Splitting of the Magnetic Loss Peak of Composites under External Magnetic Field
Abstract
:1. Introduction
2. Materials and Methods
3. Theoretical Background
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garner, A.; Parker, G.; Simone, D. Accounting for conducting inclusion permeability in the microwave regime in a modified generalized effective medium theory. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2064–2072. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Y.; Harris, V. Clustering effect on permeability spectra of magneto-dielectric composites with conductive magnetic inclusions. J. Appl. Phys. 2019, 125, 185107. [Google Scholar] [CrossRef]
- Han, M.; Rozanov, K.; Zezyulina, P.; Wu, Y. Effects of eddy current and dispersion of magnetic anisotropy on the high-frequency permeability of Fe based nanocomposites. J. Magn. Magn. Mater. 2015, 383, 114–119. [Google Scholar] [CrossRef]
- Geyer, R.; Asadi-Zeydabadi, M. Tailored dielectric and magnetic properties of composite electroceramics with ferroelectric and ferrimagnetic components. J. Appl. Phys. 2018, 124, 164104. [Google Scholar] [CrossRef]
- Kasagi, T.; Tsutaoka, T.; Hatakeyama, K. Electromagnetic properties of Permendur granular composite materials containing flaky particles. J. Appl. Phys. 2014, 116, 153901. [Google Scholar] [CrossRef]
- Pardavi-Horvath, M. Microwave applications of soft ferrites. J. Magn. Magn. Mater. 2000, 215–216, 171–183. [Google Scholar] [CrossRef]
- Salahun, E.; Queffelec, P.; Le Floc’h, M.; Gelin, P. A broadband permeameter for “in situ” measurements of rectangular samples. IEEE Trans. Magn. 2001, 37, 2743–2745. [Google Scholar] [CrossRef]
- Cramer, N.; Lucic, D.; Camley, R.E.; Celinski, Z. High attenuation tunable microwave notch filters utilizing ferromagnetic resonance. J. Appl. Phys. 2000, 87, 6911–6913. [Google Scholar] [CrossRef]
- Chevalier, A.; Le Floc’h, M. Dynamic permeability in soft magnetic composite materials. J. Appl. Phys. 2001, 90, 3462–3465. [Google Scholar] [CrossRef] [Green Version]
- Schmool, D.S.; Apolinario, A.; Casoli, F.; Albertini, F. Ferromagnetic Resonance Study of Fe/FePt Coupled Films with Perpendicular Anisotropy. IEEE Trans. Magn. 2008, 40, 3087–3090. [Google Scholar] [CrossRef]
- Tomita, S.; Hagiwara, M.; Kashiwagi, T.; Tsuruta, C.; Matsui, Y.; Fujii, M.; Hayashi, S. Ferromagnetic resonance study of diluted Fe nanogranular films. J. Appl. Phys. 2004, 95, 8194–8198. [Google Scholar] [CrossRef]
- Maksymov, I.; Kostylev, M. Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures. Physica. E Low-Dimens. Syst. Nanostructures 2015, 69, 253–293. [Google Scholar] [CrossRef] [Green Version]
- Shiryaev, A.O.; Rozanov, K.N.; Vyzulin, S.A.; Kevraletin, A.L.; Syr’ev, N.E.; Vyzulin, E.S.; Lahderanta, E.; Maklakov, S.A.; Granovsky, A.B. Magnetic resonances and microwave permeability in thin Fe films on flexible polymer substrates. J. Magn. Magn. Mater. 2018, 461, 76–81. [Google Scholar] [CrossRef]
- Mattei, J.L.; Le Floc’h, M. A numerical approach of the inner demagnetizing effects in soft magnetic composites. J. Magn. Magn. Mater. 2000, 215–216, 589–591. [Google Scholar] [CrossRef]
- Mattei, J.; Le Floc’h, M. Percolative behaviour and demagnetizing effects in disordered heterostructures. J. Magn. Magn. Mater. 2003, 257, 335–345. [Google Scholar] [CrossRef]
- Mattei, J.; Le Floc’h, M. Effects of the magnetic dilution on the ferrimagnetic resonance of disordered hetero structures. J. Magn. Mag. Mater. 2003, 264, 86–94. [Google Scholar] [CrossRef]
- Shiryaev, A.O.; Rozanov, K.N.; Starostenko, S.N.; Bobrovskii, S.Y.; Osipov, A.V.; Petrov, D.A. The bias effect on the frequency dispersion of microwave permeability of composites filled with metal films or flakes. J. Magn. Magn. Mater. 2019, 470, 139–142. [Google Scholar] [CrossRef]
- Shiryaev, A.O.; Bobrovskii, S.Y.; Granovsky, A.B.; Osipov, A.V.; Naboko, A.S.; Lahderanta, E.; Lagarkov, A.N.; Rozanov, K.N.; Zezyulina, P.A. Coaxial measurements of microwave permeability of thin supermalloy films under magnetic bias. JMMM 2019, 477, 329–333. [Google Scholar] [CrossRef]
- Starostenko, S.N.; Rozanov, K.N.; Shiryaev, A.O.; Shalygin, A.N.; Lagarkov, A.N. Determination of sendust intrinsic permeability from microwave constitutive parameters of composites with sendust spheres and flakes. J. Appl. Phys. 2017, 121, 245107. [Google Scholar] [CrossRef]
- Chen, L.F.; Ong, C.K.; Neo, C.P.; Varadan, V.V.; Varadan, V.K. Microwave Electronics: Measurement and Materials Characterization; John Wiley & Sons Ltd.: West Sussex, UK, 2004. [Google Scholar]
