Applying SLAM-Based LiDAR and UAS Technologies to Evaluate the Rock Slope Stability of the Grotta Paglicci Paleolithic Site (Italy)
Abstract
:1. Introduction
2. Geological Setting
3. Anthropological and Archaeological Setting
4. Materials and Methods
4.1. Topographic Survey
4.2. UAS Photogrammetric Survey
4.3. SLAM-Based LiDAR Survey
4.4. Engineering–Geological Survey and Rock Mass Classification
4.5. Rock Slope Stability Analysis
4.5.1. Kinematic Stability Analysis
4.5.2. Numerical Modeling
5. Results
5.1. SLAM-Based Point Cloud Coregistration and Georeferencing
5.2. UAS Photogrammetric Data Processing
5.3. Engineering–Geological Data
5.4. Rock Mass Classification
5.4.1. Rock Mass Rating Method
5.4.2. Q-Slope Method
5.4.3. Slope Mass Rating Method
5.5. Rock Slope Stability Analysis
5.5.1. Statistical Kinematic Stability Analysis
5.5.2. Numerical Modeling
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Aguilera, D.; Fernández, L.; Lahoz, J.G.; Herrero, J.S.; Corchón, M.S.; Garcia, E. Recording and modeling paleolithic caves through laser scanning. In Proceedings of the IEEE International Conference on Advanced Geographic Information Systems & Web Services, Cancun, Mexico, 1–7 February 2009; pp. 19–26. [Google Scholar] [CrossRef]
- Buchroithner, M.F.; Gaisecker, T. Terrestrial laser scanning for the visualization of a complex dome in an extreme alpine cave system. Photogramm. Fernerkund. Geoinf. 2009, 4, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Rüther, H.; Chazan, M.; Schroeder, R.; Neeser, R.; Held, C.; Walker, S.J.; Matmon, A.; Horwitz, L.K. Laser scanning for conservation and research of African cultural heritage sites: The case study of Wonderwerk Cave, South Africa. J. Archaeol. Sci. 2009, 36, 1847–1856. [Google Scholar] [CrossRef]
- Lerma, J.L.; Navarro, S.; Cabrelles, M.; Villaverde, V. Terrestrial laser scanning and close range photogrammetry for 3d archaeological documentation: The Upper Palaeolithic Cave of Parpalló as a case study. J. Archaeol. Sci. 2010, 37, 499–507. [Google Scholar] [CrossRef]
- Grussenmeyer, P.; Albane, B.; Moisan, E.; Guillemin, S.; Carozza, L.; Bourrillon, R.; Petrognani, S. 3D multi-scale scanning of the archaeological cave “Les Fraux” in Dordogne (France). In Lecture Notes in Computer Science, Proceedings of 4th International Conference EuroMed—Progress in Cultural Heritage Preservation, Lemessos, Cyprus, 29 October–3 November 2012; Ioannides, M., Fritsch, D., Leissner, J., Davies, R., Remondino, F., Caffo, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7616, pp. 388–395. [Google Scholar] [CrossRef]
- Cosso, T.; Ferrando, I.; Orlando, A. Surveying and mapping a cave using 3D laser scanner: The open challenge with free and open source software. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-5, 181–186. [Google Scholar] [CrossRef]
- Zlot, R.; Bosse, M. Three-dimensional mobile mapping of caves. J. Cave Karst Stud. 2014, 76, 191–206. [Google Scholar] [CrossRef]
- Gallay, M.; Kaňuk, J.; Hochmuth, Z.; Meneely, J.; Hofierka, J.; Sedlák, V. Large-scale and high-resolution 3D cave mapping by terrestrial laser scanning: A case study of the Domica Cave, Slovakia. Int. J. Speleol. 2015, 44, 277–291. [Google Scholar] [CrossRef]
