Relativistic Ermakov–Milne–Pinney Systems and First Integrals
Abstract
:1. Introduction
2. The Eliezer and Gray Physical Interpretation
3. A Relativistic Ermakov–Milne–Pinney System
4. Derivation from a Dynamical Rescaling of Time
5. The Case
6. Relativistic Conservative Ermakov–Milne–Pinney Equation
7. Nonlinear Superposition Law
8. Conclusions
Funding
Conflicts of Interest
References
- Ermakov, V.P. Second-order differential equations. Conditions of complete integrability. Appl. Anal. Discrete Math. 2008, 2, 123–145. [Google Scholar]
- Milne, W.E. The numerical determination of characteristic numbers. Phys. Rev. 1930, 35, 863–867. [Google Scholar] [CrossRef] [Green Version]
- Pinney, E. The nonlinear equation y′′(x)+p(x)y(x)+cy−3(x)=0. Proc. Amer. Math. Soc. 1950, 1, 681. [Google Scholar]
- Hawkins, R.M.; Lidsey, J.E. Ermakov-Pinney equation in scalar field cosmologies. Phys. Rev. D 2002, 66, 023523. [Google Scholar] [CrossRef] [Green Version]
- Rosu, H.C.; Mancas, S.C.; Chen, P. Barotropic FRW Cosmologies with Chiellini damping. Phys. Lett. A 2015, 379, 882–887. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Tsamparlis, M.; Basilakos, S.; Capozziello, S. Scalar-tensor gravity cosmology: Noether symmetries and analytical solutions. Phys. Rev. D 2014, 89, 063532. [Google Scholar] [CrossRef] [Green Version]
- Haas, F. Anisotropic Bose-Einstein condensates and completely integrable dynamical systems. Phys. Rev. A 2002, 65, 033603. [Google Scholar] [CrossRef] [Green Version]
- Herring, G.; Kevrekidis, P.G.; Williams, F.; Christodoulakis, T.; Frantzeskakis, D.F. From Feshbach-resonance managed Bose-Einstein condensates to anisotropic universes: Applications of the Ermakov-Pinney equation with time-dependent nonlinearity. Phys. Lett. A 2007, 367, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Lara, B.M.; Aleahmad, P.; Moya-Cessa, H.M.; Christodoulides, D.N. Ermakov–Lewis symmetry in photonic lattices. Opt. Lett. 2014, 39, 2083–2085. [Google Scholar] [CrossRef] [Green Version]
- Courant, E.D.; Snyder, H.S. Theory of the alternating-gradient synchrotron. Ann. Phys. 1958, 3, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Davidson, R.C. Symmetries and invariants of the oscillator and envelope equations with time-dependent frequency. Phys. Rev. ST Accel. Beams 2006, 9, 054001. [Google Scholar] [CrossRef] [Green Version]
- Geralico, A.; Landolfi, G.; Ruggeri, G.; Soliani, G. Novel approach to the study of quantum effects in the early Universe. Phys. Rev. D 2004, 69, 043504. [Google Scholar] [CrossRef] [Green Version]
- Fring, A.; Frith, T. Metric versus observable operator representation, higher spin models. Eur. Phys. J. Plus 2018, 133, 57. [Google Scholar] [CrossRef] [Green Version]
- Haas, F.; Bret, A. Nonlinear low-frequency collisional quantum Buneman instability. EPL (Europhysics Letters) 2012, 97, 26001. [Google Scholar] [CrossRef]
- Llibre, J.; Pérez-Chavela, E. Limit cycles for a class of second order differential equations. Phys. Lett. A 2011, 375, 1080–1083. [Google Scholar] [CrossRef] [Green Version]
- Haas, F.; Goedert, J. On the linearization of the generalized Ermakov systems. J. Phys. A Math. Gen. 1999, 32, 2835–2844. [Google Scholar] [CrossRef]
- Rogers, C.; Schief, W.K. The pulsrodon in 2+1-dimensional magneto-gasdynamics: Hamiltonian structure and integrability. J. Math. Phys. 2011, 52, 083701. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Fring, A.; Gouba, L. Milne quantization for non-Hermitian systems. J. Phys. A Math. Theor. 2015, 48, 40FT01. [Google Scholar] [CrossRef] [Green Version]
- Fring, A.; Frith, T. Mending the broken PT-regime via an explicit time-dependent Dyson map. Phys. Lett. A 2017, 381, 2318–2323. [Google Scholar] [CrossRef] [Green Version]
