Short-Wave Asymptotics for Gaussian Beams and Packets and Scalarization of Equations in Plasma Physics
Abstract
:1. Introduction
2. Linearized System of Plasma Equations
3. Gaussian Packets and Beams for High Frequencies
3.1. Gaussian Beams
3.2. Gaussian Wave Packets
3.3. Numerical Simulation
4. The Case of Lower Frequencies
5. The Maslov Complex Germ Theory in a Short-Wave Approximation
5.1. Linear System of Partial Differential Equations with a Small Parameter
5.2. Step 1. Factorization to Modes (Diagonalization of the Main Symbol )
Remark on the Choice of Eigenvector System
5.3. Step 2. Hamilton–Jacobi Equation, Hamiltonian System, Lagrangian Submanifolds, Complex Germ, and Transport Equations
5.3.1. Short-Wave Asymptotics with Real Phases: Hamilton–Jacobi Equation, Hamiltonian System, Lagrangian Manifolds
5.3.2. Short-Wave Asymptotics with Complex Phases: Isotropic Manifolds with the Complex Germ
5.3.3. Transport Equation and the Solution of the Equation on the Eigenspace
5.3.4. Construction of the Solution of the Equation
5.3.5. Stationary Case
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Babich, V.M.; Buldyrev, V.S. Asymptotic Methods in Short-Wavelength Diffraction Theory; Alpha Science International: Oxford, UK, 2009. [Google Scholar]
- Popov, M.M. A new method of computing wave fields in the high-frequency approximation. J. Sov. Math. 1982, 20, 1869–1882. [Google Scholar] [CrossRef]
- Popov, M.M. A new method of computation of wave fields using Gaussian beams. Wave Motion 1982, 4, 85–97. [Google Scholar] [CrossRef]
- Babich, V.M.; Ulin, V.V. Complex ray solutions and eigenfunctions concentrated in a neighborhood of a closed geodesic. J. Sov. Math. 1982, 20, 1749–1753. [Google Scholar] [CrossRef]
- Babich, V.M.; Ulin, V.V. Complex space-time ray method and “quasiphotons”. J. Sov. Math. 1984, 24, 269–273. [Google Scholar] [CrossRef]
- Ralston, J. Gaussian beams and the propagation of singularities. Stud. Partial. Differ. Equ. 1982, 23, C248. [Google Scholar]
- Kravtsov, Y.A.; Berczynski, P. Gaussian beams in inhomogeneous media: A review. Stud. Geophys. Geod. 2007, 51, 1–36. [Google Scholar] [CrossRef]
- Ceccuzzi, S.; Dattoli, G.; Palma, E.D.; Doria, A.; Gallerano, G.P.; Giovenale, E.; Mirizzi, F.; Spassovsky, I.; Ravera, G.; Surrenti, V.; et al. CARM: A THz source for plasma heating. In Proceedings of the 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Mainz, Germany, 1–6 September 2013. [Google Scholar] [CrossRef]
- Kolner, B.H.; Buckles, R.A.; Conklin, P.M.; Scott, R.P. Plasma Characterization With Terahertz Pulses. IEEE J. Sel. Top. Quantum Electron. 2008, 14, 505–512. [Google Scholar] [CrossRef]
- Fedoryuk, M.V.; Maslov, V.P. Semi-Classical Approximation in Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Dobrokhotov, S.Y.; Cardinali, A.; Klevin, A.I.; Tirozzi, B. Maslov complex germ and high-frequency Gaussian beams for cold plasma in a toroidal domain. Dokl. Math. 2016, 94, 480–485. [Google Scholar] [CrossRef]
- Anikin, A.Y.; Dobrokhotov, S.Y.; Klevin, A.I.; Tirozzi, B. Gaussian Packets and Beams with Focal Points in Vector Problems of Plasma Physics. Theor. Math. Phys. 2018, 196, 1059–1081. [Google Scholar] [CrossRef]
- Anikin, A.Y.; Dobrokhotov, S.Y.; Klevin, A.I.; Tirozzi, B. Scalarization of stationary semiclassical problems for systems of equations and its application in plasma physics. Theor. Math. Phys. 2017, 193, 1761–1782. [Google Scholar] [CrossRef]
