Diverse Intrusion and Malware Detection: AI-Based and Non-AI-Based Solutions
- Wang, F.; Tang, Y.; Fang, H. Mitigating IoT Privacy-Revealing Features by Time Series Data Transformation. J. Cybersecur. Priv. 2023, 3, 209–226. https://doi.org/10.3390/jcp3020012.
- Li, R.; Tsikerdekis, M. Hourly Network Anomaly Detection on HTTP Using Exponential Random Graph Models and Autoregressive Moving Average. J. Cybersecur. Priv. 2023, 3, 435–450. https://doi.org/10.3390/jcp3030022.
- Ghani, H.; Virdee, B.; Salekzamankhani, S. A Deep Learning Approach for Network Intrusion Detection Using a Small Features Vector. J. Cybersecur. Priv. 2023, 3, 451–463. https://doi.org/10.3390/jcp3030023.
- Ahmadi Abkenari, F.; Milani Fard, A.; Khanchi, S. Hybrid Machine Learning-Based Approaches for Feature and Overfitting Reduction to Model Intrusion Patterns. J. Cybersecur. Priv. 2023, 3, 544–557. https://doi.org/10.3390/jcp3030026.
- Abdelmoumin, G.; Rawat, D.; Rahman, A. Studying Imbalanced Learning for Anomaly-Based Intelligent IDS for Mission-Critical Internet of Things. J. Cybersecur. Priv. 2023, 3, 706–743. https://doi.org/10.3390/jcp3040032.
- Ghani, H.; Salekzamankhani, S.; Virdee, B. A Hybrid Dimensionality Reduction for Network Intrusion Detection. J. Cybersecur. Priv. 2023, 3, 830–843. https://doi.org/10.3390/jcp3040037.
- Ghosh, T.; Bagui, S.; Bagui, S.; Kadzis, M.; Bare, J. Anomaly Detection for Modbus over TCP in Control Systems Using Entropy and Classification-Based Analysis. J. Cybersecur. Priv. 2023, 3, 895–913. https://doi.org/10.3390/jcp3040041.
- Rose, A.; Graham, S.; Schubert Kabban, C.; Krasnov, J.; Henry, W. ScriptBlock Smuggling: Uncovering Stealthy Evasion Techniques in PowerShell and .NET Environments. J. Cybersecur. Priv. 2024, 4, 153–166. https://doi.org/10.3390/jcp4020008.
- Halder, R.; Das Roy, D.; Shin, D. A Blockchain-Based Decentralized Public Key Infrastructure Using the Web of Trust. J. Cybersecur. Priv. 2024, 4, 196–222. https://doi.org/10.3390/jcp4020010.
- Muhati, E.; Rawat, D. Data-Driven Network Anomaly Detection with Cyber Attack and Defense Visualization. J. Cybersecur. Priv. 2024, 4, 241–263. https://doi.org/10.3390/jcp4020012.