- Cen, J.; Fring, A.; Frith, T. Time-dependent Darboux (supersymmetric) transformations for non-Hermitian quantum systems. J. Phys. A Math. Theor. 2019, 52, 115302. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Fring, A. Noncommutative quantum mechanics in a time-dependent background. Phys. Rev. D 2014, 90, 084005. [Google Scholar] [CrossRef] [Green Version]
- Cariñena, J.F.; de Lucas, J. A nonlinear superposition rule for solutions of the Milne-Pinney equation. Phys. Lett. A 2008, 372, 5385–5389. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.M.; Leach, P.G.L. The effects of symmetry-breaking functions on the Ermakov-Pinney equation. Appl. Anal. Discrete Math. 2017, 11, 62–73. [Google Scholar] [CrossRef]
- Haas, F. The damped Pinney equation and its applications to dissipative quantum mechanics. Physica Scripta 2010, 81, 025004. [Google Scholar] [CrossRef]
- Guha, P.; Ghose-Choudhury, A. Nonlocal transformations of the generalized Liénard type equations and dissipative Ermakov-Milne-Pinney systems. Int. J. Geom. Meth. Mod. Phys. 2019, 16, 1950107. [Google Scholar] [CrossRef] [Green Version]
- Athorne, C. On solving a class of unbalanced Ermakov- Pinney systems. J. Phys. A Math. Gen. 2001, 34, L563–L566. [Google Scholar] [CrossRef]
- Reid, J.L. An exact solution of the nonlinear differential equation ÿ+p(t)y=qm(t)/y2m−1. Proc. Am. Math. Soc. 1971, 27, 61–62. [Google Scholar]
- Cervantes-López, E.; Espinoza, P.B.; Gallegos, A.; Rosu, H.C. Ermakov–Ray–Reid systems with additive noise. Physica A 2015, 439, 44–47. [Google Scholar] [CrossRef]
- Hartemann, F.V. High-Field Electrodynamics; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Thylwe, K.-E.; McCabe, P. Bohr-Sommerfeld quantization condition for Dirac states derived from an Ermakov-type invariant. J. Math. Phys. 2013, 54, 052301. [Google Scholar] [CrossRef]
- Petrov, S.V. Classical dynamics of the relativistic oscillator. Eur. J. Phys. 2016, 37, 065605. [Google Scholar] [CrossRef]
- Guerrero, J.; Aldaya, V. A perturbative approach to the relativistic harmonic oscillator. Mod. Phys. Lett. A 1999, 14, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Beléndez, A.; Pascual, C.; Méndez, D.I.; Neipp, C. Solution of the relativistic (an)harmonic oscillator using the harmonic balance method. J. Sound Vib. 2008, 311, 1447–1456. [Google Scholar] [CrossRef]
- Edery, A.; Laporte, P. First and second-order relativistic corrections to the two and higher-dimensional isotropic harmonic oscillator obeying the spinless Salpeter equation. J. Phys. Commun. 2018, 2, 025024. [Google Scholar] [CrossRef]
- Poszwa, A. Relativistic generalizations of the quantum harmonic oscillator. Acta Phys. Pol. A 2014, 126, 1226–1234. [Google Scholar] [CrossRef]
- Znojil, M. Harmonic oscillations in quasi-relativistic regime. J. Phys. A Math. Gen. 1996, 29, 2905–2918. [Google Scholar] [CrossRef]
- Balasubramanya, M.K. The action variable and frequency of a relativistic harmonic oscillator. Theor. Math. Phys. 2010, 162, 341–346. [Google Scholar] [CrossRef]
- Gold, L. Note on the relativistic harmonic oscillator. J. Franklin Inst. 1957, 264, 25–27. [Google Scholar] [CrossRef]
- Harvey, A.L. Relativistic harmonic oscillator. Phys. Rev. D 1972, 6, 1474–1476. [Google Scholar] [CrossRef]
- Teychenné, D.; Bonnaud, G.; Bobin, J.-L. Oscillatory relativistic motion of a particle in a power-law or sinusoidal-shaped potential well. Phys. Rev. E 1994, 49, 3253–3263. [Google Scholar] [CrossRef] [PubMed]
- Chargui, Y. On an approximation of the two-body spinless Salpeter equation. Eur. Phys. J. Plus 2018, 133, 543. [Google Scholar] [CrossRef]
