Internal Structure and Reactivations of a Mass Movement: The Case Study of the Jacotines Landslide (Champagne Vineyards, France)
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Den Eeckhaut, M.; Marre, A.; Poesen, J. Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region (France). Geomorphology 2010, 11, 141–155. [Google Scholar] [CrossRef]
- Hradecky, J.; Panek, T.; Klimova, R. Landslide complex in the northern part of the Silesian Beskydy Mountains (Czech Republic). Landslides 2007, 4, 53–62. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Verstaeten, G.; Poesen, J. Morphology and internal structure of a dormant landslide in a hilly area: The Collinabos landslide (Belgium). Geomorphology 2007, 89, 258–273. [Google Scholar] [CrossRef]
- Gioia, D.; Di Leo, P.; Giano, S.I.; Schiattarella, M. Chronological constraints on a Holocene landslide in a intermontane basin of the southern Apennines, Italy: Morphological evolution and palaeoclimate implications. Holocene 2010, 21, 263–273. [Google Scholar] [CrossRef]
- Panek, T.; Smolkova, V.; Hradecky, J.; Baron, I.; Silhan, K. Holocene reactivations of catastrophic complex flow-like landslides in the Flysch Carpathians (Czech Republic/Slovakia). Quat. Res. 2013, 80, 33–46. [Google Scholar] [CrossRef]
- Ojala, A.E.K.; Mattila, J.; Markovaara-Koivisto, M.; Ruskeeniemi, T.; Palmu, J.P.; Sutinen, R. Distribution and morphology of landslides in northern Finland: An analysis of postglacial seismic activity. Geomorphology 2019, 326, 190–201. [Google Scholar] [CrossRef]
- Patton, A.I.; Rathburn, S.L.; Capps, D.M. Landslide response to climate change in permafrost regions. Geomorphology 2019, 340, 116–128. [Google Scholar] [CrossRef]
- Marre, A. Le mouvement de terrain de Rilly-la-Montagne du 23 août 1986, naissance et évolution. Trav. L’institut Géographie Reims 1987, 69–72, 95–111. [Google Scholar] [CrossRef]
- Martins-Campina, B. Le Rôle des Facteurs Géologiques et Mécaniques dans le Déclenchement des Instabilités Gravitaires: Exemple de Deux Glissement de Terrain des Pyrénées Atlantiques (Vallée d’Ossau et Vallée d’Aspe). Ph.D. Thesis, Université Bordeaux, Bordeaux, France, 2005. [Google Scholar]
- Bollot, N.; Devos, A.; Pierre, G. Ressources en eau et glissements de terrain: Exemple du bassin versant de la Semoigne (bassin de Paris, France). Géomorphol. Relief Process. Environ. 2015, 2, 121–132. [Google Scholar] [CrossRef]
- Parriaux, A. Hydrogéologie et glissements de terrain. Gas Wasser Abwasser 2010, 11, 978–985. [Google Scholar]
- Parriaux, A.; Bonnard, C.; Tacher, L. Glissements de Terrain: Hydrogéologie et Techniques D’assainissement par Drainage; Guide Pratique; Office Fédéral de L’environnement: Berne, Switzerland, 2010. [Google Scholar]
- Ling, C.; Xu, Q.; Zhang, Q.; Ran, J.; Lv, H. Application of electrical resistivity tomography for investigating the internal structure of a translational landslide and characterizing its groundwater circulation (Kualiangzi landslide, Southwest China). J. Appl. Geophys. 2016, 131, 151–162. [Google Scholar] [CrossRef]
- Fressard, M.; Maquaire, O.; Thiery, Y.; Davidson, R.; Lissak, C. Multi-method characterisation of an active landslide: Case study in the Pays d’Auge plateau (Normandy, France). Geomorphology 2016, 270, 22–39. [Google Scholar] [CrossRef]
- Ausilio, E.; Zimmaro, P. Landslide characterization using a multidisciplinary approach. Measurement 2017, 104, 294–301. [Google Scholar] [CrossRef]
- Bollot, N.; Pierre, G.; Devos, A.; Lutz, P.; Ortonovi, S. Hydrogeology of a landslide: A case study in the Montagne de Reims (Paris basin, France). Q. J. Eng. Geol. Hydrogeol. 2022, 56, 2021–2041. [Google Scholar] [CrossRef]
