Volcanic Eruptions and Moss Heath Wildfires on Iceland’s Reykjanes Peninsula: Satellite and Field Perspectives on Disturbance and Recovery
Abstract
1. Introduction
2. Methods and Materials
2.1. Overview and Spatial Analysis of Wildfires
2.2. Temporal Analysis of Wildfire Regions
2.3. Field Observations
3. Results
3.1. Remote Sensing
3.2. Field Observations
4. Discussion
4.1. Limitations and Alternatives
4.2. Interpretation and Hazard Implications
4.2.1. Spatial Patterns
4.2.2. Ecological Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quah, J.Y.; Hayes, J.L.; Fitzgerald, R.H.; Lerner, G.A.; Jenkins, S.F.; Wilson, T.M.; Scheele, F.; Lukovic, B.; Fleischmann, C. Fire from volcanic activity: Quantifying the threat from an understudied hazard. Fire Saf. J. 2023, 141, 103935. [Google Scholar] [CrossRef]
- Tanguy, J.-C. The 1902–1905 eruptions of Montagne Pelée, Martinique: Anatomy and retrospection. J. Volcanol. Geotherm. Res. 1994, 60, 87–107. [Google Scholar] [CrossRef]
- Baxter, P.J.; Boyle, R.; Cole, P.; Neri, A.; Spence, R.; Zuccaro, G. The impacts of pyroclastic surges on buildings at the eruption of the Soufrière Hills volcano, Montserrat. Bull. Volcanol. 2005, 67, 292–313. [Google Scholar] [CrossRef]
- Jenkins, S.; Komorowski, J.C.; Baxter, P.J.; Spence, R.; Picquout, A.; Lavigne, F.; Surono. The Merapi 2010 eruption: An interdisciplinary impact assessment methodology for studying pyroclastic density current dynamics. J. Volcanol. Geotherm. Res. 2013, 261, 316–329. [Google Scholar] [CrossRef]
- Shatto, C.; Kiene, M.; Hofmann, P.; Walentowitz, A.; Wilkens, V.; Heuser, T.; Weiser, F. Assessing the recovery of Pinus canariensis stands after wildfires and volcanic eruption on La Palma, Canary Islands. Forest Ecol. Manag. 2024, 572, 122317. [Google Scholar] [CrossRef]
- Ainsworth, A.; Kauffman, J.B. Interactions of fire and nonnative species across an elevation/plant community gradient in Hawaii Volcanoes National Park. Biotropica 2010, 42, 647–655. [Google Scholar] [CrossRef]
- Turchi, A.; Di Traglia, F.; Luti, T.; Olori, D.; Zetti, I.; Fanti, R. Environmental aftermath of the 2019 stromboli eruption. Remote Sens. 2020, 12, 994. [Google Scholar] [CrossRef]
- Thordarson, T.; Höskuldsson, A. Postglacial volcanism in Iceland. Jokull 2008, 58, 197–228. [Google Scholar] [CrossRef]
- Barsotti, S.; Parks, M.M.; Pfeffer, M.A.; Óladóttir, B.A.; Barnie, T.; Titos, M.M.; Jónsdóttir, K.; Pedersen, G.B.M.; Hjartardóttir, Á.R.; Stefansdóttir, G.; et al. The eruption in Fagradalsfjall (2021, Iceland): How the operational monitoring and the volcanic hazard assessment contributed to its safe access. Nat. Hazards 2023, 116, 3063–3092. [Google Scholar] [CrossRef]
- Thordarson, T.; Höskuldsson, Á. Iceland, 3rd ed.; Dunedin Academic Press Ltd.: Perth, UK, 2014; p. 280. [Google Scholar]
- Sæmundsson, K.; Sigurgeirsson, M.A.; Fridleifsson, G.O. Geology and structure of the Reykjanes volcanic system, Iceland. J. Volcanol. Geotherm. Res. 2020, 391, 106501. [Google Scholar] [CrossRef]