- Maslov, V.P. The Complex WKB Method for Nonlinear Equations I: Linear Theory; Birkhäuser: Basel, Switzerland, 1994. [Google Scholar]
- Maslov, V.P. Operational Methods; Mir Publishers: Moscow, Russia, 1976. [Google Scholar]
- Belov, V.V.; Dobrokhotov, S.Y.; Tudorovskiy, T.Y. Operator separation of variables for adiabatic problems in quantum and wave mechanics. J. Eng. Math. 2006, 55, 183–237. [Google Scholar] [CrossRef] [Green Version]
- Belov, V.V.; Dobrokhotov, S.Y. Semiclassical Maslov asymptotics with complex phases. I. General approach. Theor. Math. Phys. 1992, 92, 843–868. [Google Scholar] [CrossRef]
- Cardinali, A.; Dobrokhotov, S.Y.; Klevin, A.; Tirozzi, B. Gaussian beams for a linearized cold plasma confined in a torus. J. Instrum. 2016, 11. [Google Scholar] [CrossRef]
- Leble, S.B. Nonlinear Waves in Waveguides; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar] [CrossRef]
- Cairns, R.A.; Fuchs, V. Calculation of a wave field from ray tracing. Nucl. Fusion 2010, 50, 095001. [Google Scholar] [CrossRef]
- Pereverzev, G.V. Paraxial WKB description of short wavelength eigenmodes in a tokamak. Phys. Plasmas 2001, 8, 3664–3672. [Google Scholar] [CrossRef]
- Mazzucato, E. Propagation of a Gaussian beam in a nonhomogeneous plasma. Phys. Fluids Plasma Phys. 1989, 1, 1855–1859. [Google Scholar] [CrossRef] [Green Version]
- Gerwin, R.A. Initial Value Solution of Maxwell’s Equations in Cold Plasma. Am. J. Phys. 1962, 30, 711–715. [Google Scholar] [CrossRef]
- Freidberg, J.P. Ideal MHD; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Brambilla, M. Kinetic Theory of Plasma Waves: Homogeneous Plasmas; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Stix, T.H. Waves in Plasmas; American Institute of Physics: College Park, MD, USA, 1992. [Google Scholar]
- Shkalikov, A.A. Operator Pencils Arising in Elasticity and Hydrodynamics: The Instability Index Formula. In Recent Developments in Operator Theory and Its Applications; Birkhäuser: Basel, Switzerland, 1996; pp. 358–385. [Google Scholar] [CrossRef]
- Fock, V.A. On the canonical transformation in classical and quantum mechanics. Acta Phys. Acad. Sci. Hung. 1969, 27, 219–224. [Google Scholar] [CrossRef]
- Klevin, A.I. Asymptotic eigenfunctions of the “bouncing ball” type for the two-dimensional Schrödinger operator with a symmetric potential. Theor. Math. Phys. 2019, 199, 849–863. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anikin, A.Y.; Dobrokhotov, S.Y.; Klevin, A.I.; Tirozzi, B. Short-Wave Asymptotics for Gaussian Beams and Packets and Scalarization of Equations in Plasma Physics. Physics 2019, 1, 301-320. https://doi.org/10.3390/physics1020023
Anikin AY, Dobrokhotov SY, Klevin AI, Tirozzi B. Short-Wave Asymptotics for Gaussian Beams and Packets and Scalarization of Equations in Plasma Physics. Physics. 2019; 1(2):301-320. https://doi.org/10.3390/physics1020023
Chicago/Turabian StyleAnikin, Anatoly Yu., Sergey Yu. Dobrokhotov, Alexander I. Klevin, and Brunello Tirozzi. 2019. "Short-Wave Asymptotics for Gaussian Beams and Packets and Scalarization of Equations in Plasma Physics" Physics 1, no. 2: 301-320. https://doi.org/10.3390/physics1020023
APA StyleAnikin, A. Y., Dobrokhotov, S. Y., Klevin, A. I., & Tirozzi, B. (2019). Short-Wave Asymptotics for Gaussian Beams and Packets and Scalarization of Equations in Plasma Physics. Physics, 1(2), 301-320. https://doi.org/10.3390/physics1020023