- Ortonovi, S.; Bollot, N.; Pierre, G.; Deroin, J.-P. Apport de la télédétection à l’analyse des glissements de terrain du vignoble champenois entre Epernay et Dormans (Marne, France). Géomorphol. Relief Process. Environ. 2021, 2, 147–158. [Google Scholar] [CrossRef]
- Hatrival, J.N. Note Explicative de la Feuille D’epernay au 1/50,000; Carte Géologique de la France, Feuille n°157; BRGM: Orléans, France, 1977. [Google Scholar]
- Guérémy, P.; Marre, A. Une nouvelle méthode de cartographie géomorphologique applicable aux aléas naturels. Travaux L’INSTITUT Géographie Reims 1996, 93–94, 5–40. [Google Scholar] [CrossRef]
- Moeyersons, J.; Van Den Eeckhaut, M.; Nyssen, J.; Gebreyohannes, T.; Van de Wauw, J.; Hofmeister, J.; Poesen, J.; Deckers, J.; Mitiku, H. Mass movement mapping for geomorphological understanding and subtainable development: Tigray, Ethiopia. Catena 2008, 75, 45–54. [Google Scholar] [CrossRef]
- Israil, M.; Pachauri, A.K. Geophysical characterization of a landslide site in the Himalayan foothill region. J. Asian Sci. 2003, 22, 253–263. [Google Scholar] [CrossRef]
- Travelletti, J.; Demand, J.; Jobayedoff, M.; Marillier, F. Mass movement characterization using a reflexion and refraction seismic survey with the sloping local base level concept. Geomorphology 2010, 116, 1–10. [Google Scholar] [CrossRef]
- Grandjean, G.; Gourry, J.C.; Sanchez, O.; Bitri, A.; Garambois, S. Structural study of the Ballandaz landslide (French Alps) using geophysical imagery. J. Appl. Geophys. 2011, 75, 531–542. [Google Scholar] [CrossRef]
- Malehmir, A.; Saleem, M.U.; Bastani, M. High-resolution reflection seismic investigations of quick-clay and associated formations at a landslide scar in southwest Sweden. J. Appl. Geophys. 2013, 92, 84–102. [Google Scholar] [CrossRef]
- Tullen, P.; Turberg, P.; Parriaux, A. Radiomagnetotelluric mapping, groudwater numerical modellign and 18-Oxygen isotopic data as combined tools to determine the hydrogeological system of a landslide prone area. Eng. Geol. 2006, 87, 195–204. [Google Scholar] [CrossRef]
- Jomard, H.; Lebourg, T.; Tric, E. Identification of the gravitational boundary in weathered gneiss by geophysical survey: La Clapière landslide (France). J. Appl. Geophys. 2007, 62, 42–57. [Google Scholar] [CrossRef]
- Jomard, H.; Lebourg, T.; Binet, S.; Tric, E.; Hernandez, M. Characterization of an internal slope movement structure by hydrogeophysical surveying. Terra Nova 2007, 19, 48–57. [Google Scholar] [CrossRef]
- Jongmans, D.; Bièvre, G.; Renalier, F.; Schwartz, S.; Beaurez, N.; Orengo, Y. Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng. Geol. 2009, 109, 45–56. [Google Scholar] [CrossRef]
- Piegari, E.; Cataudella, V.; Di Maio, R.; Milano, L.; Nicodemi, M.; Soldovieri, M.G. Electrical resistivity tomography and statistical analysis in landslide modelling: A conceptual approach. J. Appl. Geophys. 2009, 68, 151–158. [Google Scholar] [CrossRef]
- Tric, E.; Lebourg, T.; Jomard, H.; Le Cossec, J. Study of large-scale deformation induced by gravity on the La Clapière landslide (Saint-Etienne de Tinée, France) using numerical and geophysical approaches. J. Appl. Geophys. 2010, 70, 206–215. [Google Scholar] [CrossRef]
- Hu, S.; Wang, X.; Wang, N.; Yang, D.; Wang, D.; Ma, S.; Song, Z.; Cao, M. Dynamic process, influence, and triggering mechanism of slope remodelling by landslide clusters in the South Jingyang Tableland, China. Catena 2022, 217, 106518. [Google Scholar] [CrossRef]
- de Bari, C.; Lapenna, V.; Perrone, A.; Puglisi, C.; Sdao, F. Digital photogrammetric analysis and electrical resistivity tomography for investigating the Picerno landslide (Basilicata region, southern Italy). Geomorphology 2011, 133, 34–46. [Google Scholar] [CrossRef]
