# Accelerating Tsunami Modeling for Evacuation Studies through Modification of the Manning Roughness Values

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Background

## 3. Materials and Methods

## 4. Results

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Geist, E.L. Local Tsunamis and Earthquake Source Parameters. Adv. Geophys.
**1999**, 39, 117–209. [Google Scholar] [CrossRef] - Mori, N.; Satake, K.; Cox, D.; Goda, K.; Catalán, P.A.; Ho, T.C.; Imamura, F.; Tomiczek, T.; Lynett, P.; Miyashita, T.; et al. Giant tsunami monitoring, early warning and hazard assessment. Nat. Rev. Earth Environ.
**2022**, 3, 557–572. [Google Scholar] [CrossRef] - Behrens, J.; Løvholt, F.; Jalayer, F.; Lorito, S.; Salgado-Gálvez, M.A.; Sørensen, M.; Abadie, S.; Aguirre-Ayerbe, I.; Aniel-Quiroga, I.; Babeyko, A.; et al. Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps. Front. Earth Sci.
**2021**, 9, 628772. [Google Scholar] [CrossRef] - Behrens, J.; Dias, F. New Computational Methods in Tsunami Science. Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci.
**2015**, 373, 20140382. [Google Scholar] [CrossRef] [PubMed] - Imamura, F. Review of Tsunami Simulation with a Finite Difference Method. In Long-Wave Runup Models, Proceedings of the International Workshop; World Scientific: Singapore, 1996; pp. 25–42. [Google Scholar] [CrossRef]
- Bricker, J.D.; Gibson, S.; Takagi, H.; Imamura, F. On the need for larger Manning’s roughness coefficients in depth-integrated tsunami inundation models. Coast. Eng. J.
**2015**, 57, 1550005. [Google Scholar] [CrossRef] - Dao, M.H.; Tkalich, P. Tsunami Propagation Modelling: A Sensitivity Study. Nat. Hazards Earth Syst. Sci.
**2007**, 7, 741–754. [Google Scholar] [CrossRef] - Kaiser, G.; Scheele, L.; Kortenhaus, A.; Løvholt, F.; Römer, H.; Leschka, S. The Influence of Land Cover Roughness on the Results of High Resolution Tsunami Inundation Modeling. Nat. Hazards Earth Syst. Sci.
**2011**, 11, 2521–2540. [Google Scholar] [CrossRef] - Goto, K.; Kawana, T.; Imamura, F. Historical and Geological Evidence of Boulders Deposited by Tsunamis, Southern Ryukyu Islands, Japan. Earth-Sci. Rev.
**2010**, 102, 77–99. [Google Scholar] [CrossRef] - Kotani, M.; Imamura, F.; Shuto, N. Tsunami run-up simulation and damage estimation using GIS. Proc. Coast. Eng. JSCE
**1998**, 45, 356–360. [Google Scholar] - Gayer, G.; Leschka, S.; Nöhren, I.; Larsen, O.; Günther, H. Tsunami Inundation Modelling Based on Detailed Roughness Maps of Densely Populated Areas. Nat. Hazards Earth Syst. Sci.
**2010**, 10, 1679–1687. [Google Scholar] [CrossRef] - Muhari, A.; Imamura, F.; Koshimura, S.; Post, J. Examination of Three Practical Run-up Models for Assessing Tsunami Impact on Highly Populated Areas. Nat. Hazards Earth Syst. Sci.
**2011**, 11, 3107–3123. [Google Scholar] [CrossRef] - Yamashita, K.; Suppasri, A.; Oishi, Y.; Imamura, F. Development of a Tsunami Inundation Analysis Model for Urban Areas Using a Porous Body Model. Geosciences
**2018**, 8, 12. [Google Scholar] [CrossRef] - Gibbons, S.J.; Lorito, S.; de la Asunción, M.; Volpe, M.; Selva, J.; Macías, J.; Sánchez-Linares, C.; Brizuela, B.; Vöge, M.; Tonini, R.; et al. The Sensitivity of Tsunami Impact to Earthquake Source Parameters and Manning Friction in High-resolution Inundation Simulations. Front. Earth Sci.
**2022**, 9, 757618. [Google Scholar] [CrossRef] - Petryk, S.; Bosmajian III, G. Analysis of Flow through Vegetation. J. Hydraul. Div.