Author Contributions
Funding
Conflicts of Interest
References
- Sommer, R.; Paxson, V. Outside the closed world: On using machine learning for network intrusion detection. In Proceedings of the 2010 IEEE Symposium on Security and Privacy, Berkeley/Oakland, CA, USA, 16–19 May 2010; pp. 305–316. [Google Scholar]
- Dada, E.G.; Bassi, J.S.; Chiroma, H.; Adetunmbi, A.O.; Ajibuwa, O.E. Machine Learning for Email Spam Filtering: Review, Approaches and Open Research Problems. Heliyon 2019, 5, e01802. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Goel, D.; Agarwal, S.; Singh, Y.; Bajaj, G. Predicting Spam Messages using Back Propagation Neural Network. Wirel. Pers. Commun. 2020, 110, 403–422. [Google Scholar] [CrossRef]
- Ma, Z.; Ge, H.; Liu, Y.; Zhao, M.; Ma, J. A Combination Method for Android Malware Detection based on Control Flow Graphs and Machine Learning Algorithms. IEEE Access 2019, 7, 21235–21245. [Google Scholar] [CrossRef]
- Gharaee, H.; Hosseinvand, H. A New Feature Selection IDS based on Genetic Algorithm and SVM. In Proceedings of the 2016 8th International Symposium on Telecommunications (IST), Tehran, Iran, 27 August 2016; pp. 139–144. [Google Scholar]
- Belouch, M.; Hadaj, S.E.; Idhammad, M. A Two-Stage Classifier Approach using Reptree Algorithm for Network Intrusion Detection. Int. J. Adv. Comput. Sci. Appl. 2017, 8. [Google Scholar] [CrossRef]
- Dey, S.; Ye, Q.; Sampalli, S. A Machine Learning based Intrusion Detection Scheme for Data Fusion in Mobile Clouds Involving Heterogeneous Client Networks. Inf. Fusion 2019, 49, 205–215. [Google Scholar] [CrossRef]
- Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection. arXiv 2018, arXiv:1802.09089. [Google Scholar]
- Kilincer, I.F.; Fatih, E.; Abdulkadir, S. Machine Learning Methods for Cyber Security Intrusion Detection: Datasets and Comparative Study. Comput. Netw. 2021, 188, 107840. [Google Scholar] [CrossRef]
- Xin, Y.; Kong, L.; Liu, Z.; Chen, Y.; Li, Y.; Zhu, H.; Wang, C. Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Access 2018, 6, 35365–35381. [Google Scholar] [CrossRef]
- Hijazi, A.; El Safadi, A.; Flaus, J.M. A Deep Learning Approach for Intrusion Detection System in Industry Network. In Proceedings of the BDCSIntell, Hadath, Lebanon, 13–15 December 2018; pp. 55–62. [Google Scholar]
- Sivanathan, A.; Gharakheili, H.H.; Loi, F.; Radford, A.; Wijenayake, C.; Vishwanath, A.; Sivaraman, V. Classifying IoT Devices in Smart Environments Using Network Traffic Characteristics. IEEE Trans. Mob. Comput. 2019, 18, 1745–1759. [Google Scholar] [CrossRef]
- Mambwe, K.S.; Sun, Y. A Deep Learning Method with Wrapper based Feature Extraction for Wireless Intrusion Detection System. Comput. Secur. 2020, 92, 101752. [Google Scholar]
- Mambwe, K.S. A Deep Learning Technique for Intrusion Detection System using a Recurrent Neural Networks based Framework. Comput. Commun. 2023, 199, 113–125. [Google Scholar]
- Ali, H.M.; Cosan, S. Computer Network Intrusion Detection using Sequential LSTM Neural Networks Autoencoders. In Proceedings of the 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; pp. 1–4. [Google Scholar]
- Hong, D.R.; Li, X.Y.; Zhang, Q.Y.; Yuan, H. Network Intrusion Detection Model based on Multivariate Correlation Analysis—Long Short—Time Memory Network. IET Inf. Secur. 2020, 14, 166–174. [Google Scholar]
- Yin, C.; Zhu, Y.; Fei, J.; He, X. A Deep Learning Approach for Intrusion Detection using Recurrent Neural Networks. IEEE Access 2017, 5, 21954–21961. [Google Scholar] [CrossRef]
- Hsu, C.M.; Hsieh, H.Y.; Prakosa, S.W.; Azhari, M.Z.; Leu, J.S. Using long-short-term memory based convolutional neural networks for network intrusion detection. In Proceedings of the Wireless Internet: 11th EAI International Conference, WiCON 2018, Taipei, Taiwan, 15–16 October 2018; pp. 86–94. [Google Scholar]