- Le Roux, O.; Jongmans, D.; Kasperski, J.; Schwartz, S.; Potherat, P.; Lebrouc, V.; Lagabrielle, R.; Meric, O. Deep geophysical investigation of the large Séchilienne landslide (Western Alps, France) and calibration with geological data. Eng. Geol. 2011, 120, 18–31. [Google Scholar] [CrossRef]
- Uhlemann, S.; Chambers, J.; Wilkinson, P.; Maurer, H.; Merritt, A.; Meldrum, P.; Kuras, O.; Gunn, D.; Smith, A.; Dijkstra, T. Four-dimensional imaging of moisture dynamics during landslide reactivation. J. Geophys. Res. Earth Surf 2017, 122, 398–418. [Google Scholar] [CrossRef]
- Colangelo, G.; Lapenna, V.; Perrone, A.; Piscitelli, S.; Telesca, L. 2D Self-Potential tomographies for studying groundwater flows in the Varco d’Izzo landslide (Basilicata, southern Italy). Eng. Geol. 2006, 88, 274–286. [Google Scholar] [CrossRef]
- Göktürkler, G.; Balkaya, C.; Erhan, Z. Geophysical investigation of a landslide: The Altindag landslide site, Izmir (western turkey). J. Appl. Geophys. 2008, 65, 84–96. [Google Scholar] [CrossRef]
- Gance, J.; Grandjean, G.; Samyn, K.; Malet, J.-P. Quasi-Newton inversion of seismic first arrivals using source finite bandwidth assumption: Application to subsurface characterization of landslides. J. Appl. Geophys. 2012, 87, 94–106. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Grandjean, G. A multi-method geophysical approach based on fuzzy logic for an integrated interpretation of landslides: Application to French Alps. Near Surface Geophysics 2012, 10, 601–611. [Google Scholar] [CrossRef]
- Marre, A.; Laurain, M.; Guérémy, P. Relations spatiales et temporelles entre les formations superficielles et les movuements de terrain sur le côte de l’Ile-de-France (Champagne): Un moyen de préparer les cartes des aléas. Géologie Fr. 1997, 2, 39–49. [Google Scholar]
- Feugueur, L. L’Yprésien du Bassin de Paris. Essai de Monographie Stratigraphique; Ministère de L’industrie: Paris, France, 1963.
- Gnyawali, K.; Dahal, K.; Talchabhadel, R.; Nirandjan, S. Framework for rainfall-triggered landslide-prone critical infrastructure zonation. Sci. Total Environ. 2023, 872, 162242. [Google Scholar] [CrossRef] [PubMed]
- Nordiana, M.M.; Azwin, I.N.; Nawawi, M.N.M.; Khalil, A.E. Slope failures evaluation and landslides investigation using 2-D resistivity method. NRIAG J. Astron. Geophys. 2018, 7, 84–89. [Google Scholar] [CrossRef]
Geomorphological Context | Number of Springs | % |
---|---|---|
head scarp | 38 | 40.4 |
slide mass | 12 | 12.8 |
toe of landslide | 22 | 23.4 |
rocky slope | 22 | 23.4 |
total | 94 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bollot, N.; Pierre, G.; Grandjean, G.; Fronteau, G.; Devos, A.; Lejeune, O. Internal Structure and Reactivations of a Mass Movement: The Case Study of the Jacotines Landslide (Champagne Vineyards, France). GeoHazards 2023, 4, 183-196. https://doi.org/10.3390/geohazards4020011
Bollot N, Pierre G, Grandjean G, Fronteau G, Devos A, Lejeune O. Internal Structure and Reactivations of a Mass Movement: The Case Study of the Jacotines Landslide (Champagne Vineyards, France). GeoHazards. 2023; 4(2):183-196. https://doi.org/10.3390/geohazards4020011
Chicago/Turabian StyleBollot, Nicolas, Guillaume Pierre, Gilles Grandjean, Gilles Fronteau, Alain Devos, and Olivier Lejeune. 2023. "Internal Structure and Reactivations of a Mass Movement: The Case Study of the Jacotines Landslide (Champagne Vineyards, France)" GeoHazards 4, no. 2: 183-196. https://doi.org/10.3390/geohazards4020011
APA StyleBollot, N., Pierre, G., Grandjean, G., Fronteau, G., Devos, A., & Lejeune, O. (2023). Internal Structure and Reactivations of a Mass Movement: The Case Study of the Jacotines Landslide (Champagne Vineyards, France). GeoHazards, 4(2), 183-196. https://doi.org/10.3390/geohazards4020011