Local Regions with Expanding Extra Dimensions
Abstract
:1. Introduction
2. Outlook
3. Field Equations
4. Can We Live in a Region with R → 0? Some Estimates
4.1. The Einstein Frame
4.2. The Jordan Frame
5. The Metric of a Region with R → 0. Numerical Simulations
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- van Elst, H.; Lidsey, J.E.; Tavakol, R. Quantum cosmology and higher-order Lagrangian theories. Class. Quantum Gravity 1994, 11, 2483–2497. [Google Scholar] [CrossRef][Green Version]
- Bousso, R.; Linde, A. Quantum creation of a universe with Ω ≠ 1: Singular and nonsingular instantons. Phys. Rev. D 1998, 58, 083503. [Google Scholar] [CrossRef][Green Version]
- Halliwell, J.J. Introductory lectures on quantum cosmology. arXiv 1990, arXiv:0909.2566. [Google Scholar]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 1998, 429, 263–272. [Google Scholar] [CrossRef][Green Version]
- Dienes, K.R.; Dudas, E.; Gherghetta, T. Grand unification at intermediate mass scales through extra dimensions. Nucl. Phys. B 1999, 537, 47–108. [Google Scholar] [CrossRef][Green Version]
- Sahni, V.; Starobinsky, A. The Case for a positive cosmological Lambda term. Int. J. Mod. Phys. D 2000, 9, 373–444. [Google Scholar] [CrossRef]
- Günther, U.; Moniz, P.; Zhuk, A. Nonlinear multidimensional cosmological models with form fields: Stabilization of extra dimensions and the cosmological constant problem. Phys. Rev. D 2003, 68, 044010. [Google Scholar] [CrossRef][Green Version]
- Rubin, S.G. Inhomogeneous extra space as a tool for the top-down approach. Adv. High Energy Phys. 2018, 2018, 2767410. [Google Scholar] [CrossRef][Green Version]
- Greene, B.; Levin, J. Dark energy and stabilization of extra dimensions. J. High Energy Phys. 2007, 2007, 96. [Google Scholar] [CrossRef]
- Carroll, S.M.; Geddes, J.; Hoffman, M.B.; Wald, R.M. Classical stabilization of homogeneous extra dimensions. Phys. Rev. D 2002, 66, 024036. [Google Scholar] [CrossRef][Green Version]
- Nasri, S.; Silva, P.J.; Starkman, G.; Trodden, M. Radion stabilization in compact hyperbolic extra dimensions. Phys. Rev. D 2002, 66, 045029. [Google Scholar] [CrossRef][Green Version]
- Ketov, S.V.; Nakada, H. Inflation from (R + γRn − 2Λ) gravity in higher dimensions. Phys. Rev. D 2017, 95, 103507. [Google Scholar] [CrossRef][Green Version]
- Kihara, H.; Nitta, M.; Sasaki, M.; Yoo, C.-M.; Zaballa, I. Dynamical compactification and inflation in Einstein–Yang–Mills theory with higher derivative coupling. Phys. Rev. D 2009, 80, 066004. [Google Scholar] [CrossRef][Green Version]
- Candelas, P.; Weinberg, S. Calculation of gauge couplings and compact circumferences from self-consistent dimensional reduction. Nucl. Phys. B 1984, 237, 397–441. [Google Scholar] [CrossRef]
- Bolokhov, S.V.; Bronnikov, K.A. On cosmology in nonlinear multidimensional gravity with multiple factor spaces. Grav. Cosmol. 2018, 24, 154–160. [Google Scholar] [CrossRef][Green Version]
- Freund, P.G.O.; Rubin, M.A. Dynamics of dimensional reduction. Phys. Lett. B 1980, 97, 233–235. [Google Scholar] [CrossRef]
- Yoshimura, M. Effective action and cosmological evolution of scale factors in higher-dimensional curved spacetime. Phys. Rev. D 1984, 30, 344–356. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Melnikov, V.N.; Rubin, S.G.; Svadkovsky, I.V. Nonlinear multidimensional gravity and the Australian dipole. Gen. Relativ. Gravit. 2013, 45, 2509–2528. [Google Scholar] [CrossRef][Green Version]
- Starobinsky, A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Paul, B. Removing the Ostrogradski ghost from degenerate gravity theories. Phys. Rev. D 2017, 96, 044035. [Google Scholar] [CrossRef][Green Version]
- Donoghue, J.F. General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D 1994, 50, 3874–3888. [Google Scholar] [CrossRef][Green Version]
- Burgess, C.P. An introduction to effective field theory. Annu. Rev. Nucl. Part. Sci. 2007, 57, 329–362. [Google Scholar] [CrossRef][Green Version]
- Lyakhova, Y.; Popov, A.A.; Rubin, S.G. Classical evolution of subspaces. Eur. Phys. J. C 2018, 78, 764. [Google Scholar] [CrossRef]
- Fabris, J.C.; Popov, A.A.; Rubin, S.G. Multidimensional gravity with higher derivatives and inflation. Phys. Lett. B 2020, 806, 135458. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Rubin, S.G. Self-stabilization of extra dimensions. Phys. Rev. D 2017, 798, 012091. [Google Scholar] [CrossRef][Green Version]
