Using Electrical Resistivity Tomography to Reconstruct Alpine Spring Supply: A Case Study from the Montellina Spring (Quincinetto, NW Alps, Italy)
Abstract
1. Introduction
2. Methodology
3. The Case Study
3.1. Bedrock
3.2. Quaternary Cover
3.3. Hydrogeological Data
3.4. Geological Context of the Two Geophysical Surveys
3.5. Results of Geophysical Investigations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hanjra, M.A.; Qureshi, M.E. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- UN—United Nations. Sustainable Development Goal 6 Synthesis Report 2018 on Water and Sanitation; United Nations Publishers: New York, NY, USA, 2018. [Google Scholar]
- Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water security in a changing environment: Concept, challenges and solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Gerbaux, M.; Spandre, P.; François, H.; George, E.; Morin, S. Snow reliability and water availability for snowmaking in the ski resorts of the Isère Département (French Alps), under current and future climate conditions. J. Alp. Res. Rev. Géogr. Alp. 2020, 108. [Google Scholar] [CrossRef]
- Steiger, R.; Scott, D. Ski tourism in a warmer world: Increased adaptation and regional economic impacts in Austria. Tour. Manag. 2020, 77, 104032. [Google Scholar] [CrossRef]
- Morin, S.; Samacoïts, R.; François, H.; Carmagnola, C.M.; Abegg, B.; Demiroglu, O.C.; Pons, M.; Soubeyroux, J.-M.; Lafaysse, M.; Franklin, S.; et al. Pan-European meteorological and snow indicators of climate change impact on ski tourism. Clim. Serv. 2021, 22, 100215. [Google Scholar] [CrossRef]
- Cognard, J.; Berard-Chenu, L.; Schaeffer, Y.; François, H. Snowmaking’s slippery slope: The effect of mountain reservoirs on water demand. Ecol. Econ. 2025, 233, 108586. [Google Scholar] [CrossRef]
- Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R.S.; Clague, J.J.; Vuille, M.; Buytaert, W.; Cayan, D.R.; Greenwood, G.; et al. Toward mountains without permanent snow and ice. Earth’s Future 2017, 5, 418–435. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberge, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.; et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2014, 518, 250–266. [Google Scholar] [CrossRef]
- Schumacher, M.; van Dijk, A.I.J.M.; Retegui-Schiettekatte, L.; Yang, F.; Forootan, E. Space-based natural and human-induced water storage change quantification. Sci. Rep. 2025, 15, 18484. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, J.; Zhang, S.; Chen, Q.; Fan, H.; Cao, C.; Zhang, Y.; Yang, Y.; Luo, J.; Yao, Y. Groundwater quality evolution across China. Nat. Commun. 2025, 16, 2522. [Google Scholar] [CrossRef]
- Bastiancich, L.; Lasagna, M.; Mancini, S.; Falco, M.; De Luca, D.A. Temperature and discharge variations in natural mineral water springs due to climate variability: A case study in the Piedmont Alps (NW Italy). Environ. Geochem. Health 2022, 44, 1971–1994. [Google Scholar] [CrossRef]
- Egidio, E.; De Luca, D.A.; Lasagna, M. How groundwater temperature is affected by climate change: A systematic review. Heliyon 2024, 10, e27762. [Google Scholar] [CrossRef]
- Wada, Y.; van Beek, L.P.H.; van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, 20. [Google Scholar] [CrossRef]