- Basantes, J.; Godoy, L.; Carvajal, T.; Castro, R.; Toulkeridis, T.; Fuertes, W.; Aguilar, W.; Tierra, A.; Padilla, O.; Mato, F.; et al. Capture and processing of geospatial data with laser scanner system for 3D modeling and virtual reality of Amazonian Caves. In Proceedings of the 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 16–20 October 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Shults, R.; Bilous, M.; Kovtun, V. Monitoring and preservation of the Kyiv Pechersk Lavra Caves. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 1053–1058. [Google Scholar] [CrossRef]
- Nocerino, E.; Menna, F.; Farella, E.M.; Remondino, F. 3D virtualization of an underground semi-submerged cave system. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 857–864. [Google Scholar] [CrossRef]
- Büyüksalih, G.; Kan, T.; Özkan, G.E.; Meriç, M.; Isın, L.; Kersten, T.P. Preserving the knowledge of the past through virtual visits: From 3D laser scanning to virtual reality visualisation at the Istanbul Çatalca İnceğiz Caves. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 133–146. [Google Scholar] [CrossRef]
- Canavese, E.P.; Forti, P.; Naseddu, A.; Ottelli, L.; Tedeschi, R. Laser scanning technology for the hypogean survey: The case of Santa Barbara karst system (Sardinia, Italy). Acta Carsologica 2011, 40, 65–77. [Google Scholar] [CrossRef]
- Hajri, S.; Sadier, B.; Jaillet, S.; Ployon, E.; Boche, E.; Chakroun, A.; Saulnier, G.-M.; Delannoy, J.-J. Analyse spatiale et morphologique d’une forêt de stalagmites par modélisation 3D dans le Réseau d’Orgnac (Ardèche, France). Karstologia Rev. Karstol. Spéléologie Phys. 2009, 53, 1–14. [Google Scholar] [CrossRef]
- Jaillet, S.; Sadier, B.; Souhail, H.; Ployon, E.; Delannoy, J. Une analyse 3D de l’endokarst: Applications lasergrammétriques sur l’Aven d’Orgnac (Ardèche, France). Geomorphol. Relief Process. Environ. 2011, 17, 379–394. [Google Scholar] [CrossRef]
- Roncat, A.; Dublyansky, Y.; Spötl, C.; Dorninger, P. Full-3D surveying of caves: A case study of Märchenhöhle (Austria). In Proceedings of the IAMG Conference 2011, Salzburg, Austria, 5–9 September 2011; Available online: https://publik.tuwien.ac.at/files/PubDat_199966.pdf (accessed on 26 October 2023).
- García Puchol, O.; McClure, S.B.; Blasco Senabre, J.; Cotino Villa, F.; Porcelli, V. Increasing contextual information by merging existing archaeological data with state of the art laser scanning in the prehistoric funerary deposit of Pastora Cave, Eastern Spain. J. Archaeol. Sci. 2013, 40, 1593–1601. [Google Scholar] [CrossRef]
- Hoblea, F.; Delannoy, J.-J.; Jaillet, S.; Ployon, E.; Sadier, B. Digital tools for managing and promoting Karst geosites in Southeast France. Geoheritage 2014, 6, 113–127. [Google Scholar] [CrossRef]
- Silvestre, I.; Rodrigues, J.; Figueiredo, M.; Veiga-Pires, C. High-resolution digital 3D models of Algar Do Penico Chamber: Limitations, challenges, and potential. Int. J. Speleol. 2015, 44, 25–35. [Google Scholar] [CrossRef]
- Fabbri, S.; Sauro, F.; Santagata, T.; Rossi, G.; De Waele, J. High-resolution 3-D mapping using terrestrial laser scanning as a tool for geomorphological and speleogenetical studies in caves: An Example from the Lessini Mountains (North Italy). Geomorphology 2017, 280, 16–29. [Google Scholar] [CrossRef]
- Garavelli, A.; Andriani, G.F.; Fioretti, G.; Iurilli, V.; Marsico, A.; Pinto, D. The “Sant’Angelo in Criptis” Cave Church in Santeramo in Colle (Apulia, South Italy): A Multidisciplinary Study for the Evaluation of Conservation State and Stability Assessment. Geosciences 2021, 11, 382. [Google Scholar] [CrossRef]
