Internal Structure and Reactivations of a Mass Movement: The Case Study of the Jacotines Landslide (Champagne Vineyards, France)
Abstract
1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Den Eeckhaut, M.; Marre, A.; Poesen, J. Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region (France). Geomorphology 2010, 11, 141–155. [Google Scholar] [CrossRef]
- Hradecky, J.; Panek, T.; Klimova, R. Landslide complex in the northern part of the Silesian Beskydy Mountains (Czech Republic). Landslides 2007, 4, 53–62. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Verstaeten, G.; Poesen, J. Morphology and internal structure of a dormant landslide in a hilly area: The Collinabos landslide (Belgium). Geomorphology 2007, 89, 258–273. [Google Scholar] [CrossRef]
- Gioia, D.; Di Leo, P.; Giano, S.I.; Schiattarella, M. Chronological constraints on a Holocene landslide in a intermontane basin of the southern Apennines, Italy: Morphological evolution and palaeoclimate implications. Holocene 2010, 21, 263–273. [Google Scholar] [CrossRef]
- Panek, T.; Smolkova, V.; Hradecky, J.; Baron, I.; Silhan, K. Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/Slovakia). Quat. Res. 2013, 80, 33–46. [Google Scholar] [CrossRef]
- Ojala, A.E.K.; Mattila, J.; Markovaara-Koivisto, M.; Ruskeeniemi, T.; Palmu, J.P.; Sutinen, R. Distribution and morphology of landslides in northern Finland: An analysis of postglacial seismic activity. Geomorphology 2019, 326, 190–201. [Google Scholar] [CrossRef]
- Patton, A.I.; Rathburn, S.L.; Capps, D.M. Landslide response to climate change in permafrost regions. Geomorphology 2019, 340, 116–128. [Google Scholar] [CrossRef]
- Marre, A. Le mouvement de terrain de Rilly-la-Montagne du 23 août 1986, naissance et évolution. Trav. L’institut Géographie Reims 1987, 69–72, 95–111. [Google Scholar] [CrossRef]
- Martins-Campina, B. Le Rôle des Facteurs Géologiques et Mécaniques dans le Déclenchement des Instabilités Gravitaires: Exemple de Deux Glissement de Terrain des Pyrénées Atlantiques (Vallée d’Ossau et Vallée d’Aspe). Ph.D. Thesis, Université Bordeaux, Bordeaux, France, 2005. [Google Scholar]
- Bollot, N.; Devos, A.; Pierre, G. Ressources en eau et glissements de terrain: Exemple du bassin versant de la Semoigne (bassin de Paris, France). Géomorphol. Relief Process. Environ. 2015, 2, 121–132. [Google Scholar] [CrossRef]
- Parriaux, A. Hydrogéologie et glissements de terrain. Gas Wasser Abwasser 2010, 11, 978–985. [Google Scholar]
- Parriaux, A.; Bonnard, C.; Tacher, L. Glissements de Terrain: Hydrogéologie et Techniques D’assainissement par Drainage; Guide Pratique; Office Fédéral de L’environnement: Berne, Switzerland, 2010. [Google Scholar]
- Ling, C.; Xu, Q.; Zhang, Q.; Ran, J.; Lv, H. Application of electrical resistivity tomography for investigating the internal structure of a translational landslide and characterizing its groundwater circulation (Kualiangzi landslide, Southwest China). J. Appl. Geophys. 2016, 131, 151–162. [Google Scholar] [CrossRef]
- Fressard, M.; Maquaire, O.; Thiery, Y.; Davidson, R.; Lissak, C. Multi-method characterisation of an active landslide: Case study in the Pays d’Auge plateau (Normandy, France). Geomorphology 2016, 270, 22–39. [Google Scholar] [CrossRef]
- Ausilio, E.; Zimmaro, P. Landslide characterization using a multidisciplinary approach. Measurement 2017, 104, 294–301. [Google Scholar] [CrossRef]
- Bollot, N.; Pierre, G.; Devos, A.; Lutz, P.; Ortonovi, S. Hydrogeology of a landslide: A case study in the Montagne de Reims (Paris basin, France). Q. J. Eng. Geol. Hydrogeol. 2022, 56, 2021–2041. [Google Scholar] [CrossRef]