- Wada, Y.; De Graaf, I.E.M.; van Beek, L.P.H. High-resolution modeling of human and climate impacts on global water resources. J. Adv. Model. Earth Syst. 2016, 8, 735–763. [Google Scholar] [CrossRef]
- Smakhtin, V.; Revenga, C.; Döll, P. A pilot global assessment of environmental water requirements and scarcity. Water Int. 2004, 29, 307–317. [Google Scholar] [CrossRef]
- Barbieri, M.; Barberio, M.D.; Banzato, F.; Billi, A.; Boschetti, T.; Franchini, S.; Gori, F.; Petitta, M. Climate change and its effect on groundwater quality. Environ. Geochem. Health 2023, 45, 1133–1144. [Google Scholar] [CrossRef]
- De Luca, D.A.; Dell’Orto, V.; Destefanis, E.; Forno, M.G.; Lasagna, M.; Masciocco, L. Hydrogeological structure of the “fontanili” in Turin Plain. Rend. Online Soc. Geol. d’Ital. 2009, 6, 199–200. [Google Scholar]
- De Luca, D.A.; Destefanis, E.; Forno, M.G.; Lasagna, M.; Masciocco, L. The genesis and the hydrogeological features of the Turin Po Plain fontanili, typical lowland springs in Northern Italy. Bull. Eng. Geol. Environ. 2014, 73, 409–427. [Google Scholar] [CrossRef]
- Previati, A.; Silvestri, V.; Crosta, G. Deep learning text classification of borehole logs for regional scale modeling of hydrofacies (Po Plain, N Italy). J. Hydrol. Reg. Stud. 2025, 58, 102157. [Google Scholar] [CrossRef]
- Bonomi, T.; Del Rosso, F.; Fumagalli, M.; Canepa, P. Assessment of groundwater availability in the Milan Province aquifers. Mem. Descr. Della Carta Geol. d’Ital. 2010, 90, 31–40. [Google Scholar]
- Leaf, A.T.; Duncan, L.L.; Haugh, C.J.; Hunt, R.J.; Rigby, J.R. Simulating groundwater flow in the Mississippi Alluvial Plain with a focus on the Mississippi Delta; U.S. Geological Survey Scientific Investigations Report; U.S. Geological Survey: Madison, WI, USA, 2023; Volume 5100, p. 143. [Google Scholar] [CrossRef]
- La Vigna, F.; Alberti, L.; Da Pelo, S.; Ducci, D.; Fabbri, P.; Gargini, A.; Lasagna, M.; Pappalardo, G.; Polemio, M.; Rusi, S. Exploring the aquifers shaping Italy’s sub-urban landscape. Acque Sotter. Ital. J. Groundw. 2024, 13, 43–66. [Google Scholar] [CrossRef]
- Messerli, B.; Viviroli, D.; Weingartner, R. Mountains of the world: Vulnerable water towers for the 21st century. Ambio 2004, 33, 29–34. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Viviroli, D.; Archer, D.R.; Buytaert, W.; Fowler, H.J.; Greenwood, G.B.; Hamlet, A.F.; Huang, Y.; Koboltschnig, G.; Litaor, M.I.; López-Moreno, J.I.; et al. Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 2011, 15, 471–504. [Google Scholar] [CrossRef]
- Giraldo Malca, U.F.; Yauri Solano, L.N.; Choroco Carranza, S.V.; Camacho Alvarez, D.G.; Quispe Quispe, F.C.; Chávez García, J.A.; Mark, B.G. The loss of glacier resilience due to climate change throughout the Cordillera Blanca, Peru between 1984 and 2023. Quat. Sci. Adv. 2025, 19, 100286. [Google Scholar] [CrossRef]
- Ma, H.; Li, Z.; Jia, Y.; Zhan, Z.; Mu, J.; Wang, F.; Zhou, P.; Liang, Q.; Wang, Q.; Chen, W.; et al. Glacier distribution, changes, and water resource impacts in the Turpan−Hami Basin, Xinjiang, China. Res. Cold Arid Reg. 2025, 72, 100683. [Google Scholar] [CrossRef]