- Rodríguez, G.; Mulas, M.; Loaiza, S.; Del Pilar Villalta Echeverria, M.; Yanez Vinueza, A.A.; Larreta, E.; Jordá Bordehore, L. Stability Analysis of the Volcanic Cave El Mirador (Galápagos Islands, Ecuador) Combining Numerical, Empirical and Remote Techniques. Remote Sens. 2023, 15, 732. [Google Scholar] [CrossRef]
- Cardia, S.; Palma, B.; Langella, F.; Pagano, M.; Parise, M. Alternative Methods for Semi-Automatic Clusterization and Extraction of Discontinuity Sets from 3D Point Clouds. Earth Sci. Inf. 2023, 16, 2895–2914. [Google Scholar] [CrossRef]
- Benrabah, A.; Senent Domínguez, S.; Jorda Bordehore, L.; Alvares Alonzo, D.; Diez Herrero, A.; de Andrés Herrero, M. Preliminary Assessment of Badajo Cave (Segovia, Spain) Stability Using Empirical, Numerical and Remote Techniques. In IOP Conference Series: Earth and Environmental Science, Proceedings of the XXIII Conference of PhD Students and Young Scientists “Interdisciplinary Topics in Mining, Geology and Geomatics”, Wrocław, Poland, 13–15 June 2023; IOP Publishing Ltd.: Bristol, UK, 2024; Volume 1295, p. 012011. [Google Scholar] [CrossRef]
- Cardia, S.; Langella, F.; Pagano, M.; Palma, B.; Sabato, L.; Tropeano, M.; Parise, M. 3D Digital Analysis for Geo-Structural Monitoring and Virtual Documentation of the Saint Michael Cave in Minervino Murge, Bari (Italy). Digit. Appl. Archaeol. Cult. Herit. 2024, 32, e00308. [Google Scholar] [CrossRef]
- La Scalea, R.; Rodrigues, M.; Osorio, D.P.; Lima, C.M.; Souza, R.D.; Alves, H.; Branco, K.C. Opportunities for autonomous UAV in harsh environments. In Proceedings of the 16th International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, 27–30 August 2019; pp. 227–232. [Google Scholar] [CrossRef]
- Petracek, P.; Kratky, V.; Petrlik, M.; Baca, T.; Kratochvil, R.; Saska, M. Large-Scale Exploration of Cave Environments by Unmanned Aerial Vehicles. IEEE Robot. Autom. Lett. 2021, 6, 7596–7603. [Google Scholar] [CrossRef]
- Blank, J.G.; Morrell, B.; Bouman, A.; Touma, T.; Ginting, M.F.; Patterson, C.; Aghamohammadi, A. BRAILLE-CoSTAR Teams Autonomous Mapping and Characterization of Terrestrial Lava Caves Using Quadruped Robots: Preparing for a Mission to a Planetary Cave. In Workshop on Terrestrial Analogs for Planetary Exploration, Proceedings of the USGS Astrogeology Science Center, Virtual, 16–18 June 2021; USRA: LPI Contributions; p. 8122. Available online: https://www.hou.usra.edu/meetings/terrestrialanalogs2021/pdf/8122.pdf (accessed on 26 October 2023).
- Giordan, D.; Godone, D.; Baldo, M.; Piras, M.; Grasso, N.; Raffaella, Z. Survey solutions for 3D acquisition and representation of artificial and natural caves. Appl. Sci. 2021, 11, 6482. [Google Scholar] [CrossRef]
- Grasso, N.; Dabove, P.; Piras, M. The use of SLAM and UAV technology in geological field for monitoring: The case study of the Bossea cave. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-2/W3-2023, 73–79. [Google Scholar] [CrossRef]
- Moretti, M.; Pieri, P.; Ricchetti, G.; Spalluto, L.; Festa, V.; Maggiore, M.; Maiorano, P.; Piccarreta, G.; Ronchitelli, A.; Walsh, N. Note Illustrative della Carta Geologica d’Italia alla Scala 1:50.000 Foglio 396 San Severo; LAC: Firenze, Italy, 2011. (In Italian) [Google Scholar]
- Spalluto, L. La Piattaforma Apula nel Gargano Centro-Occidentale: Organizzazione Stratigrafica ed Assetto Della Successione Mesozoica di Piattaforma Interna. Ph.D. Thesis, Università degli Studi di Bari, Bari, Italy, 2004; p. 173. [Google Scholar]