**1975**, 101, 871–884. [Google Scholar] [CrossRef] - Suppasri, A.; Koshimura, S.; Imamura, F. Developing Tsunami Fragility Curves Based on the Satellite Remote Sensing and the Numerical Modeling of the 2004 Indian Ocean Tsunami in Thailand. Nat. Hazards Earth Syst. Sci.
**2011**, 11, 173–189. [Google Scholar] [CrossRef] - Koshimura, S.; Oie, T.; Yanagisawa, H.; Imamura, F. Developing Fragility Functions for Tsunami Damage Estimation Using Numerical Model and Post-tsunami Data from Banda Aceh, Indonesia. Coast. Eng. J.
**2009**, 51, 243–273. [Google Scholar] [CrossRef] - Gardi, A.; Valencia, N.; Guillande, R.; André, C. Inventory of Uncertainties Associated with the Process of Tsunami Damage Assessment on Buildings (schema Fp6 Ec Co-funded Project). Nat. Hazards Earth Syst. Sci.
**2011**, 11, 883–893. [Google Scholar] [CrossRef] - Tang, L.; Titov, V.V.; Chamberlin, C.D. Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting. J. Geophys. Res.
**2009**, 114, 12025. [Google Scholar] [CrossRef] - Härig, S.; Zamora, N.; Gubler, A.; Rakowsky, N. Systematic comparison of tsunami simulations at the Chilean coast based on different numerical approaches. GeoHazards
**2022**, 3, 345–370. [Google Scholar] [CrossRef] - León, J.; Catalán, P.A.; Gubler, A. Assessment of Top-down Design of Tsunami Evacuation Strategies Based on Drill and Modelled Data. Front. Earth Sci.
**2021**, 9, 744193. [Google Scholar] [CrossRef] - León, J.; Mas, E.; Catalán, P.A.; Moya, L.; Gubler, A.; Koshimura, S.; Cienfuegos, R. Development of calibrated tsunami evacuation models through real-world collected data: The case study of Coquimbo-La Serena, Chile. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 630. [Google Scholar] [CrossRef]
- León, J.; Castro, S.; Mokrani, C.; Gubler, A. Tsunami evacuation analysis in the urban built environment: A multi-scale perspective through two modeling approaches in Viña del Mar, Chile. Coast. Eng. J.
**2020**, 62, 389–404. [Google Scholar] [CrossRef] - Mostafizi, A.; Wang, H.; Cox, D.; Cramer, L.A.; Dong, S. Agent-based tsunami evacuation modeling of unplanned network disruptions for evidence-driven resource allocation and retrofitting strategies. Nat. Hazards
**2017**, 88, 1347–1372. [Google Scholar] [CrossRef] - Wang, H.; Mostafizi, A.; Cramer, L.A.; Cox, D.; Park, H. An agent-based model of a multimodal near-field tsunami evacuation: Decision-making and life safety. Transp. Res. Part Emerg. Technol.
**2016**, 64, 86–100. [Google Scholar] [CrossRef] - Metois, M.; Socquet, A.; Vigny, C.; Carrizo, D.; Peyrat, S.; Delorme, A.; Maureira, E.; Valderas-Bermejo, M.C.; Ortega, I. Revisiting the North Chile Seismic Gap Segmentation Using GPS-derived Interseismic Coupling. Geophys. J. Int.
**2013**, 194, 1283–1294. [Google Scholar] [CrossRef] - Catalán, P.A.; Aránguiz, R.; González, G.; Tomita, T.; Cienfuegos, R.; González, J.; Shrivastava, M.N.; Kumagai, K.; Mokrani, C.; Cortés, P.; et al. The 1 April 2014 Pisagua tsunami: Observations and modeling. Geophys. Res. Lett.
**2015**, 42, 2918–2925. [Google Scholar] [CrossRef] - An, C.; Sepúlveda, I.; Liu, P.L.F. Tsunami Source and Its Validation of the 2014 Iquique, Chile Earthquake. Geophys. Res. Lett.
**2014**, 41, 3988–3994. [Google Scholar] [CrossRef] - Ruiz, S.; Madariaga, R. Historical and Recent Large Megathrust Earthquakes in Chile. Tectonophysics
**2018**, 733, 37–56. [Google Scholar] [CrossRef] - Lomnitz, C. Major Earthquakes of Chile: A Historical Survey, 1535-1960. Seismol. Res. Lett.