- Rozanov, K.; Koledintseva, M. Analytical representations for frequency dependences of microwave permeability. In Proceedings of the 2012 IEEE International Symposium on Electromagnetic Compatibility, Pittsburgh, PA, USA, 5−10 August 2012. Abstract Number 13116484. [Google Scholar]
- Fredkin, D.R.; Ron, A. Microscopic derivation of the Landau-Lifschitz equation for ferromagnetic relaxation. Phys. Rev. B 2000, 61, 8654–8655. [Google Scholar] [CrossRef]
- Kittel, C. On the Theory of Ferromagnetic Resonance Absorption. Phys. Rev. 1948, 73, 155–161. [Google Scholar] [CrossRef]
- Zhang, B.S.; Yuan, Z.; Zhao, H.; Yang, Y.; Tang, D.M. Hysteretic Behavior of the Dynamic Permeability in FeCoB Thin Films. IEEE Trans. Magn. 2016, 52, 2000204. [Google Scholar] [CrossRef]
- Iakubov, I.T.; Kashurkin, O.Y.; Lagarkov, A.N.; Maklakov, S.A.; Osipov, A.V.; Rozanov, K.N.; Ryzhikov, I.A.; Starostenko, S.N. A contribution from the magnetoelastic effect to measured microwave permeability of thin ferromagnetic films. J. Magn. Magn. Mater. 2012, 324, 3385–3388. [Google Scholar] [CrossRef]
- Chalapat, K.; Timonen, J.V.; Huuppola, M.; Koponen, L.; Johans, C.; Ras, R.H.; Ikkala, O.; Oksanen, M.A.; Seppälä, E.; Paraoanu, G.S. Ferromagnetic resonance in epsilon-Co magnetic composites. Nanotechnology 2014, 25, 485707. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Jin, L.; Wen, T.; Liao, Y.; Tang, X.; Zhang, H.; Zhong, Z. Effects of substrate annealing on uniaxial magnetic anisotropy and ferromagnetic resonance frequency of Ni80Fe20 films deposited on self-organized periodically rippled sapphire substrates. Vacuum 2021, 186, 110047. [Google Scholar] [CrossRef]
- Butera, A.; Zhou, J.N.; Barnard, J.A. Ferromagnetic Resonance in As-Deposited and Annealed Fe-SiO2 Heterogeneous Thin Films. Phys. Rev. B 1999, 60, 12270–12278. [Google Scholar] [CrossRef]
- Rozanov, K.N.; Koledintseva, M.Y. Application of generalized Snoek’s law over a finite frequency range: A case study. J. Appl. Phys. 2016, 119, 073901. [Google Scholar] [CrossRef]
- Nakamura, T.; Tsutaoka, T.; Hatakeyama, K. Frequency dispersion of permeability in ferrite composite materials. J. Magn. Magn. Mater. 1994, 138, 319–328. [Google Scholar] [CrossRef]
- Neo, C.P.; Yang, Y.; Ding, J. Calculation of complex permeability of magnetic composite materials using ferromagnetic resonance model. J. Appl. Phys. 2010, 107, 083906. [Google Scholar] [CrossRef]
- Tsutaoka, T. Frequency dispersion of complex permeability in Mn–Zn and Ni–Zn spinel ferrites and their composite materials. J. Appl. Phys. 2003, 93, 2789–2796. [Google Scholar] [CrossRef] [Green Version]
- Starostenko, S.; Rozanov, K. Microwave Screen with Magnetically Controlled Attenuation. PIER 2009, 99, 405–426. [Google Scholar] [CrossRef] [Green Version]
- Petrov, D.; Rozanov, N.; Koledintseva, M. Influence of Higher-order Modes in Coaxial Waveguide on Measurements of Material Parameters. In Proceedings of the 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity, Long Beach, CA, USA, 30 July–3 August 2018. [Google Scholar]
- Acher, O.; Adenot, A.L. Bounds on the dynamic properties of magnetic materials. Phys. Rev. B 2000, 62, 11324–11327. [Google Scholar] [CrossRef]
- He, D.; Dou, Z.; Zhang, J.; Wang, P.; Wang, G.; Duan, B.; Qiao, L.; Wang, T. Effects of orientation methods on electromagnetic parameters and microwave absorption characteristics of flaky carbonyl iron SiO2 particles. J. Magn. Magn. Mater. 2020, 513, 167191. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiryaev, A.; Rozanov, K.; Naboko, A.; Artemova, A.; Maklakov, S.; Bobrovskii, S.; Petrov, D. Splitting of the Magnetic Loss Peak of Composites under External Magnetic Field. Physics 2021, 3, 678-688. https://doi.org/10.3390/physics3030041
Shiryaev A, Rozanov K, Naboko A, Artemova A, Maklakov S, Bobrovskii S, Petrov D. Splitting of the Magnetic Loss Peak of Composites under External Magnetic Field. Physics. 2021; 3(3):678-688. https://doi.org/10.3390/physics3030041
Chicago/Turabian StyleShiryaev, Artem, Konstantin Rozanov, Andrey Naboko, Anastasia Artemova, Sergey Maklakov, Stanislav Bobrovskii, and Dmitriy Petrov. 2021. "Splitting of the Magnetic Loss Peak of Composites under External Magnetic Field" Physics 3, no. 3: 678-688. https://doi.org/10.3390/physics3030041
APA StyleShiryaev, A., Rozanov, K., Naboko, A., Artemova, A., Maklakov, S., Bobrovskii, S., & Petrov, D. (2021). Splitting of the Magnetic Loss Peak of Composites under External Magnetic Field. Physics, 3(3), 678-688. https://doi.org/10.3390/physics3030041