- Spalluto, L.; Pieri, P.; Ricchetti, G. Inner platform carbonate fades of the Gargano Promontory: Implications for paleoenviroments and correlation with the coeval succession of the Murge area (Southern Italy, Puglia). Boll. Soc. Geol. Ital. 2005, 124, 675–690. (In Italian) [Google Scholar]
- Cotecchia, V.; Magri, G. Idrogeologia del Gargano. Geologia Applicata e Idrogeologia; CNR-ISPRA: Bari, Italy, 1966; Volume 1, pp. 1–86. (In Italian) [Google Scholar]
- Cotecchia, V. Le Acque Sotterranee e l’Intrusione Marina in Puglia: Dalla Ricerca all’’Emergenza nella Salvaguardia della Risorsa, (Periodici Tecnici) Memorie Descrittive della CARTA Geologica d’Italia; SGN-ISPRA: Ispra, Italy, 2014; Volume 92, pp. 15–660. ISBN 978-88-9311-003-7. (In Italian) [Google Scholar]
- Palma di Cesnola, A. Il sito. In Paglicci. l’Aurignaziano e il Gravettiano Antico; Palma di Cesnola, A., Ed.; Claudio Grenzi Editore: Foggia, Italy, 2004; pp. 13–14. [Google Scholar]
- Palma di Cesnola, A. La sequenza stratigrafica della Grotta. In Paglicci. l’Aurignaziano e il Gravettiano Antico; Palma di Cesnola, A., Ed.; Claudio Grenzi Editore: Foggia, Italy, 2004; pp. 21–25. [Google Scholar]
- Crezzini, J.; Boscato, P.; Ricci, S.; Ronchitelli, A.; Spagnolo, V.; Boschin, F. A spotted hyaena den in the Middle Palaeolithic of Grotta Paglicci (Gargano promontory, Apulia, Southern Italy). Archaeol. Anthropol. Sci. 2016, 8, 227–240. [Google Scholar] [CrossRef]
- Arrighi, S.; Borgia, V.; D’errico, F.; Ronchitelli, A. I ciottoli decorati di Paglicci: Raffigurazioni e utilizzo. Riv. Sci. Preist. 2008, 58, 39–58. [Google Scholar]
- Arrighi, S.; Borgia, V.; Guasparri, G.; Ricci, S.; Scala, A.; Ronchitelli, A. Grotta Paglicci (Rignano Garganico, Foggia): Analisi sulle materie coloranti. Preist. Alp. 2012, 46, 91–92. [Google Scholar]
- Borgia, V.; Boschin, F.; Ronchitelli, A. Bone and antler working at Grotta Paglicci (Rignano Garganico, Foggia, southern Italy). Quat. Int. 2016, 403, 23–39. [Google Scholar] [CrossRef]
- Dominici, C.; Stani, C.; Rossini, M.; Vaccari, L. SRFTIR microscopy for the study of residues on Palaeolithic stone tools: Looking for a methodological protocol. J. Phys. Conf. Ser. 2022, 2204, 012050. [Google Scholar] [CrossRef]
- Dominici, C.; Stani, C.; Bonanni, V.; Rossini, M.; Božičević Mihalić, I.; Provatas, G.; Fazinić, S.; Boschin, F.; Gianoncelli, A.; Vaccari, L. Combining SR-FTIR, SRLEXRF and PIXE microscopies for residue analysis on Palaeolithic stone artefacts. Eur. Phys. J. Plus 2023, 138, 742. [Google Scholar] [CrossRef]
- Mezzena, F.; Palma di Cesnola, A. Nuove manifestazioni d’arte epigravettiana della Grotta Paglicci nel Gargano. In Atti della XXVIII Riunione Scientifica IIPP: L’Arte in Italia dal Paleolitico all’Età del Bronzo; IIPP: Firenze, Italy, 1992; pp. 272–292. [Google Scholar]
- Mezzena, F.; Palma di Cesnola, A. L’arte mobiliare di Grotta Paglicci: Nuove acquisizioni. Riv. Sci. Preist. 2004, 54, 291–320. [Google Scholar]
- Palma di Cesnola, A. Le Paleolithique Superieur en Italie; Editions Jérôme Millon: Grenoble, France, 2001; p. 482. ISBN 2841370992. [Google Scholar]
- Palma di Cesnola, A. L’Aurignacien et le Gravettien ancien de la grotte Paglicci au Mont Gargano. l’Anthr 2006, 110, 355–370. [Google Scholar] [CrossRef]
- Ricci, S.; Capecchi, G.; Boschin, F.; Arrighi, S.; Ronchitelli, A.; Condemi, S. Toothpick use among Epigravettian humans from grotta Paglicci (Italy). Int. J. Osteoarchaeol. 2016, 26, 281–289. [Google Scholar] [CrossRef]