- Ougahi, J.H.; Rowan, J.S. Water resource vulnerabilities from climate-induced tipping point behaviour in runoff volumes and seasonality in the region of the ‘Karakoram Anomaly’: A snow-glacier melt perspective. J. Hydrol. Reg. Stud. 2025, 59, 102386. [Google Scholar] [CrossRef]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, W07447. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2019, 577, 364–369. [Google Scholar] [CrossRef]
- De Luca, D.; Cerino, E.; Forno, M.G.; Gattiglio, M.; Gianotti, F.; Lasagna, M. The Montellina Spring as example of water circulation in alpine DSGSD context (NW Italy). Water 2019, 11, 700. [Google Scholar] [CrossRef]
- Ostermann, M.; Koltai, G.; Spötl, C.; Cheng, H. Deep-seated gravitational slope deformations in the Vinschgau (northern Italy) and their association with springs and speleothems. In Proceedings of the Abstracts EGU General Assembly, Vienna, Austria, 17–22 April 2016; Volume 18, p. 9307. [Google Scholar]
- De Luca, D.A.; Masciocco, L.; Caviglia, C.; Destefanis, E.; Forno, M.G.; Fratianni, S.; Gattiglio, M.; Lasagna, M.; Gianotti, F.; Latagliata, V.; et al. Distribution, discharge, geological and physical-chemical features of the springs in the Turin Province (Piedmont, NW Italy). In Engineering Geology for Society and Territory; Lollino, G., Arattano, M., Rinaldi, M., Giustolisi, O., Marechal, J.C., Grant, G.E., Eds.; Spinger: Berlin/Heidelberg, Germany, 2015; Volume 3, pp. 253–256. [Google Scholar] [CrossRef]
- Banzato, C.; Governa, M.; Petricig, M.; Vigna, B. The importance of monitoring for the determination of aquifer vulnerability and spring protection areas. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Spinger: Cham, Switzerland, 2015; Volume 5, pp. 1379–1385. [Google Scholar] [CrossRef]
- Perotti, L.; Carraro, G.; Giardino, M.; De Luca, D.A.; Lasagna, M. Geodiversity evaluation and water resources in the Sesia Val Grande UNESCO Geopark (Italy). Water 2019, 11, 2102. [Google Scholar] [CrossRef]
- Hayash, M. Alpine hydrogeology: The critical role of groundwater in sourcing the headwaters of the World. Groundwater 2020, 58, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Grappein, B.; Lasagna, M.; Capodaglio, P.; Caselle, C.; De Luca, D.A. Hydrochemical and isotopic applications in the Western Aosta Valley (Italy) for sustainable groundwater management. Sustainability 2021, 13, 487. [Google Scholar] [CrossRef]
- Forno, M.G.; Gattiglio, M.; Ghignone, S.; De Luca, D.A.; Santillan-Quiroga, L.M. Geological significance of the Perrot Spring in Mont Avic Natural Park (NW Alps). Water 2023, 15, 3042. [Google Scholar] [CrossRef]
- Stevenazzi, V.; Zuffetti, C.; Camera, C.A.S.; Lucchelli, A.; Beretta, G.P.; Bersezio, R.; Masetti, M. Hydrogeological characteristics and water availability in the mountainous aquifer systems of Italian Central Alps: A regional scale approach. J. Environ. Manag. 2023, 340, 117958. [Google Scholar] [CrossRef]
- Santillán-Quiroga, L.M.; Cocca, D.; Lasagna, M.; Marchina, C.; Destefanis, E.; Forno, M.G.; Gattiglio, M.; Vescovo, G.; De Luca, D.A. Analysis of the recharge area of the Perrot Spring (Aosta Valley) using a hydrochemical and isotopic approach. Water 2023, 15, 3756. [Google Scholar] [CrossRef]