- Li, Z.; Rios AL, G.; Xu, G.; Trajković, L. Machine Learning Techniques for Classifying Network Anomalies and Intrusions. In Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS 2019, Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar]
- Salo, F.; Nassif, A.B.; Essex, A. Dimensionality Reduction with IGPCA and Ensemble Classifier for Network Intrusion Detection. Comput. Netw. 2019, 148, 164–175. [Google Scholar] [CrossRef]
- Zebari, R.; Abdulazeez, A.; Zeebaree, D.; Zebari, D.; Saeed, J. A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction. J. Appl. Sci. Technol. Trends 2020, 1, 56–70. [Google Scholar] [CrossRef]
- Chaouki, K.; Krichen, S. A NSGA2-LR Wrapper Approach for Feature Selection in Network Intrusion Detection. Comput. Netw. 2020, 172, 107183. [Google Scholar]
- Injadat, M.; Moubayed, A.; Nassif, A.B.; Shami, A. Multi-stage Optimized Machine Learning Framework for Network Intrusion Detection. IEEE Trans. Netw. Serv. Manag. 2020, 18, 1803–1816. [Google Scholar] [CrossRef]
- Krawczyk, B. Learning from Imbalanced Data: Open Challenges and Future Directions. Prog. Artif. Intell. 2016, 5, 221–232. [Google Scholar] [CrossRef]
- Ahmed, S.; Mahbub, A.; Rayhan, F.; Jani, R.; Shatabda, S.; Farid, D.M. Hybrid Methods for Class Imbalance Learning Employing Bagging with Sampling Techniques. In Proceedings of the 2017 2nd International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS), Bengaluru, India, 21–23 December 2017; pp. 1–5. [Google Scholar]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on Deep Learning with Class Imbalance. J. Big Data 2019, 6, 27. [Google Scholar] [CrossRef]
- Desuky, A.S.; Hussain, S. An Improved Hybrid Approach for Handling Class Imbalance Problem. Arab. J. Sci. Eng. 2021, 46, 3853–3864. [Google Scholar] [CrossRef]
- Intrusion, Malware Detection and Prevention in Networks. Available online: https://www.mdpi.com/journal/jcp/special_issues/U21OHBD667 (accessed on 31 May 2024).
- Jeff, L. Apache Struts 2: How Technical and Development Gaps Caused the Equifax Breach. Netw. Secur. 2018, 1, 5–8. [Google Scholar]
Contribution # | Research Problem | Detection Models | Datasets |
---|---|---|---|
1 | Protect the privacy of IoT devices | LSTM | BoT-IoT and UNSW-NB15 |
2 | Detect and prevent data exfiltration | Exponential random graph models | University of New Brunswick’s ISCX 2012 |
3 | Feature selection and feature extraction | Ensemble of Support Vector (SVC), K-Nearest Neighbor (KNN), and Deep Neural Network (DNN) | UNSW-NB15 |
4 | Data imbalance | PCA and oSVM | BoT-IoT |
5 | Feature reduction and overfitting | Decision Tree, Linear Regression, Boruta, Random Forest, LASSO, and autoencoders | CSE-CIC-IDS2018 |
6 | Feature reduction and feature selection | Feedforward Neural Network (FFNN) | UNSW-NB15 and NSL-KDD |
7 | Feature selection | BayesNet, Naïve Bayes, J48, Simple Logistic, SVM, Multilayer Perceptron, Random Forest, and Decision Table | Modbus over TCP/IP Data |
8 | ScriptBlock Smuggling | Malware Detection | N/A |
9 | Decentralized public key infrastructure | Web of Trust (WoT) and blockchain | N/A |
10 | Network compromises and malware patterns | Visualization | KDDCUP’99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Tang, Y. Diverse Intrusion and Malware Detection: AI-Based and Non-AI-Based Solutions. J. Cybersecur. Priv. 2024, 4, 382-387. https://doi.org/10.3390/jcp4020019
Wang F, Tang Y. Diverse Intrusion and Malware Detection: AI-Based and Non-AI-Based Solutions. Journal of Cybersecurity and Privacy. 2024; 4(2):382-387. https://doi.org/10.3390/jcp4020019
Chicago/Turabian StyleWang, Feng, and Yongning Tang. 2024. "Diverse Intrusion and Malware Detection: AI-Based and Non-AI-Based Solutions" Journal of Cybersecurity and Privacy 4, no. 2: 382-387. https://doi.org/10.3390/jcp4020019
APA StyleWang, F., & Tang, Y. (2024). Diverse Intrusion and Malware Detection: AI-Based and Non-AI-Based Solutions. Journal of Cybersecurity and Privacy, 4(2), 382-387. https://doi.org/10.3390/jcp4020019