Assessment of Flood Hazard in Climatic Extreme Considering Fluvio-Morphic Responses of the Contributing River: Indications from the Brahmaputra-Jamuna’s Braided-Plain
Abstract
:1. Introduction
2. Study Area
3. Methods and Materials
3.1. Hydrological Simulation
3.1.1. Climate Model Selection
3.1.2. Selection of Specific Initializations
3.1.3. The Schematization of the Hydrologic Model
3.1.4. Hydrologic Model Validation
3.2. Hydromorphic Simulation
3.2.1. Hydromorphic Model Validation
3.2.2. Assessment of Hazard
4. Results
4.1. Future Scenarios
4.2. Flood Severity
4.3. Inundation
4.4. Velocity
4.5. Duration
4.6. Sedimentation
4.7. Flood Hazard
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kvočka, D.; Falconer, R.A.; Bray, M. Flood hazard assessment for extreme flood events. Nat. Hazards 2016, 84, 1569–1599. [Google Scholar] [CrossRef] [Green Version]
- Ashmore, P.; Church, M. The Impact of Climate Change on Rivers and River Processes in Canada; Geological Survey of Canada Bulletin: Ottawa, ON, Canada, 2000. [Google Scholar]
- Bindoff, N.L.; Stott, P.A.; Achutarao, K.M.; Allen, M.R.; Gillett, N.; Gutzler, D.; Hansingo, K. Detection and Attribution of Climate Change: From Global to Regional. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Volume 7. [Google Scholar]
- Brakenridge, G.R. Global Active Archive of Large Flood Events. Dartmouth Flood Obs. Univ. Color. 2012. online. Available online: http://floodobservatory.colorado.edu/Archives/index.html (accessed on 2 February 2022).
- Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slayback, D.A. Satellite imaging reveals increased proportion of population exposed to floods. Nature 2021, 596, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Burrel, B.C.; Davar, K.; Hughes, R. A Review of Flood Management Considering the Impacts of Climate Change. Water Int. 2007, 32, 342–359. [Google Scholar] [CrossRef]
- Iglesias, V.; Braswell, A.E.; Rossi, M.W.; Joseph, M.B.; McShane, C.; Cattau, M.; Koontz, M.J.; McGlinchy, J.; Nagy, R.C.; Balch, J.; et al. Risky Development: Increasing Exposure to Natural Hazards in the United States. Earths Futur. 2021, 9, e2020EF001795. [Google Scholar] [CrossRef]
- Allaire, M. Socio-economic impacts of flooding: A review of the empirical literature. Water Secur. 2018, 3, 18–26. [Google Scholar] [CrossRef]
- Merz, B.; Blöschl, G.; Vorogushyn, S.; Dottori, F.; Aerts, J.C.J.H.; Bates, P.; Bertola, M.; Kemter, M.; Kreibich, H.; Lall, U.; et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2021, 2, 592–609. [Google Scholar] [CrossRef]
- IPCC. Climate change 2007—The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: New York, NY, USA, 2007; Volume 59, p. 996. [Google Scholar]
- Dottori, F.; Salamon, P.; Bianchi, A.; Alfieri, L.; Hirpa, F.A.; Feyen, L. Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 2016, 94, 87–102. [Google Scholar] [CrossRef]
- Tingsanchali, T.; Karim, M.F. Flood hazard and risk analysis in the southwest region of Bangladesh. Hydrol. Process. 2005, 19, 2055–2069. [Google Scholar] [CrossRef]
- Chowdhury, J.U.; Karim, M.F. A risk based zoning of storm surge prone area of the Ganges tidal plain. In UNCRD Proceeding Series; United Nations Centre for Regional Development: Nagoya, Japan, 1997; Volume 17, pp. 171–185. [Google Scholar]
- Islam, M.M.; Sado, K. Flood hazard assessment in Bangladesh using NOAA AVHRR data with geographical information system. Hydrol. Process. 2000, 14, 605–620. [Google Scholar] [CrossRef]
- Dewan, A.M.; Islam, M.M.; Kumamoto, T.; Nishigaki, M. Evaluating Flood Hazard for Land-Use Planning in Greater Dhaka of Bangladesh Using Remote Sensing and GIS Techniques. Water Resour. Manag. 2006, 21, 1601–1612. [Google Scholar] [CrossRef]