- Ortonovi, S.; Bollot, N.; Pierre, G.; Deroin, J.-P. Apport de la télédétection à l’analyse des glissements de terrain du vignoble champenois entre Epernay et Dormans (Marne, France). Géomorphol. Relief Process. Environ. 2021, 2, 147–158. [Google Scholar] [CrossRef]
- Hatrival, J.N. Note Explicative de la Feuille D’epernay au 1/50,000; Carte Géologique de la France, Feuille n°157; BRGM: Orléans, France, 1977. [Google Scholar]
- Guérémy, P.; Marre, A. Une nouvelle méthode de cartographie géomorphologique applicable aux aléas naturels. Travaux L’INSTITUT Géographie Reims 1996, 93–94, 5–40. [Google Scholar] [CrossRef]
- Moeyersons, J.; Van Den Eeckhaut, M.; Nyssen, J.; Gebreyohannes, T.; Van de Wauw, J.; Hofmeister, J.; Poesen, J.; Deckers, J.; Mitiku, H. Mass movement mapping for geomorphological understanding and subtainable development: Tigray, Ethiopia. Catena 2008, 75, 45–54. [Google Scholar] [CrossRef]
- Israil, M.; Pachauri, A.K. Geophysical characterization of a landslide site in the Himalayan foothill region. J. Asian Sci. 2003, 22, 253–263. [Google Scholar] [CrossRef]
- Travelletti, J.; Demand, J.; Jobayedoff, M.; Marillier, F. Mass movement characterization using a reflexion and refraction seismic survey with the sloping local base level concept. Geomorphology 2010, 116, 1–10. [Google Scholar] [CrossRef]
- Grandjean, G.; Gourry, J.C.; Sanchez, O.; Bitri, A.; Garambois, S. Structural study of the Ballandaz landslide (French Alps) using geophysical imagery. J. Appl. Geophys. 2011, 75, 531–542. [Google Scholar] [CrossRef]
- Malehmir, A.; Saleem, M.U.; Bastani, M. High-resolution reflection seismic investigations of quick-clay and associated formations at a landslide scar in southwest Sweden. J. Appl. Geophys. 2013, 92, 84–102. [Google Scholar] [CrossRef]
- Tullen, P.; Turberg, P.; Parriaux, A. Radiomagnetotelluric mapping, groudwater numerical modellign and 18-Oxygen isotopic data as combined tools to determine the hydrogeological system of a landslide prone area. Eng. Geol. 2006, 87, 195–204. [Google Scholar] [CrossRef]
- Jomard, H.; Lebourg, T.; Tric, E. Identification of the gravitational boundary in weathered gneiss by geophysical survey: La Clapière landslide (France). J. Appl. Geophys. 2007, 62, 42–57. [Google Scholar] [CrossRef]
- Jomard, H.; Lebourg, T.; Binet, S.; Tric, E.; Hernandez, M. Characterization of an internal slope movement structure by hydrogeophysical surveying. Terra Nova 2007, 19, 48–57. [Google Scholar] [CrossRef]
- Jongmans, D.; Bièvre, G.; Renalier, F.; Schwartz, S.; Beaurez, N.; Orengo, Y. Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng. Geol. 2009, 109, 45–56. [Google Scholar] [CrossRef]
- Piegari, E.; Cataudella, V.; Di Maio, R.; Milano, L.; Nicodemi, M.; Soldovieri, M.G. Electrical resistivity tomography and statistical analysis in landslide modelling: A conceptual approach. J. Appl. Geophys. 2009, 68, 151–158. [Google Scholar] [CrossRef]
- Tric, E.; Lebourg, T.; Jomard, H.; Le Cossec, J. Study of large-scale deformation induced by gravity on the La Clapière landslide (Saint-Etienne de Tinée, France) using numerical and geophysical approaches. J. Appl. Geophys. 2010, 70, 206–215. [Google Scholar] [CrossRef]
- Hu, S.; Wang, X.; Wang, N.; Yang, D.; Wang, D.; Ma, S.; Song, Z.; Cao, M. Dynamic process, influence, and triggering mechanism of slope remodelling by landslide clusters in the South Jingyang Tableland, China. Catena 2022, 217, 106518. [Google Scholar] [CrossRef]
- de Bari, C.; Lapenna, V.; Perrone, A.; Puglisi, C.; Sdao, F. Digital photogrammetric analysis and electrical resistivity tomography for investigating the Picerno landslide (Basilicata region, southern Italy). Geomorphology 2011, 133, 34–46. [Google Scholar] [CrossRef]