- Ronchitelli, A.; Mugnaini, S.; Arrighi, S.; Atrei, A.; Capecchi, G.; Giamello, M.; Longo, L.; Marchettini, N.; Viti, C.; Moroni, A. When technology joins symbolic behaviour: The Gravettian burials at grotta Paglicci (Rignano Garganico–Foggia–Southern Italy). Quat. Int. 2015, 359, 423–441. [Google Scholar] [CrossRef]
- Rossini, M.; Falcucci, A.; Dominici, C.; Ronchitelli, A.; Tomasso, A.; Boschin, F. Analytical potential of 2D shape analysis to study Epigravettian lithic assemblages. In Proceedings of the 2022 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage MetroArchaeo, Cosenza, Italy, 19–21 October 2022; pp. 52–56. [Google Scholar] [CrossRef]
- Mariotti Lippi, M.; Foggi, B.; Aranguren, B.; Ronchitelli, A.; Revedin, A. Multistep food plant processing at Grotta Paglicci (Southern Italy) around 32,600 cal B.P. Proc. Natl. Acad. Sci. USA 2015, 112, 12075–12080. [Google Scholar] [CrossRef] [PubMed]
- Boschin, F.; Bernardini, F.; Pilli, E.; Vai, S.; Zanolli, C.; Tagliacozzo, A.; Fico, R.; Fedi, M.; Corny, J.; Dreossi, D.; et al. The first evidence for Late Pleistocene dogs in Italy. Sci. Rep. 2020, 10, 13313. [Google Scholar] [CrossRef] [PubMed]
- Boscato, P.; Palma di Cesnola, A. L’industria e la fauna del livello 1A dell’area esterna di Paglicci (Promontorio del Gargano). In Proceedings of the 25° Convegno sulla Preistoria e Storia della Daunia, San Severo, Italy, 3–5 December 2005; Gravina, A., Ed.; pp. 3–15. [Google Scholar]
- Boscato, P.; Palma di Cesnola, A. Nuovi ritrovamenti di Epigravettiano antico “iniziale” a Grotta Paglicci (Rignano Garganico, Foggia) In Studi sul Paleolitico, Mesolitico e Neolitico del Bacino dell’Adriatico in Ricordo di Antonio M. Radmilli; Biagi, P., Ed.; Società per la Preistoria e Protostoria della Regione Friuli-Venezia Giulia: Trieste, Italy, 2000; pp. 45–60. [Google Scholar]
- Boschin, F.; Boscato, P.; Berto, C.; Crezzini, J.; Ronchitelli, A. The palaeoecological meaning of macromammal remains from archaeological sites exemplified by the case study of Grotta Paglicci (Upper Palaeolithic, southern Italy). Quat. Res. 2018, 90, 470–482. [Google Scholar] [CrossRef]
- Zorzi, F. Palaeolithic discoveries in the grotta Paglicci. Antiquity 1964, 38, 38–44. [Google Scholar] [CrossRef]
- Arrighi, S.; Borgia, V.; D’Errico, F.; Ricci, S.; Ronchitelli, A. Manifestazioni d’arte inedite e analisi tecnologica dell’arte mobiliare di Grotta Paglicci (Rignano Garganico e Foggia). Preist. Alp. 2012, 46, 49–58. [Google Scholar]
- Leica Geosystems AG. Leica InfinityTM, Version 3.4.2; Leica Geosystems AG—Part of Hexagon. 2021. Available online: https://leica-geosystems.com/products/gnss-systems/software/leica-infinity(accessed on 29 October 2023).
- SPH Engineering. UgCSTM Professional Desktop Drone Flight Planning Software, Version 4.18; Latvia. 2023. Available online: https://www.sphengineering.com/support(accessed on 29 October 2023).
- Agisoft LLC. Agisoft Metashape ProfessionalTM, Version 2.0.2; Agisoft LLC: St. Petersburg, Russia, 2023. Available online: https://www.agisoft.com/(accessed on 29 October 2023).
- Trimble Inc. Trimble RealworksTM, Version 12.4; Trimble Inc.: Westminster, CA, USA, 2023. Available online: https://geospatial.trimble.com/en/products/software/office-software(accessed on 29 October 2023).
- CloudCompare, Version 2; 2021. Available online: http://www.cloudcompare.org/ (accessed on 29 October 2023).