- Cocca, D.; Lasagna, M.; Marchina, C.; Brombin, V.; Santillán-Quiroga, L.M.; De Luca, D.A. Assessment of the groundwater recharge processes of a shallow and deep aquifer system (Maggiore Valley, Northwest Italy): A hydrogeochemical and isotopic approach. Hydrogeol. J. 2024, 32, 395–416. [Google Scholar] [CrossRef]
- Field, M.S. Quantitative analysis of tracer breakthrough curves from tracing tests in karst aquifers. In Karst modelling; Palmer, A.N., Palmer, M.V., Sasowsky, I.D., Eds.; Karst Waters Institute Special Publication: Leesburg, VA, USA, 1999; Volume 5, pp. 163–171. [Google Scholar]
- Goldscheider, N.; Meiman, J.; Pronk, M.; Smart, C. Tracer tests in karst hydrogeology and speleology. Int. J. Speleol. 2008, 37, 27–40. [Google Scholar] [CrossRef]
- Lorenzi, V.; Banzato, F.; Barberio, M.D.; Goeppert, N.; Goldscheider, N.; Gori, F.; Lacchini, A.; Manetta, M.; Medici, G.; Rusi, S.; et al. Tracking flowpaths in a complex karst system through tracer test and hydrogeochemical monitoring: Implications for groundwater protection (Gran Sasso, Italy). Heliyon 2024, 10, e24663. [Google Scholar] [CrossRef]
- Gizzi, M.; Biamino, L. Harmonic analysis and isotopic investigation for recharge area characterization of the Promise Spring (Aosta Valley, NW Italy). Hydrogeol. J. 2025, 1–15. [Google Scholar] [CrossRef]
- Christensen, C.W.; Hayashi, M.; Laurence, R.; Bentley, L.R. Hydrogeological characterization of an alpine aquifer system in the Canadian Rocky Mountains. Hydrogeol. J. 2020, 28, 1871–1890. [Google Scholar] [CrossRef]
- Amato, F.; Pace, F.; Vergnano, A.; Comina, C. TDEM prospections for inland groundwater exploration in semiarid climate, Island of Fogo, Cape Verde. J. Appl. Geophys. 2021, 184, 104242. [Google Scholar] [CrossRef]
- Flores Avilés, G.P.; Descloitres, M.; Duwig, C.; Rossier, Y.; Spadini, L.; Legchenko, A.; Soruco, Á.; Argollo, J.; Pérez, M.; Medinaceli, W. Insight into the Katari-Lago Menor Basin aquifer, Lake Titicaca-Bolivia, inferred from geophysical (TDEM), hydrogeological and geochemical data. J. South Am. Earth Sci. 2020, 99, 102479. [Google Scholar] [CrossRef]
- Carlson, B.Z.; Hébert, M.; Van Reeth, C.; Bison, M.; Laigle, I.; Delestrade, A. Monitoring the seasonal hydrology of alpine wetlands in response to snow cover dynamics and summer climate: A novel approach with Sentinel-2. Remote Sens. 2020, 12, 1959. [Google Scholar] [CrossRef]
- Awasthi, S.; Varade, D. Recent advances in the remote sensing of alpine snow: A review. GISci. Remote Sens. 2021, 58, 852–888. [Google Scholar] [CrossRef]
- Parizia, F.; Roberti, G.; Clague, J.J.; Alberto, W.; Giardino, M.; Ward, B.; Perotti, L. Landslide deposit erosion and reworking documented by geomatic surveys at Mount Meager, BC, Canada. Remote Sens. 2024, 16, 1599. [Google Scholar] [CrossRef]
- Adams, K.H.; Reager, J.T.; Rosen, P.; Wiese, D.N.; Farr, T.G.; Rao, S.; Haines, B.J.; Argus, D.F.; Liu, Z.; Smith, R.; et al. Remote sensing of groundwater: Current capabilities and future directions. Water Resour. Res. 2022, 58, e2022WR032219. [Google Scholar] [CrossRef]