- Le Roux, O.; Jongmans, D.; Kasperski, J.; Schwartz, S.; Potherat, P.; Lebrouc, V.; Lagabrielle, R.; Meric, O. Deep geophysical investigation of the large Séchilienne landslide (Western Alps, France) and calibration with geological data. Eng. Geol. 2011, 120, 18–31. [Google Scholar] [CrossRef]
- Uhlemann, S.; Chambers, J.; Wilkinson, P.; Maurer, H.; Merritt, A.; Meldrum, P.; Kuras, O.; Gunn, D.; Smith, A.; Dijkstra, T. Four-dimensional imaging of moisture dynamics during landslide reactivation. J. Geophys. Res. Earth Surf 2017, 122, 398–418. [Google Scholar] [CrossRef]
- Colangelo, G.; Lapenna, V.; Perrone, A.; Piscitelli, S.; Telesca, L. 2D Self-Potential tomographies for studying groundwater flows in the Varco d’Izzo landslide (Basilicata, southern Italy). Eng. Geol. 2006, 88, 274–286. [Google Scholar] [CrossRef]
- Göktürkler, G.; Balkaya, C.; Erhan, Z. Geophysical investigation of a landslide: The Altindag landslide site, Izmir (western turkey). J. Appl. Geophys. 2008, 65, 84–96. [Google Scholar] [CrossRef]
- Gance, J.; Grandjean, G.; Samyn, K.; Malet, J.-P. Quasi-Newton inversion of seismic first arrivals using source finite bandwidth assumption: Application to subsurface characterization of landslides. J. Appl. Geophys. 2012, 87, 94–106. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Grandjean, G. A multi-method geophysical approach based on fuzzy logic for an integrated interpretation of landslides: Application to French Alps. Near Surface Geophysics 2012, 10, 601–611. [Google Scholar] [CrossRef]
- Marre, A.; Laurain, M.; Guérémy, P. Relations spatiales et temporelles entre les formations superficielles et les movuements de terrain sur le côte de l’Ile-de-France (Champagne): Un moyen de préparer les cartes des aléas. Géologie Fr. 1997, 2, 39–49. [Google Scholar]
- Feugueur, L. L’Yprésien du Bassin de Paris. Essai de Monographie Stratigraphique; Ministère de L’industrie: Paris, France, 1963.
- Gnyawali, K.; Dahal, K.; Talchabhadel, R.; Nirandjan, S. Framework for rainfall-triggered landslide-prone critical infrastructure zonation. Sci. Total Environ. 2023, 872, 162242. [Google Scholar] [CrossRef] [PubMed]
- Nordiana, M.M.; Azwin, I.N.; Nawawi, M.N.M.; Khalil, A.E. Slope failures evaluation and landslides investigation using 2-D resistivity method. NRIAG J. Astron. Geophys. 2018, 7, 84–89. [Google Scholar] [CrossRef]
Geomorphological Context | Number of Springs | % |
---|---|---|
head scarp | 38 | 40.4 |
slide mass | 12 | 12.8 |
toe of landslide | 22 | 23.4 |
rocky slope | 22 | 23.4 |
total | 94 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bollot, N.; Pierre, G.; Grandjean, G.; Fronteau, G.; Devos, A.; Lejeune, O. Internal Structure and Reactivations of a Mass Movement: The Case Study of the Jacotines Landslide (Champagne Vineyards, France). GeoHazards 2023, 4, 183-196. https://doi.org/10.3390/geohazards4020011
Bollot N, Pierre G, Grandjean G, Fronteau G, Devos A, Lejeune O. Internal Structure and Reactivations of a Mass Movement: The Case Study of the Jacotines Landslide (Champagne Vineyards, France). GeoHazards. 2023; 4(2):183-196. https://doi.org/10.3390/geohazards4020011
Chicago/Turabian StyleBollot, Nicolas, Guillaume Pierre, Gilles Grandjean, Gilles Fronteau, Alain Devos, and Olivier Lejeune. 2023. "Internal Structure and Reactivations of a Mass Movement: The Case Study of the Jacotines Landslide (Champagne Vineyards, France)" GeoHazards 4, no. 2: 183-196. https://doi.org/10.3390/geohazards4020011
APA StyleBollot, N., Pierre, G., Grandjean, G., Fronteau, G., Devos, A., & Lejeune, O. (2023). Internal Structure and Reactivations of a Mass Movement: The Case Study of the Jacotines Landslide (Champagne Vineyards, France). GeoHazards, 4(2), 183-196. https://doi.org/10.3390/geohazards4020011