- Bieniawski, Z.T. Engineering Rock Mass Classification; John Wiley and Sons: New York, USA, 1989; p. 251. [Google Scholar]
- Bar, N.; Barton, N. The Q-Slope Method for Rock Slope Engineering. Rock Mech. Rock Eng. 2017, 50, 3307–3322. [Google Scholar] [CrossRef]
- Romana, M. New adjustment ratings for application of Bieniawski classification to slopes. In Proceedings of the International Symposium on the Role of Rock Mechanics in Excavations for Mining and Civil Works. International Society of Rock Mechanics, Zacatecas, Mexico, 2–4 September 1985; pp. 49–53. [Google Scholar]
- Sari, M. Stability Analysis of Cut Slopes Using Empirical, Kinematical, Numerical and Limit Equilibrium Methods: Case of Old Jeddah–Mecca Road (Saudi Arabia). Environ. Earth Sci. 2019, 78, 621. [Google Scholar] [CrossRef]
- Sari, M. Secondary Toppling Failure Analysis and Optimal Support Design for Ignimbrites in the Ihlara Valley (Cappadocia, Turkey) by Finite Element Method (FEM). Geotech. Geol. Eng. 2021, 39, 5135–5160. [Google Scholar] [CrossRef]
- Markland, J.T. A useful technique for estimating the stability of rock slopes when the rigid wedge slide type of failure is expected. In Interdepartmental Rock Mechanics Project; Imperial College of Science and Technology: London, UK, 1972; Volume 19, p. 10. [Google Scholar]
- Hoek, E.; Bray, J.W. Rock Slope Engineering, Revised, 3rd ed.; The Institution of Mining and Metallurgy: London, UK, 1981; pp. 257–270. [Google Scholar]
- Rocscience DipsTM: Graphical and Statistical Analysis of Orientation Data, Version 8.022. Available online: https://www.rocscience.com/software/dips (accessed on 26 October 2023).
- Goodman, R.E. Application of Rock Mechanics to Rock Slope Engineering. In Introduction to Rock Mechanics; John Wiley: Toronto, ON, Canada, 1980; pp. 254–287. [Google Scholar]
- Hudson, J.A.; Harrison, J.P. Engineering Rock Mechanics: An Introduction to the Principles; Pergamon Press: London, UK, 1997; pp. 307–325. [Google Scholar]
- Rocscience RS2TM: 2D Finite Element Analysis, Version 11.019. Available online: https://www.rocscience.com/software/rs2 (accessed on 26 October 2023).
- Geogar. Relazione Geologica Progetto delle Opere di Mitigazione del Rischio Idrogeologico del Centro Abitato con Consolidamento di Via Giro Esterno Est 2015, p. 36. Available online: https://www.comune.rignanogarganico.fg.it/po/attachment_news.php?id=156 (accessed on 26 October 2023). (In Italian).
- Italferr (Gruppo Ferrovie dello Stato Italiane). Relazione Geotecnica e di calcolo Rilevati- Riassetto Nodo di Bari 2015; p. 85. Available online: https://va.mite.gov.it/File/Documento/235833 (accessed on 26 October 2023). (In Italian)
- Barton, N.R.; Bandis, S.C. Review of predictive capabilities of JRC-JCS model in engineering practice. In Rock Joints, Proceedings of the International Symposium on Rock Joints, Loen, Norway, 7–8 June 1990; Barton, N., Stephansson, O., Eds.; Balkema: Rotterdam, The Netherlands, 1990; pp. 603–610. [Google Scholar] [CrossRef]
- Miller, R.P. English Classes and Index Properties for Intact Rock. Ph.D. Thesis, University of Illinois, Urbana, IL, USA, 1965. [Google Scholar]
- Barton, N.; Choubey, V. The Shear Strength of Rock Joints in Theory and Practice. Rock Mech. 1977, 10, 1–54. [Google Scholar] [CrossRef]
- Barton, N.R. Review of a new shear strength criterion for rock joints. Eng. Geol. 1973, 7, 287–332. [Google Scholar] [CrossRef]