- Thornton, J.M.; Therrien, R.; Mariéthoz, G.; Linde, N.; Brunner, P. Simulating fully-integrated hydrological dynamics in complex Alpine headwaters: Potential and challenges. Water Resour. Res. 2022, 58, e2020WR029390. [Google Scholar] [CrossRef]
- Duran, L.; Gill, L. Modeling spring flow of an Irish karst catchment using Modflow-USG with CLN. J. Hydrol. 2021, 597, 125971. [Google Scholar] [CrossRef]
- Halloran, L.J.S.; Millwater, J.; Hunkeler, D.; Arnoux, M. Climate change impacts on groundwater discharge-dependent streamflow in an alpine headwater catchment. Sci. Total Environ. 2023, 902, 166009. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, R.; Comte, J.-C.; Nitsche, J.; Wilson, C.; Flynn, R.; Ofterdinger, U. Combining multi-scale geophysical techniques for robust hydro-structural characterisation in catchments underlain by hard rock in post-glacial regions. J. Hydrol. 2014, 517, 715–731. [Google Scholar] [CrossRef]
- Shaaban, H.; El-Qady, G.; Al-Sayed, E.; Ghazala, H.; Taha, A. Shallow groundwater investigation using time-domain electromagnetic (TEM) method at Itay El-Baroud, Nile delta, Egypt. NRIAG J. Astron. Geophys. 2016, 5, 323–333. [Google Scholar] [CrossRef]
- Yang, F.; Gao, P.; Li, D.; Ma, H.; Cheng, G. Application of comprehensive geophysical prospecting method in groundwater exploration. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd: Bristol, UK, 2018. [Google Scholar] [CrossRef]
- Zamora-Luria, J.C.; Mc Lachlan, P.; Kumar Maurya, P.; Lichao Liu, L.; Denys Grombacher, D.; Anders Vest Christiansen, A.V. A feasibility study on time-lapse transient electromagnetics for monitoring groundwater dynamics. Geophysics 2023, 88, 135–146. [Google Scholar] [CrossRef]
- Wang, P.; Li, F.; Lu, K.; Huang, W. Detection of water-rich areas and seepage channels via the transient electromagnetic method, electrical resistivity tomography, and self-potential method. Sci. Rep. 2025, 15, 15905. [Google Scholar] [CrossRef]
- Nagaiah, E.; Sonkamble, S.; Chandra, S. Electrical Geophysical Techniques Pin-Pointing the Bedrock Fractures for Groundwater Exploration in Granitic Hard Rocks of Southern India. J. Appl. Geophys. 2022, 199, 104610. [Google Scholar] [CrossRef]
- Leopold, M.; Gupanis-Broadway, C.; Baker, A.; Hankin, S.; Treble, P. Time Lapse Electric Resistivity Tomography to Portray Infiltration and Hydrologic Flow Paths from Surface to Cave. J. Hydrol. 2021, 593, 125810. [Google Scholar] [CrossRef]
- Alshehri, F.; Abdelrahman, K. Groundwater resources exploration of Harrat Khaybar area, Northwest Saudi Arabia, using electrical resistivity tomography. J. King Saud Univ.-Sci. 2021, 33, 101468. [Google Scholar] [CrossRef]
- Wu, J.; Dai, F.; Liu, P.; Huang, Z.; Meng, L. Application of the electrical resistivity tomography in groundwater detection on loess plateau. Sci. Rep. 2023, 13, 4821. [Google Scholar] [CrossRef]
- Li, K.; Yan, J.; Li, F.; Lu, K.; Yu, Y.; Li, Y.; Zhang, L.; Wang, P.; Li, Z.; Yang, Y.; et al. Non-invasive geophysical methods for monitoring the shallow aquifer based on time-lapse electrical resistivity tomography, magnetic resonance sounding, and spontaneous potential methods. Sci. Rep. 2024, 14, 7320. [Google Scholar] [CrossRef]