- Gusyev, M.; Kwak, Y.; Khairul, M.I.; Arifuzzaman, M.B.; Magome, J.; Sawano, H.; Takeuchi, K. Effectiveness of water infrastructure for river flood management—Part 1: Flood hazard assessment using hydrological models in Bangladesh. Proc. Int. Assoc. Hydrol. Sci. 2015, 370, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, S.R.; Al Baky, A. Digital elevation based flood hazard and vulnerability study at various return periods in Sirajganj Sadar Upazila, Bangladesh. Int. J. Disaster Risk Reduct. 2014, 10, 48–58. [Google Scholar] [CrossRef]
- Al Baky, A.; Islam, M.; Paul, S. Flood Hazard, Vulnerability and Risk Assessment for Different Land Use Classes Using a Flow Model. Earth Syst. Environ. 2020, 4, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Khan, S.M.; Islam, A.K.M.S.; Mohammed, K.; Khan, J.U. Climate-induced flood inundation for the Arial Khan River of Bangladesh using open-source SWAT and HEC-RAS model for RCP8.5-SSP5 scenario. SN Appl. Sci. 2021, 3, 648. [Google Scholar] [CrossRef]
- Abadie, L.M.; Jackson, L.P.; de Murieta, E.S.; Jevrejeva, S.; Galarraga, I. Comparing urban coastal flood risk in 136 cities under two alternative sea-level projections: RCP 8.5 and an expert opinion-based high-end scenario. Ocean Coast. Manag. 2020, 193, 105249. [Google Scholar] [CrossRef]
- Shrestha, S.; Lohpaisankrit, W. Flood hazard assessment under climate change scenarios in the Yang River Basin, Thailand. Int. J. Sustain. Built Environ. 2017, 6, 285–298. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, J.; Lu, X.X. GIS-based flood hazard mapping at different administrative scales: A case study in Gangetic West Bengal, India. Singap. J. Trop. Geogr. 2006, 27, 207–220. [Google Scholar] [CrossRef]
- Jakob, M.; Weatherly, H.; Bale, S.; Perkins, A.; MacDonald, B. A Multi-Faceted Debris-Flood Hazard Assessment for Cougar Creek, Alberta, Canada. Hydrology 2017, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Wilford, D.J.; Sakals, M.E.; Innes, J.; Sidle, R.C.; Bergerud, W.A. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 2004, 1, 61–66. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Chapter 11. Changes in Sea Level. Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Parker, G. 1D Sediment Transport Morphodynamics with Applications to Rivers and Turbidity Currents; University of Illinois—Ven Te Chow Hydrosystems Laboratory: Champaign, IL, USA, 2007. [Google Scholar]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Mohammed, K.; Islam, A.K.M.S.; Islam, G.M.T.; Alfieri, L.; Khan, J.U.; Bala, S.K.; Das, M.K. Future Floods in Bangladesh under 1.5 °C, 2 °C, and 4 °C Global Warming Scenarios. J. Hydrol. Eng. 2018, 23, 04018050. [Google Scholar] [CrossRef]
- Haque, S.; Ali, M.; Islam, A.K.M.S.; Khan, J.U. Changes in flow and sediment load of poorly gauged Brahmaputra river basin under an extreme climate scenario. J. Water Clim. Chang. 2021, 12, 937–954. [Google Scholar] [CrossRef]
- Mohammed, K.; Islam, A.K.M.S.; Islam, G.M.T.; Alfieri, L.; Bala, S.K.; Khan, J.U. Impact of High-End Climate Change on Floods and Low Flows of the Brahmaputra River. J. Hydrol. Eng. 2017, 22, 04017041. [Google Scholar] [CrossRef]
- Mohammed, K.; Islam, A.S.; Islam, G.T.; Alfieri, L.; Bala, S.K.; Khan, J.U. Extreme flows and water availability of the Brahmaputra River under 1.5 and 2 °C global warming scenarios. Clim. Chang. 2017, 145, 159–175. [Google Scholar] [CrossRef]
- Islam, A.K.M.S.; Paul, S.; Mohammed, K.; Billah, M.; Fahad, G.R.; Hasan, A.; Islam, G.M.T.; Bala, S.K. Hydrological response to climate change of the Brahmaputra basin using CMIP5 general circulation model ensemble. J. Water Clim. Chang. 2017, 9, 434–448. [Google Scholar] [CrossRef]