- Salvini, R.; Riccucci, S.; Gullì, D.; Giovannini, R.; Vanneschi, C.; Francioni, M. Geological Application of UAV Photogrammetry and Terrestrial Laser Scanning in Marble Quarrying (Apuan Alps, Italy). In Engineering Geology for Society and Territory, Proceedings of the IAEG XII Congress, Turin, Italy, 15–19 September 2014; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer: Cham, Switzerland, 2014; Volume 5, pp. 979–983. [Google Scholar] [CrossRef]
- Geniş, M.; Çolak, B. Stability Assessment of the Gökgöl Karstic Cave (Zonguldak, Turkey) by Analytical and Numerical Methods. Rock Mech. Rock Eng. 2015, 48, 2383–2403. [Google Scholar] [CrossRef]
- Salvini, R.; Ermini, A.; De Lucia, V.; Beltramone, L.; Silvestri, D.; Rindinella, A.; Guido, S.; Marchetti, D.; Gullì, D. Stress–Strain Investigation of the Rock Mass Based on Overcoring with CSIRO HI Cell Test and Numerical Modeling: A Case Study from an Italian Underground Marble Quarry. Geosciences 2022, 12, 441. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Underground Excavations in Rock; The Institution of Mining and Metallurgy: London, UK, 1980; p. 527. [Google Scholar]
- Martin, C.D.; Kaiser, P.K.; McCreath, D.R. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels. Can. Geotech. J. 1999, 36, 136–151. [Google Scholar] [CrossRef]
- Cosgrove, J. The Role of Structural Geology in Reservoir Characterization. Geol. Soc. Lond. Spec. Publ. 1998, 127, 1–13. [Google Scholar] [CrossRef]
- Szechy, K. The Art of Tunnelling; Akademiai Kiado: Budapest, Hungary, 1966; p. 76. [Google Scholar]
- Farmer, I. Engineering Properties of Rocks; E. & F.N. Spon: London, UK, 1968; p. 57. [Google Scholar]
- Hardy, H.R.; Jayaraman, N.I. An investigation of methods for determination of the tensile strength of rock. In Proceedings of the 2nd Congress of the International Society for Rock Mechanics, Belgrade, Serbia, 21–26 September 1970; Volume 3, pp. 85–92. [Google Scholar]
- Ippolito, F.; Nicotera, P.; Lucini, P.; Civita, M.; De Riso, R. Geologia Tecnica per Ingegneri e Geologi; ISEDI: Milano, Italia, 1975; p. 449. [Google Scholar]
- Paronuzzi, P.; Serafini, W. Back-analysis of the flexural failure of a cantilevered rock slab: The Val Cellina rockfall (Friuli, 26/01/1999). Geoing. Ambient. Mineraria 2008, 124, 23–38. [Google Scholar]
- Sakellariou, M. Topics of Analytical and Computational Methods in Tunnel Engineering. In Tunnel Engineering—Selected Topics; IntechOpen Limited: London, UK, 2020; pp. 1–27. [Google Scholar] [CrossRef]
- Oreste, P.; Oggeri, C.; Canali, F.; Scolari, M. Numerical Modeling and Back-Analysis Approach on a Monitored Underground Cavern for the Extraction of Marble for Ornamental Uses. Appl. Sci. 2023, 13, 12893. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Material Name | Monte Calvo del Gargano member |
Material Color | |
Initial Element Loading | Body Force Only |
Unit Weight (MN/m3) | 0.0225 |
Elastic Type | Isotropic |
Poisson’s Ratio | 0.3 |
Young’s Modulus E (MPa) | 34,000 |
Failure Criterion | Mohr-Coulomb |
Material Type | Elastic |
Peak Tensile Strength (MPa) | 0.053 |
Peak Friction Angle φ (degrees) | 38 |
Peak Cohesion c (MPa) | 0.335 |
Material Behavior | Drained |
Porosity Value | 0.5 |
Static Water Mode | Dry |
System | Discontinuity Color | Normal Stiffness (MPa/m) | Shear Stiffness (MPa/m) | JCS (MPa) | JRC | Residual Friction Angle (deg) |
---|---|---|---|---|---|---|
S1 | 79,610 | 30,619 | 36.52 | 11 | 30 | |