**2004**, 75, 368–378. [Google Scholar] [CrossRef] - González, J.; González, G.; Aránguiz, R.; Melgar, D.; Zamora, N.; Shrivastava, M.N.; Das, R.; Catalán, P.A.; Cienfuegos, R. A hybrid deterministic and stochastic approach for tsunami hazard assessment in Iquique, Chile. Nat. Hazards
**2019**, 100, 231–254. [Google Scholar] [CrossRef] - Cortés, P.; Catalán, P.A.; Aránguiz, R.; Bellotti, G. Tsunami and shelf resonance on the northern Chile coast. J. Geophys. Res.
**2017**, 122, 7364–7379. [Google Scholar] [CrossRef] - Simarro, G.; Calvete, D.; Plomaritis, T.A.; Moreno-Noguer, F.; Giannoukakou-Leontsini, I.; Montes, J.; Durán, R. The Influence of Camera Calibration on Nearshore Bathymetry Estimation from UAV Videos. Remote Sens.
**2021**, 13, 150. [Google Scholar] [CrossRef] - Cienfuegos, R.; Catalán, P.A.; Urrutia, A.; Benavente, R.; Aránguiz, R.; González, G. What can we do to forecast tsunami hazards in the near field given large epistemic uncertainty in rapid seismic source inversions? Geophys. Res. Lett.
**2018**, 45, 4944–4955. [Google Scholar] [CrossRef] - Macías, J.; Castro, M.J.; Escalante, C. Performance assessment of the Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Laboratory Data. Coast. Eng.
**2020**, 158, 103667. [Google Scholar] [CrossRef] - Macías, J.; Castro, M.J.; Ortega, S.; Escalante, C.; González-Vida, J.M. Performance Benchmarking of Tsunami-HySEA Model for NTHMP’s Inundation Mapping Activities. Pure Appl. Geophys.
**2017**, 174, 3147–3183. [Google Scholar] [CrossRef] - Lynett, P.J.; Gately, K.; Wilson, R.; Montoya, L.; Arcas, D.; Aytore, B.; Bai, Y.; Bricker, J.D.; Castro, M.J.; Cheung, K.F.; et al. Inter-model Analysis of Tsunami-induced Coastal Currents. Ocean Model.
**2017**, 114, 14–32. [Google Scholar] [CrossRef] - GEBCO Bathymetric Compilation Group 2019. The GEBCO 2019 Grid-A continuous terrain model of the global oceans and land. Liverp. UK Br. Oceanogr. Data Cent. Natl. Oceanogr. Cent. NERC
**2019**. [CrossRef] - Álvarez, G.; Quiroz, M.; León, J.; Cienfuegos, R. Identification and Classification of Urban Micro-vulnerabilities in Tsunami Evacuation Routes for the City of Iquique, Chile. Nat. Hazards Earth Syst. Sci.
**2018**, 18, 2027–2039. [Google Scholar] [CrossRef] - Catalán, P.A.; Gubler, A.; Canas, J.C.; Zuniga, C.Z.; Zelaya, C.; Pizarro, L.; Valdes, C.; Mena, R.; Toledo, E.; Cienfuegos, R. Design and Operational Implementation of the Integrated Tsunami Forecast and Warning System in Chile SIPAT. Coast. Eng. J.
**2020**, 62, 373–388. [Google Scholar] [CrossRef] - Okada, Y. Surface Deformation Due to Shear and Tensile Faults in a Half-space. Bull. Seismol. Soc. Am.
**1985**, 75, 1135–1154. [Google Scholar] [CrossRef] - Aguirre, P.; Vásquez, J.; de la Llera, J.C.; González, J.; González, G. Earthquake Damage Assessment for Deterministic Scenarios in Iquique, Chile. Nat. Hazards
**2018**, 92, 1433–1461. [Google Scholar] [CrossRef] - Davies, G. Tsunami Variability from Uncalibrated Stochastic Earthquake Models: Tests against Deep Ocean Observations 2006–2016. Geophys. J. Int.
**2019**, 218, 1939–1960. [Google Scholar] [CrossRef] - Romano, F.; Piatanesi, A.; Lorito, S.; Tolomei, C.; Atzori, S.; Murphy, S. Optimal time alignment of tide-gauge tsunami waveforms in nonlinear inversions: Application to the 2015 Illapel (Chile) earthquake. Geophys. Res. Lett.
**2016**, 43, 11,226–11,235. 2016GL071310. [Google Scholar] [CrossRef] - Bryson, S.; Epshteyn, Y.; Kurganov, A.; Petrova, G. Well-balanced Positivity Preserving Central-upwind Scheme on Triangular Grids for the Saint-venant System. ESAIM Math. Model. Numer. Anal.
**2011**, 45, 423–446. [Google Scholar] [CrossRef]