- Rahman, M.; Dustegir, M.; Karim, R.; Haque, A.; Nicholls, R.J.; Darby, S.E.; Nakagawa, H.; Hossain, M.; Dunn, F.E.; Akter, M. Recent sediment flux to the Ganges-Brahmaputra-Meghna delta system. Sci. Total Environ. 2018, 643, 1054–1064. [Google Scholar] [CrossRef]
- Han, W.; Meehl, G.A.; Rajagopalan, B.; Fasullo, J.; Hu, A.; Lin, J.; Large, W.G.; Wang, J.-W.; Quan, X.-W.; Trenary, L.L.; et al. Patterns of Indian Ocean sea-level change in a warming climate. Nat. Geosci. 2010, 3, 546–550. [Google Scholar] [CrossRef]
- Rahman, S.; Islam, A.K.M.S.; Saha, P.; Tazkia, A.R.; Krien, Y.; Durand, F.; Testut, L.; Islam, G.M.T.; Bala, S.K. Projected changes of inundation of cyclonic storms in the Ganges–Brahmaputra–Meghna delta of Bangladesh due to SLR by 2100. J. Earth Syst. Sci. 2019, 128, 145. [Google Scholar] [CrossRef] [Green Version]
- Darby, S.E.; Dunn, F.E.; Nicholls, R.J.; Rahman, M.; Riddy, L. A first look at the influence of anthropogenic climate change on the future delivery of fluvial sediment to the Ganges–Brahmaputra–Meghna delta. Environ. Sci. Process. Impacts 2015, 17, 1587–1600. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.; Ali, M.; Islam, Z. Future Streamflow of Brahmaputra River Basin under Synthetic Climate Change Scenarios. J. Hydrol. Eng. 2016, 21, 05016027. [Google Scholar] [CrossRef]
- Ashworth, P.J.; Best, J.L.; Roden, J.E.; Bristow, C.S.; Klaassen, G.J. Morphological evolution and dynamics of a large, sand braid-bar, Jamuna River, Bangladesh. Sedimentology 2000, 47, 533–555. [Google Scholar] [CrossRef]
- Mondal, M.S.; Rahman, M.A.; Mukherjee, N.; Huq, H.; Rahman, R. Hydro-climatic hazards for crops and cropping system in the chars of the Jamuna River and potential adaptation options. Nat. Hazards 2015, 76, 1431–1455. [Google Scholar] [CrossRef]
- FAO. Ganges-Brahmaputra-Meghna River Basin: Irrigation in Southern and Eastern Asia in Figures; AQUASTAT: Rome, Italy, 2012; pp. 1–17. [Google Scholar]
- BBS. (Bangladesh Bureau of Statistics) Statistical Yearbook of Bangladesh; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2011. [Google Scholar]
- Hossain, S.; Cloke, H.; Ficchì, A.; Turner, A.; Stephens, E. Hydrometeorological drivers of the 2017 flood in the Brahmaputra basin in Bangladesh. Hydrol. Earth Syst. Sci. Discuss. 2021, preprint. [Google Scholar] [CrossRef] [Green Version]
- Hofer, T.; Messerli, B. Floods in Bangladesh: History, Dynamics and Rethinking the Role of the Himalayas. Ecology 2006, 29, 254–283. [Google Scholar]
- Grumbine, R.E.; Pandit, M.K. Threats from India’s Himalaya Dams. Science 2013, 339, 36–37. [Google Scholar] [CrossRef]
- IWFM-NRP. National Resilience Programme (NRP) Developing Institutional Framework of Flood Preparedness Programme Draft Final Report; National Resilience Programme (NRP), Department of Disaster Management: Dhaka, Bangladesh, 2021. [Google Scholar]
- Shampa; Hasegawa, Y.; Nakagawa, H.; Takebayashi, H.; Kawaike, K. Defining Appropriate Boundary Conditions of Hydrodynamic Model from Time Series Data Discharge. In Annu. Disaster Prev. Res. Inst. Kyoto Univ.; Kyoto University: Kyoto, Japan, 2018; pp. 647–654. [Google Scholar]
- Kennedy, E.J. Discharge Ratings at Gaging Stations. In Techniques of Water-Resource Investigations of the United States Geological Survey; no. A10; US Geological Survey: Alexandria, VA, USA, 1984; pp. 319–320. [Google Scholar]
- Taylor, K.E.; Balaji, V.; Hankin, S.; Juckes, M.; Lawrence, B. CMIP5 and AR5 Data Reference Syntax (DRS). Technical Report. 2010, pp. 1–13. Available online: http://is.gd/895GZ (accessed on 26 August 2022).
- Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived From Spaceborne Elevation Data. Eos Trans. Am. Geophys. Union 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Defourny, P.; Bicheron, P.; Brockmann, C.; Bontemps, S.; van Bogaert, E.; Vancutsem, C.; Pekel, J.-F.; Huc, M.; Henry, C.; Ranera, F.; et al. The first 300 m global land cover map for 2005 using ENVISAT MERIS time series: A product of the GlobCover system. In Proceedings of the The 33rd International Symposium on Remote Sensing of Environment, Stresa, Italy, 4–8 May 2009; pp. 205–208. [Google Scholar]
- FAO. FAO-UNESCO Soil Map of the World, 1:5,000,000; UNESCO: Paris, France, 1974. [Google Scholar]
- Sheffield, J.; Goteti, G.; Wood, E. Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef] [Green Version]
- Shampa; Hasegawa, Y.; Nakagawa, H.; Takebayashi, H.; Kawaike, K. Dynamics of sand bars in braided river: A case study of Brahmaputra-Jamuna river dynamics of sand bars in braided river: A case study of brahmaputra-jamuna river. J. Jpn. Soc. Nat. Disaster Sci. 2017, 36, 121–135. Available online: https://www.jsnds.org/ssk/ssk_36_s_123.pdf (accessed on 2 February 2022).
- Shampa. Hydro-Morphological Study of Braided River with Permeable Bank Protection Structure. Ph.D. Thesis, Kyoto University, Kyoto, Japan, March 2019; p. 162. [Google Scholar]
- Lesser, G.; Roelvink, J.; van Kester, J.; Stelling, G. Development and validation of a three-dimensional morphological model. Coast. Eng. 2004, 51, 883–915. [Google Scholar] [CrossRef]
- Jeong, D.H.; Ziemkiewicz, C.; Fisher, B.; Ribarsky, W.; Chang, R. iPCA: An Interactive System for PCA-based Visual Analytics. Comput. Graph. Forum 2009, 28, 767–774. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Pińskwar, I.; Brakenridge, G.R. Large floods in Europe, 1985–2009. Hydrol. Sci. J. 2013, 58, 1–7. [Google Scholar] [CrossRef]
- IWFM-NRP. Community Level Risk Maps: Progress Report 2; National Resilience Programme (NRP), Department of Disaster Management, Government of the People’s Republic of Bangladesh: Dhaka, Bangladesh, 2020.
- Ashworth, P.J.; Best, J.L.; Jones, M. Relationship between sediment supply and avulsion frequency in braided rivers. Geology 2004, 32, 21. [Google Scholar] [CrossRef]
- FFWC. 2020 Annual Flood Report of FFWC. 2020. Available online: www.ffwc.gov.bd (accessed on 26 August 2022).
- Sarker, M.H.; Huque, I.; Alam, M.; Koudstaal, R. Rivers, chars and char dwellers of Bangladesh. Int. J. River Basin Manag. 2003, 1, 61–80. [Google Scholar] [CrossRef]
- Gusain, A.; Mohanty, M.; Ghosh, S.; Chatterjee, C.; Karmakar, S. Capturing transformation of flood hazard over a large River Basin under changing climate using a top-down approach. Sci. Total Environ. 2020, 726, 138600. [Google Scholar] [CrossRef]
- Ozaki, M. Disaster Risk Financing in Bangladesh. ADB South Asia Working Paper Series No. 46. 2016. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2941319 (accessed on 26 August 2022). [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Alexander, L.V.; Allen, S.K.; Bindoff, N.L.; Bréon, F.M.; Church, J.A.; Cubasch, U.; Emore, S.; et al. Technical Summary. In Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 31–116. [Google Scholar] [CrossRef]
- Shrestha, S.; Imbulana, N.; Piman, T.; Chonwattana, S.; Ninsawat, S.; Babur, M. Multimodelling approach to the assessment of climate change impacts on hydrology and river morphology in the Chindwin River Basin, Myanmar. CATENA 2020, 188, 104464. [Google Scholar] [CrossRef]
- Slater, L.J.; Singer, M.B.; Kirchner, J.W. Hydrologic versus geomorphic drivers of trends in flood hazard. Geophys. Res. Lett. 2015, 42, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Ferdous, R.; Wesselink, A.; Brandimarte, L.; Di Baldassarre, G.; Rahman, M. The levee effect along the Jamuna River in Bangladesh. Water Int. 2019, 44, 496–519. [Google Scholar] [CrossRef]