- Ducrocq, C.; Árnadóttir, T.; Einarsson, P.; Jónsson, S.; Drouin, V.; Geirsson, H.; Hjartardóttir, Á.R. Widespread fracture movements during a volcano-tectonic unrest: The Reykjanes Peninsula, Iceland, from 2019–2021 TerraSAR-X interferometry. Bull. Volcanol. 2024, 86, 14. [Google Scholar] [CrossRef]
- Bindeman, I.N.; Deegan, F.M.; Troll, V.R.; Thordarson, T.; Höskuldsson, Á.; Moreland, W.M.; Zorn, E.U.; Shevchenko, A.V.; Walter, T.R. Diverse mantle components with invariant oxygen isotopes in the 2021 Fagradalsfjall eruption, Iceland. Nat. Commun. 2022, 13, 3737. [Google Scholar] [CrossRef]
- Troll, V.R.; Deegan, F.M.; Thordarson, T.; Tryggvason, A.; Krmíček, L.; Moreland, W.M.; Lund, B.; Bindeman, I.N.; Höskuldsson, Á.; Day, J.M.D. The Fagradalsfjall and Sundhnúkur fires of 2021–2024: A single magma reservoir under the Reykjanes Peninsula, Iceland? Terra Nova 2024, 36, 447–456. [Google Scholar] [CrossRef]
- Parks, M.; Drouin, V.; Sigmundsson, F.; Hjartardóttir, Á.R.; Geirsson, H.; Pedersen, G.B.M.; Belart, J.M.C.; Barsotti, S.; Lanzi, C.; Vogfjörd, K.; et al. 2023–2024 inflation-deflation cycles at Svartsengi and repeated dike injections and eruptions at the Sundhnúkur crater row, Reykjanes Peninsula, Iceland. Earth Planet. Sci. Lett. 2025, 658, 119324. [Google Scholar] [CrossRef]
- De Pascale, G.P.; Fischer, T.J.; Moreland, W.M.; Geirsson, H.; Hrubcová, P.; Drouin, V.; Forester, D.; Payet-Clerc, M.; da Silveira, D.B.; Vlček, J.; et al. On the move: 2023 observations on real time graben formation, Grindavík, Iceland. Geophys. Res. Lett. 2024, 51, e2024GL110150. [Google Scholar] [CrossRef]
- Sigmundsson, F.; Parks, M.; Geirsson, H.; Hooper, A.; Drouin, V.; Vogfjoerd, K.S.; Ofeigsson, B.G.; Greiner, S.H.M.; Yang, Y.L.; Lanzi, C.; et al. Fracturing and tectonic stress drive ultrarapid magma flow into dikes. Science 2024, 383, 1228–1235. [Google Scholar] [CrossRef]
- Hurley, M.; Oestreicher, N.; Shevchenko, A.V.; De Pascale, G.P.; Gudmundsson, M.T.; Gudnason, E.Á.; Hersir, G.P.; De Jarnatt, B.F.; Joachim, A.; Ruch, J.; et al. Fracture dynamics and topographic controls at Mount Thorbjörn during the Svartsengi 2023–2024 volcanic unrest, iceland. J. Volcanol. Geotherm. Res. 2025, 466, 108407. [Google Scholar] [CrossRef]
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Arnalds, O. The Soils of Iceland; Springer: Dordrecht, The Netherlands, 2015; Volume 1, p. 183. [Google Scholar]
- Cutler, N.A.; Belyea, L.R.; Dugmore, A.J. Spatial patterns of microsite colonisation on two young lava flows on Mount Hekla, Iceland. J. Veg. Sci. 2008, 19, 277–286. [Google Scholar] [CrossRef]
- Dierßen, K. Einführung in die Pflanzensoziologie (Vegetationskunde); Wiss. Buchges.: Darmstadt, Germany, 1990; Volume 1, p. 241. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie; Springer: Vienna, Austria, 1964; Volume 1, p. 866. [Google Scholar]
- IMO. The Ninth Eruption on the Sundhnúkur Crater Row has Ended. 2025. Available online: https://en.vedur.is/about-imo/news/a-magma-instrusion-has-started-on-sundhnuksgigarod-crater-row (accessed on 19 September 2025).