S2 | 41.85 | 13 | 32 | |||
S3 | 34.90 | 13 | 29 | |||
Bedding | 33.35 | 11 | 29 |
System | Bedding | S1 | S2 | S3 |
---|---|---|---|---|
Dip | 15° | 80° | 80° | 80° |
Dip Direction | 170° | 210° | 340° | 270° |
Spacing (m) | 0.9 | 1.2 | 2 | 1.4 |
Length (m) | >20 | >10 | >10 | >10 |
Aperture (mm) | 30 | 13 | 125 | 35 |
Filling (mm, type) | 30, cemented limestone material | 10, debris material | 125, debris material | 32, debris material |
R-value (discontinuity) | 26 | 28 | 31 | 27 |
R-value (intact material) | 39 | |||
JRC | 10–12 | 10–12 | 12–14 | 12–14 |
Surface Weathering | Moderately weathered | Slightly weathered | Moderately weathered | Moderately weathered |
Humidity | Dry | Dry | Dry | Dry |
Parameter | Value |
---|---|
Cohesion c (kPa) | 335 |
Friction angle φ (°) | 38 |
Young’s modulus E (Gpa) | 34 |
PoF (%) | Slope Angle (°) |
---|---|
1 | 63 |
15 | 66 |
30 | 69 |
50 | 72 |
System | Dip Direction/Dip | Slope | Dip Direction/Dip |
---|---|---|---|
Bedding | 170°/15° | V1 | 285°/80° |
S1 | 210°/80° | V2 | 245°/80° |
S2 | 340°/80° | V3 | 210°/80° |
S3 | 270°/80° |
Discontinuity System | Planar Failure | Toppling | Intersection | Wedge Failure | ||||||
---|---|---|---|---|---|---|---|---|---|---|
V1 | V2 | V3 | V1 | V2 | V3 | V1 | V2 | V3 | ||
Bedding | 73 | 73 | 73 | 82 | 82 | 82 | Bedding—S1 | 73 | 73 | 73 |
S1 | 57 | 57 | 57 | 82 | 82 | 82 | Bedding—S2 | 73 | 75 | 81 |
S2 | 79 | 57 | 57 | 82 | 82 | 82 | Bedding—S3 | 73 | 73 | 73 |
S3 | 57 | 72 | 79 | 82 | 82 | 82 | S1–S2 | 22 * | 73 | 73 |
S1–S3 | 32 * | 32 * | 75 | |||||||
S2–S3 | 62 | 75 | 75 |
Slope | Planar Sliding | Wedge Sliding | Direct (DT) and Oblique Toppling (OT) |
---|---|---|---|
Critical Plane | Critical Intersection | ||
V1 | - | S1–S2, S2–S3 | DT Bedding-S1 with S3 releasing plane |
V2 | - | S1–S2, S1–S3 | OT with Bedding as basal and releasing planes |
V3 | S1 | S1–S3 | OT S2–S3 with Bedding and S1 as releasing planes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltramone, L.; De Lucia, V.; Ermini, A.; Innocenti, M.; Silvestri, D.; Rindinella, A.; Ronchitelli, A.; Ricci, S.; Boschin, F.; Salvini, R. Applying SLAM-Based LiDAR and UAS Technologies to Evaluate the Rock Slope Stability of the Grotta Paglicci Paleolithic Site (Italy). GeoHazards 2024, 5, 457-484. https://doi.org/10.3390/geohazards5020024
Beltramone L, De Lucia V, Ermini A, Innocenti M, Silvestri D, Rindinella A, Ronchitelli A, Ricci S, Boschin F, Salvini R. Applying SLAM-Based LiDAR and UAS Technologies to Evaluate the Rock Slope Stability of the Grotta Paglicci Paleolithic Site (Italy). GeoHazards. 2024; 5(2):457-484. https://doi.org/10.3390/geohazards5020024
Chicago/Turabian StyleBeltramone, Luisa, Vivien De Lucia, Andrea Ermini, Matteo Innocenti, Daniele Silvestri, Andrea Rindinella, Annamaria Ronchitelli, Stefano Ricci, Francesco Boschin, and Riccardo Salvini. 2024. "Applying SLAM-Based LiDAR and UAS Technologies to Evaluate the Rock Slope Stability of the Grotta Paglicci Paleolithic Site (Italy)" GeoHazards 5, no. 2: 457-484. https://doi.org/10.3390/geohazards5020024
APA StyleBeltramone, L., De Lucia, V., Ermini, A., Innocenti, M., Silvestri, D., Rindinella, A., Ronchitelli, A., Ricci, S., Boschin, F., & Salvini, R. (2024). Applying SLAM-Based LiDAR and UAS Technologies to Evaluate the Rock Slope Stability of the Grotta Paglicci Paleolithic Site (Italy). GeoHazards, 5(2), 457-484. https://doi.org/10.3390/geohazards5020024