- Dunn, F.E.; Nicholls, R.J.; Darby, S.E.; Cohen, S.; Zarfl, C.; Fekete, B.M. Projections of historical and 21st century fluvial sediment delivery to the Ganges-Brahmaputra-Meghna, Mahanadi, and Volta deltas. Sci. Total Environ. 2018, 642, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Koutroulis, A.G.; Papadimitriou, L.V.; Grillakis, M.G.; Tsanis, I.K.; Wyser, K.; Caesar, J.; Betts, R.A. Simulating hydrological impacts under climate change: Implications from methodological differences of a Pan European Assessment. Water 2018, 10, 1331. [Google Scholar] [CrossRef] [Green Version]
- Hirpa, F.A.; Alfieri, L.; Lees, T.; Peng, J.; Dyer, E.; Dadson, S.J. Streamflow response to climate change in the Greater Horn of Africa. Clim. Chang. 2019, 156, 341–363. [Google Scholar] [CrossRef]
- Fahad, M.G.R.; Islam, A.K.M.S.; Nazari, R.; Hasan, M.A.; Islam, G.M.T.; Bala, S.K. Regional changes of precipitation and temperature over Bangladesh using bias-corrected multi-model ensemble projections considering high-emission pathways. Int. J. Climatol. 2018, 38, 1634–1648. [Google Scholar] [CrossRef]
- Cheung, H.-N.; Keenlyside, N.; Koenigk, T.; Yang, S.; Tian, T.; Xu, Z.; Gao, Y.; Ogawa, F.; Omrani, N.o.; Qiao, S.; et al. Assessing the influence of sea surface temperature and arctic sea ice cover on the uncertainty in the boreal winter future climate projections. Clim. Dyn. 2022, 59, 433–454. [Google Scholar] [CrossRef]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earths Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Hazeleger, W.; Wang, X.; Severijns, C.; Ştefănescu, S.; Bintanja, R.; Sterl, A.; Wyser, K.; Semmler, T.; Yang, S.; van den Hurk, B.; et al. EC-Earth V2.2: Description and validation of a new seamless earth system prediction model. Clim. Dyn. 2012, 39, 2611–2629. [Google Scholar] [CrossRef]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction—The ISI-MIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Kabir, M.R.; Ahmed, N. Bed Shear Stress for Sediment Transportation in the River Jamuna. J. Civ. Eng. Inst. Eng. Bangladesh 1996, 24, 55–68. [Google Scholar]
- Van Rijn, L.C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas; Aqua Publications: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Exner, F.M. On the interaction between water and sediment in rivers. Akad. Wiss. Wien Math. Naturwiss. Klasse 1925, 134, 165–204. [Google Scholar]
- Lesser, G.R.; van Kester, J.; Walstra, D.J.R.; Roelvink, J.A. Three-dimensional morphological modelling in Delft3D-FLOW. SASME B. Abstr. 2000, 1–5. [Google Scholar]
- Roelvink, D.; Lesser, G.; van der Wegen, M. Evaluation of the Long Term Impacts of an Infiltration BMP. In Proceedings of the 7th International Conference on Hydroscience and Engineering College of Engineering, Philadelphia, PA, USA, 10–13 September 2006; pp. 1–6. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
Cases | Condition | Timeline | Criteria | |||
---|---|---|---|---|---|---|
Flow (Upstream Boundary Condition) | Source | Water Level (WL) (Downstream Boundary Condition) | Source | |||
Average condition | Base | 1956–2016 | Average flow condition (return period- 2.33 years) | Observed time series data | WL for Average flooding condition (return period- 2.33 years) | Observed time series data (IPCC 2014) |
RCP 8.5 | Moderate | Near-future (2020s) | 90th percentile of daily flow considering years 2006–2035 | SWAT model | WL + Projected SLR where SLR = 0.17 m | IPCC AR5 report |
Mid-Century (2050s) | 90th percentile of daily flow considering years 2036–2065 | SLR = 0.38 m | ||||
End-Century (2080s) | 90th percentile of daily flow considering years 2066–2095 | SLR = 0.82 m | ||||
