin, S.G. Cosmological Pattern of Microphysics in the Inflationary Universe; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Khlopov, M.Y.; Rubin, S.G.; Sakharov, A.S. Possible origin of antimatter regions in the baryon dominated universe. Phys. Rev. D
**2000**, 62, 083505. [Google Scholar] [CrossRef][Green Version] - Kashlinsky, A.; Ali-Haimoud, Y.; Clesse, S.; Garcia-Bellido, J.; Wyrzykowski, L.; Achucarro, A.; Amendola, L.; Annis, J.; Arbey, A.; Arendt, R.G.; et al. Electromagnetic probes of primordial black holes as dark matter. arXiv
**2019**, arXiv:1903.04424. [Google Scholar] - Rubin, S.G. Interpenetrating subspaces as a funnel to extra space. Phys. Lett. B
**2016**, 759, 622–625. [Google Scholar] [CrossRef][Green Version] - Bronnikov, K.A.; Skvortsova, M.V. Wormholes leading to extra dimensions. Gravit. Cosmol.
**2016**, 22, 316–322. [Google Scholar] [CrossRef][Green Version] - Bronnikov, K.A.; Korolyov, P.A.; Makhmudov, A.; Skvortsova, M.V. Wormholes and black universes communicated with extra dimensions. J. Phys. Conf. Ser.
**2017**, 798, 12090. [Google Scholar] [CrossRef][Green Version] - Lue, A.; Starkman, G. Gravitational leakage into extra dimensions: Probing dark energy using local gravity. Phys. Rev. D
**2003**, 67, 064002. [Google Scholar] [CrossRef][Green Version] - Khlopov, M.Y.; Konoplich, R.V.; Rubin, S.G.; Sakharov, A.S. Formation of black holes in first order phase transitions. arXiv
**2021**, arXiv:2105.07481. [Google Scholar] - Blau, S.K.; Guendelman, E.I.; Guth, A.H. The dynamics of false vacuum bubbles. Phys. Rev. D
**1987**, 35, 1747–1766. [Google Scholar] [CrossRef] [PubMed][Green Version] - Sakharov, A.S.; Eroshenko, Y.N.; Rubin, S.G. Looking at the NANOGrav signal through the anthropic window of axionlike particles. Phys. Rev. D
**2021**, 104, 043005. [Google Scholar] [CrossRef] - Belotsky, K.M.; Dokuchaev, V.I.; Eroshenko, Y.N.; Esipova, E.A.; Khlopov, M.Y.; Khromykh, L.A.; Kirillov, A.A.; Nikulin, V.V.; Rubin, S.G.; Svadkovsky, I.V. Clusters of primordial black holes. Eur. Phys. J. C
**2019**, 79, 246. [Google Scholar] [CrossRef][Green Version] - Rubin, S.G.; Khlopov, M.Y.; Sakharov, A.S. Primordial black holes from non-equilibrium second order phase transition. arXiv
**2000**, arXiv:hep-ph/0005271. [Google Scholar] - Khlopov, M.Y. Primordial black holes. Res. Astron. Astrophys.
**2010**, 10, 495–528. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**The effective potential for a viable version of the model (1). The minimum of the potential is at the point ${\varphi}_{\mathrm{min}}\simeq 0.083$, the D-dimensional Planck mass, ${m}_{D}=1$. In agreement with [24], ${m}_{D}\sim 0.1{M}_{\mathrm{Pl}}$, where ${M}_{\mathrm{Pl}}$ is the Planck mass.

**Figure 2.**Time dependence of the size of extra space (solid line) and the main 4-dimensional space (dashed line) in a logarithmic scale; extra dimension, $n=5$, the D-dimensional cosmological constant, ${\Lambda}_{D}=0.0125$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bronnikov, K.A.; Rubin, S.G. Local Regions with Expanding Extra Dimensions. *Physics* **2021**, *3*, 781-789.
https://doi.org/10.3390/physics3030048

**AMA Style**

Bronnikov KA, Rubin SG. Local Regions with Expanding Extra Dimensions. *Physics*. 2021; 3(3):781-789.
https://doi.org/10.3390/physics3030048

**Chicago/Turabian Style**

Bronnikov, Kirill A., and Sergey G. Rubin. 2021. "Local Regions with Expanding Extra Dimensions" *Physics* 3, no. 3: 781-789.
https://doi.org/10.3390/physics3030048