- Bronnikov, K.A.; Rubin, S.G. Black Holes, Cosmology and Extra Dimensions; World Scientific: Singapore, 2013. [Google Scholar]
- Bolokhov, S.V.; Bronnikov, K.A. On nonlinear multidimensional gravity and the Casimir effect. Grav. Cosmol. 2016, 22, 323–328. [Google Scholar] [CrossRef][Green Version]
- Bolokhov, S.V.; Bronnikov, K.A. Cosmology in nonlinear multidimensional gravity and the Casimir effect. J. Phys. Conf. Ser. 2017, 798, 12091. [Google Scholar] [CrossRef][Green Version]
- Ketov, S.V.; Starobinsky, A.A. Inflation and nonminimal scalar-curvature coupling in gravity and supergravity. J. Cosmol. Astropart. Phys. 2012, 2012, 022. [Google Scholar] [CrossRef][Green Version]
- Bamba, K.; Odintsov, S.D. Inflationary cosmology in modified gravity theories. Symmetry 2015, 7, 220–240. [Google Scholar] [CrossRef][Green Version]
- Bolokhov, S.V.; Bronnikov, K.A.; Skvortsova, M.V. The Schwarzschild singularity: A semiclassical bounce? Grav. Cosmol. 2018, 24, 315–320. [Google Scholar] [CrossRef][Green Version]
- Bronnikov, K.A.; Bolokhov, S.V.; Skvortsova, M.V. Matter accretion versus semiclassical bounce in Schwarzschild interior. Universe 2020, 6, 178. [Google Scholar] [CrossRef]
- Mueller, J.; Biskupek, L. Variations of the gravitational constant from lunar laser ranging data. Class. Quantum Gravity 2007, 24, 4533–4538. [Google Scholar] [CrossRef]
- Pitjeva, E.V. Updated IAA RAS planetary ephemerides-EPM2011 and their use in scientific research. Astron. Vestn. 2013, 47, 386–402. [Google Scholar] [CrossRef][Green Version]
- Khlopov, M.Y.; Rubin, S.G. Cosmological Pattern of Microphysics in the Inflationary Universe; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Khlopov, M.Y.; Rubin, S.G.; Sakharov, A.S. Possible origin of antimatter regions in the baryon dominated universe. Phys. Rev. D 2000, 62, 083505. [Google Scholar] [CrossRef][Green Version]
- Kashlinsky, A.; Ali-Haimoud, Y.; Clesse, S.; Garcia-Bellido, J.; Wyrzykowski, L.; Achucarro, A.; Amendola, L.; Annis, J.; Arbey, A.; Arendt, R.G.; et al. Electromagnetic probes of primordial black holes as dark matter. arXiv 2019, arXiv:1903.04424. [Google Scholar]
- Rubin, S.G. Interpenetrating subspaces as a funnel to extra space. Phys. Lett. B 2016, 759, 622–625. [Google Scholar] [CrossRef][Green Version]
- Bronnikov, K.A.; Skvortsova, M.V. Wormholes leading to extra dimensions. Gravit. Cosmol. 2016, 22, 316–322. [Google Scholar] [CrossRef][Green Version]
- Bronnikov, K.A.; Korolyov, P.A.; Makhmudov, A.; Skvortsova, M.V. Wormholes and black universes communicated with extra dimensions. J. Phys. Conf. Ser. 2017, 798, 12090. [Google Scholar] [CrossRef][Green Version]
- Lue, A.; Starkman, G. Gravitational leakage into extra dimensions: Probing dark energy using local gravity. Phys. Rev. D 2003, 67, 064002. [Google Scholar] [CrossRef][Green Version]
- Khlopov, M.Y.; Konoplich, R.V.; Rubin, S.G.; Sakharov, A.S. Formation of black holes in first order phase transitions. arXiv 2021, arXiv:2105.07481. [Google Scholar]
- Blau, S.K.; Guendelman, E.I.; Guth, A.H. The dynamics of false vacuum bubbles. Phys. Rev. D 1987, 35, 1747–1766. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sakharov, A.S.; Eroshenko, Y.N.; Rubin, S.G. Looking at the NANOGrav signal through the anthropic window of axionlike particles. Phys. Rev. D 2021, 104, 043005. [Google Scholar] [CrossRef]
- Belotsky, K.M.; Dokuchaev, V.I.; Eroshenko, Y.N.; Esipova, E.A.; Khlopov, M.Y.; Khromykh, L.A.; Kirillov, A.A.; Nikulin, V.V.; Rubin, S.G.; Svadkovsky, I.V. Clusters of primordial black holes. Eur. Phys. J. C 2019, 79, 246. [Google Scholar] [CrossRef][Green Version]
- Rubin, S.G.; Khlopov, M.Y.; Sakharov, A.S. Primordial black holes from non-equilibrium second order phase transition. arXiv 2000, arXiv:hep-ph/0005271. [Google Scholar]
- Khlopov, M.Y. Primordial black holes. Res. Astron. Astrophys. 2010, 10, 495–528. [Google Scholar] [CrossRef][Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bronnikov, K.A.; Rubin, S.G. Local Regions with Expanding Extra Dimensions. Physics 2021, 3, 781-789. https://doi.org/10.3390/physics3030048
Bronnikov KA, Rubin SG. Local Regions with Expanding Extra Dimensions. Physics. 2021; 3(3):781-789. https://doi.org/10.3390/physics3030048
Chicago/Turabian StyleBronnikov, Kirill A., and Sergey G. Rubin. 2021. "Local Regions with Expanding Extra Dimensions" Physics 3, no. 3: 781-789. https://doi.org/10.3390/physics3030048