**Figure 1.**Location of the area of interest and coverage of the numerical grids. (

**a**) Outermost domain, Level-0; (

**b**) Intermediate domain, Level-1; (

**c**) Time series at gauges of interest; (

**d**–

**f**) Five different Level-2 grids, shown as (

**d**) DSM, (

**e**) DTM, and (

**f**) the difference between DSM and DTM. In (

**d**–

**f**), the difference in color maps is at 30 m elevation. Colored dots denote the location of the inland gauges. These colors are retained in all figures to identify each inland gauge.

**Figure 2.**Inundation extent comparison between the DSM model, including resistant buildings, and a DTM model, on Grid-L3b. (

**a**) Inundation extent and maximum flow depth of the reference, DSM model; (

**b**–

**h**) Difference in flow depth extrema between DSM and DTM-CRM, using the maximum grid resolution, ${R}_{1}$. (

**b**) n = 0.025; (

**c**) n = 0.04; (

**d**) n = 0.06; (

**e**) n = 0.10; (

**f**) n = 0.15; (

**g**) n = 0.20; (

**h**) n = 0.40. Red line denotes the inland limit of the maximum inundation of each DTM-CRM model.

**Figure 3.**Arrival time comparison between the DSM model, including resistant buildings, and a DTM model, on Grid-L3b. (

**a**) Arrival time of the reference, DSM model; (

**b**–

**h**) Difference in arrival time between DSM and DTM-CRM, with maximum grid resolution, ${R}_{1}$. (

**b**) n = 0.025; (

**c**) n = 0.04; (

**d**) n = 0.06; (

**e**) n = 0.10; (

**f**) n = 0.15; (

**g**) n = 0.20; (

**h**) n = 0.40. The red line denotes the inland limit of the maximum inundation of each DTM-CRM model.

**Figure 4.**Time series of flow depth $d\left(t\right)$ (

**a**,

**b**) and velocity (

**c**,

**d**) at inland gauge 3, for all resolutions ${R}_{k}$ (line types) and a range of Manning n values (colors). Circles are the reference model. Panels (

**b**,

**d**) are zoomed in near the first arrival.

**Figure 5.**(

**a**) Comparison of $\Delta {d}_{i,k}\left(t\right)$ (Equation (6)) for all n values and ratios, for inland gauge 3; (

**b**) Value of the G parameter with (red) and without temporal offset (cyan); (

**c**) Comparison of the velocity error for all n values and ratios; (

**d**) Estimated time lag. In all panels, Manning n values increase vertically, and resolutions decrease vertically for each n value. In panels (

**b**–

**d**), symbols also denote the resolution: ∆${R}_{1}$, □${R}_{2}$, ▽${R}_{3}$.

**Figure 6.**Summary statistics for all inland gauges, as function of Manning n values. (

**a**) Maximum difference in flow depth; (

**b**) Difference in arrival time; (

**c**) G parameter; and (

**d**) Estimated time lag. Red, green, blue, and yellow markers denote inland gauges 1, 3, 5, and 7, respectively. Symbols also denote the resolution: ∆${R}_{1}$, □${R}_{2}$, ▽${R}_{3}$.

Id. | Ratios | Maximum Grid Resolution |
---|---|---|

m${}^{2}$/Pixel | ||

${R}_{1}$ | [4 8 8] | 3.5 × 3.51 |

${R}_{2}$ | [4 4 8] | 7.0 × 7.03 |

${R}_{3}$ | [4 4 4] | 14.0 × 14.06 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Cárdenas, G.; Catalán, P.A. Accelerating Tsunami Modeling for Evacuation Studies through Modification of the Manning Roughness Values. *GeoHazards* **2022**, *3*, 492-507.
https://doi.org/10.3390/geohazards3040025

**AMA Style**

Cárdenas G, Catalán PA. Accelerating Tsunami Modeling for Evacuation Studies through Modification of the Manning Roughness Values. *GeoHazards*. 2022; 3(4):492-507.
https://doi.org/10.3390/geohazards3040025

**Chicago/Turabian Style**

Cárdenas, Giovanni, and Patricio A. Catalán. 2022. "Accelerating Tsunami Modeling for Evacuation Studies through Modification of the Manning Roughness Values" *GeoHazards* 3, no. 4: 492-507.
https://doi.org/10.3390/geohazards3040025