- Lasagna, M.; De Luca, D.A.; Clemente, P.; Dino, G.; Forno, M.G.; Gattiglio, M.; Gianotti, F. Study on the water supply of the Montellina Spring by the Renanchio Stream (Quincinetto, Turin). Acque Sotter. Ital. J. Groundw. 2013, 131, 7585. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Ayachit, U. The ParaView Guide (Full Color Version): A Parallel Visualization Application; Kitware Inc.: Clifton Park, NY, USA, 2015; ISBN 978-1-930934-30-6. [Google Scholar]
- Compagnoni, R.; Dal Piaz, G.V.; Hunziker, J.C.; Lombardo, B.; Williams, P.F. The Sesia-Lanzo Zone, a slice of continental crust with alpine high pressure-low temperature assemblages in the Western Italian Alps. Rend. Soc. Ital. Mineral. Petrogr. 1977, 33, 281–334. [Google Scholar]
- Regis, D.; Venturini, G.; Engi, M. Geology of the Scalaro Valley-Sesia Zone (Italian Western Alps). J. Maps 2016, 12, 621–629. [Google Scholar] [CrossRef]
- Venturini, G. Geology, geochemistry and geochronology of the inner central Sesia Zone (Western Alps, Italy). Mém. Géol. 1995, 25, 1–148. [Google Scholar]
- De Luca, D.A.; Lasagna, M.; Debernardi, L. Hydrogeology of the western Po plain (Piedmont, NW Italy). J. Maps 2020, 16, 265–273. [Google Scholar] [CrossRef]
- US Bureau of Reclamation. Earth Manual Part 1, 3rd ed.; US Department of the Interior Bureau of Reclamation, Geotechnical Research Technical Service Center: Denver, CO, USA, 1998. [Google Scholar]
- Comina, C.; Forno, M.G.; Gattiglio, M.; Gianotti, F.; Raiteri, L.; Sambuelli, L. ERT geophysical surveys contributing to the reconstruction of the geological landscape in high mountain prehistorical archaeological sites (Plan di Modzon, Aosta Valley, Italy). Ital. J. Geosci. 2015, 134, 95–103. [Google Scholar] [CrossRef]
- Gattiglio, M.; Forno, M.G.; Comina, C.; Doglione, A.; Violanti, D.; Barbero, D. The involving of the Pliocene-Pleistocene succession in the T. Traversola Deformation Zone (NW Italy). Alp. Mediterr. Quat. 2015, 28, 59–70. [Google Scholar]
- Forno, M.G.; Gattiglio, M.; Gianotti, F.; Comina, C.; Vergnano, A.; Dolce, S. Deep electrical resistivity tomography for detecting gravitational morpho-structures in the Becca France area (Aosta Valley, NW Italy). GeoHazards 2024, 5, 45. [Google Scholar] [CrossRef]
- Reitner, J.M.; Gruber, W.; Römer, A.; Morawetz, R. Alpine overdeepenings and paleo-ice flow changes: An integrated geophysical-sedimentological case study from Tyrol (Austria). Swiss J. Geosci. 2010, 103, 385–405. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Meng, H.; Shao, P.; Yi, X. Application of Electrical Resistivity Tomography (ERT) for rock mass quality evaluation. Sci. Rep. 2021, 11, 23683. [Google Scholar] [CrossRef]
- Granja-Bruña, J.L.; Turu, V.; Carrasco, R.M.; Muñoz-Martín, A.; Ros, X.; Fernández-Lozano, J.; Soteres, R.L.; Karampaglidis, T.; López-Sáez, J.A.; Pedraza, J. Geophysical characterization of the El Cervunal kame complex (Sierra de Gredos, Iberian Central System): Insight of infill geometry and reconstruction of former glacial formations. J. Appl. Geophys. 2021, 195, 104478. [Google Scholar] [CrossRef]
- Duffek, V.; Tábořík, P.; Stacke, V.; Mentlík, P. Origin of block accumulations based on the near-surface Geophysics. Open Geosci. 2023, 15, 20220468. [Google Scholar] [CrossRef]