- Grosse, P.; Euillades, P.A.; Euillades, L.D.; van Wyk de Vries, B. A global database of composite volcano morphometry. Bull. Volcanol. 2013, 76, 784. [Google Scholar] [CrossRef]
- Canosa, I.V.; Biesbroek, R.; Ford, J.; McCarty, J.L.; Orttung, R.W.; Paavola, J.; Burnasheva, D. Wildfire adaptation in the Russian Arctic: A systematic policy review. Clim. Risk Manag. 2023, 39, 100481. [Google Scholar] [CrossRef]
- Masrur, A.; Taylor, A.; Harris, L.; Barnes, J.; Petrov, A. Topography, climate and fire history regulate wildfire activity in the Alaskan Tundra. J. Geophys. Res. Biogeosciences 2022, 127, e2021JG006608. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the world: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Pfadenhauer, J.S.; Klötzli, F.A. Vegetation der Erde; Springer Spektrum: Berlin/Heidelberg, Germany, 2014; Volume 1, p. 645. [Google Scholar]
- Givnish, T.J. Adaptive significance of evergreen vs. Deciduous leaves: Solving the triple paradox. Silva Fenn. 2002, 36, 535. [Google Scholar] [CrossRef]
- Gudmundsson, M.; Larsen, G.; Hoskuldsson, A.; Gylfason, Á. Volcanic hazards in Iceland. Jökull 2008, 58, 251–268. [Google Scholar] [CrossRef]
- Wieners, C.E. Haze, hunger, hesitation: Disaster aid after the 1783 Laki eruption. J. Volcanol. Geotherm. Res. 2020, 406, 107080. [Google Scholar] [CrossRef]
- Thorsteinsson, T.; Magnusson, B.; Gudjonsson, G. Large wildfire in Iceland in 2006: Size and intensity estimates from satellite data. Int. J. Remote Sens. 2011, 32, 17–29. [Google Scholar] [CrossRef]
- Ardenghi, N.; Harning, D.J.; Raberg, J.H.; Holman, B.R.; Thordarson, T.; Geirsdóttir, Á.; Miller, G.H.; Sepúlveda, J. A holocene history of climate, fire, landscape evolution, and human activity in northeastern Iceland. Clim. Past. 2024, 20, 1087–1123. [Google Scholar] [CrossRef]
- Raynolds, M.K.; Walker, D.A. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985–2011. Environ. Res. Lett. 2016, 11, 085004. [Google Scholar] [CrossRef]
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near real-time wildfire progression monitoring with Sentinel-1 SAR time series and deep learning. Sci. Rep. 2020, 10, 1322. [Google Scholar] [CrossRef]
- Ajadi, O.A.; Meyer, F.J.; Webley, P.W. Change detection in synthetic aperture radar images using a multiscale-driven approach. Remote Sens. 2016, 8, 482. [Google Scholar] [CrossRef]
- Hosseini, M.; Lim, S. Burned area detection using Sentinel-1 SAR data: A case study of Kangaroo Island, South Australia. Appl. Geogr. 2023, 151, 102854. [Google Scholar] [CrossRef]
- Jandt, R.; Miller, E.; Jones, B. Fire Effects 10 Years After the Anaktuvuk River Tundra Fires; Bureau of Land Management Alaska: Anchorage, AK, USA, 2021. [Google Scholar]
- Martinez, S. Gee-ndvi-Change-Detection. 2019. Available online: https://github.com/sabrinanicc/GEE-NDVI-Change-Detection (accessed on 13 February 2025).
- Ingimundardóttir, G.V.; Cronberg, N.; Magnússon, B. Bryophytes of Surtsey, Iceland: Latest developments and a glimpse of the future. Surtsey Res. 2022, 15, 61–87. [Google Scholar] [CrossRef]
- Linn, R.R.; Winterkamp, J.L.; Weise, D.R.; Edminster, C. A numerical study of slope and fuel structure effects on coupled wildfire behaviour. Int. J. Wildland Fire 2010, 19, 179–201. [Google Scholar] [CrossRef]
- Davies, G.M.; Legg, C.J.; Smith, A.A.; MacDonald, A.J. Rate of spread of fires in Calluna vulgaris-dominated moorlands. J. Appl. Ecol. 2009, 46, 1054–1063. [Google Scholar] [CrossRef]
- IMO. Icelandic Met Office: The Weather in Iceland in 2023. 2024. Available online: https://en.vedur.is/about-imo/news/the-weather-in-iceland-in-2023 (accessed on 13 February 2025).
- Weatherspark. 2023 Weather History at Keflavík International Airport. 2025. Available online: https://weatherspark.com/h/y/147626/2023/Historical-Weather-during-2023-at-Reykjavik-Airport-Iceland (accessed on 12 June 2025).
- Anon, NI_G25v Vegetation map of Iceland-1:25,000. 2023. Available online: http://data.europa.eu/88u/dataset/7fbb84d8-3f86-48ce-8cb8-242adec77dba (accessed on 13 October 2025).