Driest | Near-future (2020s) | 90th percentile of daily flow considering years 2006–2035 | SLR = 0.17 m | |||
Mid-Century (2050s) | 90th percentile of daily flow considering years 2036–2065 | SLR = 0.38 m | ||||
End-Century (2080s) | 90th percentile of daily flow considering years 2066–2095 | SLR = 0.82 m | ||||
Wettest | Near-future (2020s) | 90th percentile of daily flow considering years 2006–2035 | SLR = 0.17 m | |||
Mid-Century (2050s) | 90th percentile of daily flow considering years 2036–2065 | SLR = 0.38 m | ||||
End-Century (2080s) | 90th percentile of daily flow considering years 2066–2095 | SLR = 0.82 m |
GCM | Enforcing Models by SST and SIC | Ensemble Members | % Increase in 2020s (2006–2035) Compared to Baseline (1976–2005) | % Increase in 2050s (2035–2065) Compared to Base-Line (1976–2005) | % Increase in 2080s (2066–2095) Compared to Base-Line (1976–2005) | Remarks |
---|---|---|---|---|---|---|
EC-EARTH3-HR | IPSL-CM5A-LR | R2i1p1 | 3.1 | 7.4 | 12.8 | Driest |
GFDL-ESM2M | R4i1p1 | 2.1 | 13.6 | 15.0 | ||
HadGEM2-ES | R5i1p1 | 4.5 | 15.0 | 19.6 | ||
EC-EARTH | R1i1p1 | 3.6 | 13.6 | 32.8 | Moderate | |
GISS-E2-H | R3i1p1 | 6.6 | 15.9 | 35.1 | ||
IPSL-CM5A-LR | R6i1p1 | 8.2 | 11.2 | 35.2 | ||
HadCM3/abuig (Amazon dieback) | R7i1p1 | 8.2 | 19.9 | 37.0 | Wettest |
Weights | Value |
---|---|
Depth, | 0.29 |
Velocity, | 0.27 |
Duration, | 0.32 |
Sedimentation, | 0.12 |
Depth (m) | Duration (Days) | Velocity (m/s) | Sedimentation (m) | Hazard Ranking | Hazard Zone | Definition of the Hazard Zone |
---|---|---|---|---|---|---|
<1 | <13 | < 0.58 | 1 to 2.7 | 0 | Very low | Causalities and property damage is expected to be the lowest |
1 to 2 | 13 to 45 | 0.58 to 0.62 | 2.7 to 2.8 | 1 | Low | Causalities and property damage is expected to be very low |
2 to 3.5 | 45 to 70 | 0.62 to 0.67 | 2.8 to 2.9 | 2 | Medium | Causalities and property damage is expected to be relatively higher |
3.5 to 4.5 | 70 to 100 | 0.67 to 0.8 | 2.9 to 3 | 3 | High | Property damage is extensive, and the likelihood of causalities is high. |
>4.5 | >100 | >0.8 | >3 | 4 | Very high | At all levels, severe damages are expected |
Condition | Scenarios | Global Mean Sea Level Rise (m) | Base Level Adjustment at Aricha (m) |
---|---|---|---|
Sea level rise RCP 8.5 | 2020s | 0.17 | 0.16 |
2050s | 0.38 | 0.37 | |
2080s | 0.82 | 0.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shampa; Roy, B.; Hussain, M.M.; Islam, A.K.M.S.; Rahman, M.A.; Mohammed, K. Assessment of Flood Hazard in Climatic Extreme Considering Fluvio-Morphic Responses of the Contributing River: Indications from the Brahmaputra-Jamuna’s Braided-Plain. GeoHazards 2022, 3, 465-491. https://doi.org/10.3390/geohazards3040024
Shampa, Roy B, Hussain MM, Islam AKMS, Rahman MA, Mohammed K. Assessment of Flood Hazard in Climatic Extreme Considering Fluvio-Morphic Responses of the Contributing River: Indications from the Brahmaputra-Jamuna’s Braided-Plain. GeoHazards. 2022; 3(4):465-491. https://doi.org/10.3390/geohazards3040024
Chicago/Turabian StyleShampa, Binata Roy, Md. Manjurul Hussain, A. K. M. Saiful Islam, Md. Ashiqur Rahman, and Khaled Mohammed. 2022. "Assessment of Flood Hazard in Climatic Extreme Considering Fluvio-Morphic Responses of the Contributing River: Indications from the Brahmaputra-Jamuna’s Braided-Plain" GeoHazards 3, no. 4: 465-491. https://doi.org/10.3390/geohazards3040024
APA StyleShampa, Roy, B., Hussain, M. M., Islam, A. K. M. S., Rahman, M. A., & Mohammed, K. (2022). Assessment of Flood Hazard in Climatic Extreme Considering Fluvio-Morphic Responses of the Contributing River: Indications from the Brahmaputra-Jamuna’s Braided-Plain. GeoHazards, 3(4), 465-491. https://doi.org/10.3390/geohazards3040024