- Belle, P.; Lachassagne, P.; Mathieu, F.; Barbet, C.; Brisset, N.; Gourry, J.C. Characterization and location of the laminated layer within hard rock weathering profiles from electrical resistivity tomography: Implications for water well siting. Geol. Soc. Lond. 2019, 479, 187–205. [Google Scholar] [CrossRef]
- Chalupa, V.; Pánek, T.; Tábořík, P.; Klimeš, J.; Hartvich, F.; Grygar, R. Deep-seated gravitational slope deformations controlled by the structure of flysch nappe outliers: Insights from large-scale electrical resistivity tomography survey and LiDAR mapping. Geomorphology 2018, 321, 174–187. [Google Scholar] [CrossRef]
- Francés, A.P.; Ramalho, E.C.; Monteiro Santos, F.; Moreira, C.A.; Milani, E.; Costa, J.L.; Silva, A.R.; Bessa, R.A.; Gonçalves, R.; Dinis, P.A. Contribution of the time domain electromagnetic method to the study of the Kalahari transboundary multilayered aquifer systems in Southern Angola. Hydrogeol. J. 2024, 32, 1709–1727. [Google Scholar] [CrossRef]
- Kasprzak, M.; Jancewicz, K.; Różycka, M.; Kotwicka, W.; Migoń, P. Geomorphology- and geophysics-based recognition of stages of deep-seated slope deformation (Sudetes, SW Poland). Eng. Geol. 2019, 260, 105230. [Google Scholar] [CrossRef]
Geological Unit | Depth (m) | Thickness (m) | Range of Log (Resistivity) |
---|---|---|---|
ERT 1: dry marginal deposits | 0 | 5–0 | 3.4–4 |
ERT 1: wet subglacial deposits | 5–10 | up to 30 | 2.4–2.8 |
ERT 1: normally fractured bedrock | up to 50 | - | 3.2–4 |
ERT 2: dry incoherent deposits | 0 | 5 | 3.2–4 |
ERT 2: dry fractured bedrock | 5 | 10 | 3–3.2 |
ERT 2 fractured bedrock with higher water content | 5 | 10 | 2.8–3 |
ERT 2: normally fractured bedrock | 15 | - | 3.2–3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comina, C.; De Luca, D.A.; Dolce, S.; Forno, M.G.; Gattiglio, M.; Gianotti, F.; Lasagna, M.; Pigozzi, G.; Roux, S.; Vergnano, A. Using Electrical Resistivity Tomography to Reconstruct Alpine Spring Supply: A Case Study from the Montellina Spring (Quincinetto, NW Alps, Italy). GeoHazards 2025, 6, 51. https://doi.org/10.3390/geohazards6030051
Comina C, De Luca DA, Dolce S, Forno MG, Gattiglio M, Gianotti F, Lasagna M, Pigozzi G, Roux S, Vergnano A. Using Electrical Resistivity Tomography to Reconstruct Alpine Spring Supply: A Case Study from the Montellina Spring (Quincinetto, NW Alps, Italy). GeoHazards. 2025; 6(3):51. https://doi.org/10.3390/geohazards6030051
Chicago/Turabian StyleComina, Cesare, Domenico Antonio De Luca, Stefano Dolce, Maria Gabriella Forno, Marco Gattiglio, Franco Gianotti, Manuela Lasagna, Giovanni Pigozzi, Sandro Roux, and Andrea Vergnano. 2025. "Using Electrical Resistivity Tomography to Reconstruct Alpine Spring Supply: A Case Study from the Montellina Spring (Quincinetto, NW Alps, Italy)" GeoHazards 6, no. 3: 51. https://doi.org/10.3390/geohazards6030051
APA StyleComina, C., De Luca, D. A., Dolce, S., Forno, M. G., Gattiglio, M., Gianotti, F., Lasagna, M., Pigozzi, G., Roux, S., & Vergnano, A. (2025). Using Electrical Resistivity Tomography to Reconstruct Alpine Spring Supply: A Case Study from the Montellina Spring (Quincinetto, NW Alps, Italy). GeoHazards, 6(3), 51. https://doi.org/10.3390/geohazards6030051