- Wainman, L.; Ilyinskaya, E.; Pfeffer, M.; Mandon, C.; Bali, E.; Edwards, B.A.; Kleine-Marshall, B.I.; Gudjonsdottir, S.R.; Cotterill, A.; Scott, S.W.; et al. Trace element emissions vary with lava flow age and thermal evolution during the fagradalsfjall 2021–2023 eruptions, iceland. Geochem. Geophys. Geosystems 2024, 25, e2024GC011822. [Google Scholar] [CrossRef]
- Zoëga, T.; Storelvmo, T.; Krüger, K. Modelled surface climate response to effusive Icelandic volcanic eruptions: Sensitivity to season and size. Atmos. Chem. Phys. 2025, 25, 2989–3010. [Google Scholar] [CrossRef]
- Idrees, M.O.; Omar, D.M.; Babalola, A.; Ahmadu, H.A.; Yusuf, A.; Lawal, F.O. Urban land use land cover mapping in tropical savannah using Landsat-8 derived normalized difference vegetation index (NDVI) threshold. S. Afr. J. Geomat. 2022, 11, 100–112. [Google Scholar] [CrossRef]
- Jägerbrand, A. Patterns of species richness and vegetative performance in heath ecosystems at Thingvellir, Southwest Iceland. Icel. Agric. Sci. 2004, 16–17, 29–38. [Google Scholar]
- Jandt, R.; Joly, K.; Meyers, C.R.; Racine, C. Slow recovery of lichen on burned caribou winter range in Alaska Tundra: Potential influences of climate warming and other disturbance factors. Arct. Antarct. Alp. Res. 2008, 40, 89–95. [Google Scholar] [CrossRef]
- Marozas, V.; Racinskas, J.; Bartkevicius, E. Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. For. Ecol. Manag. 2007, 250, 47–55. [Google Scholar] [CrossRef]
- Mallik, A.U.; Gimingham, C.H. Regeneration of heathland plants following burning. Vegetatio 1983, 53, 45–58. [Google Scholar] [CrossRef]
- Alfreðsson, M.S. Mosabruninn á Miðdalsheiði 2007: Áhrif hans á Smádýr. 2016. Available online: http://hdl.handle.net/1946/26190 (accessed on 19 September 2025).
- Grétarsdóttir, I. Moss fires in miðdalsheiði in the summer of 2007. Agric. Educ. Forum 2009, 8, 443–447. [Google Scholar]
- Sage, R.F.; Kubien, D.S. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ. 2007, 30, 1086–1106. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.; Fernandez-Garcia, P.; Martin-Walker, A.; Klein, D.; Marshall, C.; Large, D.J.; Hughes, R.; Hancock, M.H. Blanket bog vegetation response to wildfire and drainage suggests resilience to low severity, infrequent burning. Fire Ecol. 2024, 20, 26. [Google Scholar] [CrossRef]
- Van der Maarel, E. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 1979, 39, 97–114. [Google Scholar] [CrossRef]








| Name | Start Date | End Date | Duration (d) | Fissure Length (m) | Erupted Volume (Million m3) | Wildfire Reported |
|---|---|---|---|---|---|---|
| Fagradalsfjall 1 | 19.03.21 | 18.09.21 | 183 | 700 | 150 | No |
| Fagradalsfjall 2 | 03.08.22 | 21.08.22 | 18 | 360 | 11 | Yes |
| Fagradalsfjall 3 | 10.07.23 | 05.08.23 | 26 | 900 | 15 | Yes |
| Sundhnúkur 1 | 18.12.23 | 21.12.23 | 3 | 4000 | 12 | No |
| Sundhnúkur 2 | 14.01.24 | 16.01.24 | 2 | 900 | 2 | No |
| Sundhnúkur 3 | 08.02.24 | 09.02.24 | 1 | 3000 | 13 | No |
| Sundhnúkur 4 | 16.03.24 | 08.05.24 | 53 | 3000 | 35 | Yes |
| Sundhnúkur 5 | 29.05.24 | 22.06.24 | 24 | 2500 | 45 | Yes |
| Sundhnúkur 6 | 22.08.24 | 05.09.24 | 14 | 3900 | 61 | Yes |
| Sundhnúkur 7 | 20.11.24 | 08.12.24 | 18 | 3000 | 49 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiffmann, J.; Walter, T.R.; Sobolewski, L.; Heinken, T. Volcanic Eruptions and Moss Heath Wildfires on Iceland’s Reykjanes Peninsula: Satellite and Field Perspectives on Disturbance and Recovery. GeoHazards 2025, 6, 70. https://doi.org/10.3390/geohazards6040070
Schiffmann J, Walter TR, Sobolewski L, Heinken T. Volcanic Eruptions and Moss Heath Wildfires on Iceland’s Reykjanes Peninsula: Satellite and Field Perspectives on Disturbance and Recovery. GeoHazards. 2025; 6(4):70. https://doi.org/10.3390/geohazards6040070
Chicago/Turabian StyleSchiffmann, Johanna, Thomas R. Walter, Linda Sobolewski, and Thilo Heinken. 2025. "Volcanic Eruptions and Moss Heath Wildfires on Iceland’s Reykjanes Peninsula: Satellite and Field Perspectives on Disturbance and Recovery" GeoHazards 6, no. 4: 70. https://doi.org/10.3390/geohazards6040070
APA StyleSchiffmann, J., Walter, T. R., Sobolewski, L., & Heinken, T. (2025). Volcanic Eruptions and Moss Heath Wildfires on Iceland’s Reykjanes Peninsula: Satellite and Field Perspectives on Disturbance and Recovery. GeoHazards, 6(4), 70. https://doi.org/10.3390/geohazards6040070