- Llibre, J.; Makhlouf, A. On the periodic solutions of the relativistic driven harmonic oscillator. J. Math. Phys. 2020, 61, 012501. [Google Scholar] [CrossRef]
- Li, Z.-F.; Liu, J.-J.; Lucha, W.; Ma, W.-G.; Schöberl, F.F. Relativistic harmonic oscillator. J. Math. Phys. 2005, 46, 103514. [Google Scholar] [CrossRef] [Green Version]
- Salpeter, E.E. Mass corrections to the fine structure of hydrogen-like atoms. Phys. Rev. 1952, 87, 328–343. [Google Scholar] [CrossRef]
- Fujiwara, K.M.; Geiger, Z.A.; Singh, K.; Senaratne, R.; Rajagopal, S.V.; Lipatov, M.; Shimasaki, T.; Weld, D.M. Experimental realization of a relativistic harmonic oscillator. New J. Phys. 2018, 20, 063027. [Google Scholar] [CrossRef] [Green Version]
- Eliezer, C.J.; Gray, A. A note on the time-dependent harmonic oscillator. SIAM J. Appl. Math. 1976, 30, 463–468. [Google Scholar] [CrossRef]
- Ray, J.R.; Reid, J.L. More exact invariants for the time-dependent harmonic oscillator. Phys. Lett. A 1979, 71, 317–318. [Google Scholar] [CrossRef]
- Mancas, S.C.; Rosu, H.C. Ermakov-Lewis invariants and Reid systems. Phys. Lett. A 2014, 378, 2113–2117. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, H.; Poole, C.; Safko, J. Classical Mechanics; Addison Wesley: San Francisco, CA, USA, 2002; p. 316. [Google Scholar]
- Hand, L.N.; Finch, J.D. Analytical Mechanics; Cambridge University Press: Cambridge, MA, UK, 1998; p. 551. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Butterworth-Heinemann: Oxford, UK, 1975; p. 48. [Google Scholar]
- Jackson, J.D. Classical Electrodynamics; John Wiley: New York, NY, USA, 1962; p. 408. [Google Scholar]
- Corben, H.C.; Stehle, P. Classical Mechanics; John Wiley: New York, NY, USA, 1960; p. 297. [Google Scholar]
- Arya, A. Introduction to Classical Mechanics; Benjamin Cummings: San Francisco, CA, USA, 1997; p. 694. [Google Scholar]
- Reid, J.L.; Ray, J.R. Ermakov systems, nonlinear superposition, and solutions of nonlinear equations of motion. J. Math. Phys. 1980, 21, 1583–1587. [Google Scholar] [CrossRef]
- Haas, F.; Goedert, J. On the Hamiltonian structure of Ermakov systems. J. Phys. A Math. Gen. 1996, 29, 4083–4092. [Google Scholar]
- Goedert, J.; Haas, F. On the Lie symmetries of a class of generalized Ermakov systems. Phys. Lett. A 1998, 239, 348–352. [Google Scholar] [CrossRef] [Green Version]
- Leach, P.G.L. Generalized Ermakov systems. Phys. Lett. A 1991, 158, 102–106. [Google Scholar] [CrossRef]
- Martin, J.; Bouquet, S. Search for first integrals in relativistic time-dependent Hamiltonian systems. J. Math. Phys. 1994, 35, 181–189. [Google Scholar] [CrossRef]
- Milne-Thomson, L.M. Elliptic integrals. In Handbook of Mathematical Functions; Abramowitz, M., Stegun, I.A., Eds.; Dover Publications: New York, NY, USA, 1972; p. 589. [Google Scholar]
- Mickens, R.E. Periodic solutions of the relativistic harmonic oscillator. J. Sound Vib. 1998, 212, 905–908. [Google Scholar] [CrossRef]
- Fring, A.; Tenney, R. Time-independent approximations for time-dependent optical potentials. Eur. Phys. J. Plus 2020, 135, 163. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haas, F. Relativistic Ermakov–Milne–Pinney Systems and First Integrals. Physics 2021, 3, 59-70. https://doi.org/10.3390/physics3010006
Haas F. Relativistic Ermakov–Milne–Pinney Systems and First Integrals. Physics. 2021; 3(1):59-70. https://doi.org/10.3390/physics3010006
Chicago/Turabian StyleHaas, Fernando. 2021. "Relativistic Ermakov–Milne–Pinney Systems and First Integrals" Physics 3, no. 1: 59-70. https://doi.org/10.3390/physics3010006
APA StyleHaas, F. (2021). Relativistic Ermakov–Milne–Pinney Systems and First Integrals. Physics, 3(1), 59-70. https://doi.org/10.3390/physics3010006