Seismic Liquefaction Risk Assessment of Critical Facilities in Kathmandu Valley, Nepal
Abstract
:1. Introduction
2. Earthquake History and Scenario
3. Study Area
4. Critical Facilities
4.1. Road Network
4.2. Airport
4.3. Health Facility
4.4. School and College
5. SPT-Based Liquefaction Assessment
Liquefaction Potential Index (LPI)
6. Results and Discussion
6.1. Road Network
6.2. Airport
6.3. Health Facility
6.4. School and College
7. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bilham, R.; Bodin, P.; Jackson, M. Entertaining a great earthquake in western Nepal: Historic inactivity and geodetic tests for the present state of strain. J. Nep. Geol. Soc. 1995, 11, 73–78. [Google Scholar]
- Nepal National Building Code (NBC 105), Seismic Design of Buildings in Nepal; Ministry of Physical Planning and Works: Kathmandu, Nepal, 1994.
- Rana, B.S.J.B. Nepal Ko Maha Bhukampa (Great Earthquake of Nepal), 2nd ed.; Jorganesh Press: Kathmandu, Nepal, 1935. [Google Scholar]
- Hashash, Y.; Tiwari, B.; Moss, R.E.; Asimaki, D.; Clahan, K.B.; Kieffer, D.S.; Dreger, D.S.; Macdonald, A.; Madugo, C.M.; Mason, H.B. Geotechnical Field Reconnaissance: Gorkha (Nepal) Earthquake of 25 April 2015 and Related Shaking Sequence. Geotechnical Extreme Events Reconnaissance (GEER) Association Report No. GEER-040. 2015. Available online: http://www.geerassociation.org/index.php/component/geer_reports/?view=geerreports&layout=build&id=26 (accessed on 3 March 2018).
- Okamura, M.; Bhandary, N.P.; Mori, S.; Marasini, N.; Hazarika, H. Report on a reconnaissance survey of damage in Kathmandu caused by the 2015 Gorkha Nepal earthquake. Soils Found. 2015, 55, 1015–1029. [Google Scholar] [CrossRef] [Green Version]
- Subedi, M.; Sharma, K.; Acharya, I.P.; Adhikari, K. Liquefaction of Soil in Kathmandu Valley from the 2015 Gorkha, Nepal, Earthquake. Nepal Eng. Assoc. Tech. J. Spec. Issue Gorkha Earthq. 2015, 2015, 108–115. [Google Scholar]
- Gautam, D.; De Magistris, F.S.; Fabbrocino, G. Soil liquefaction in Kathmandu valley due to 25 April 2015 Gorkha, Nepal earthquake. Soil Dyn. Earthq. Eng. 2017, 97, 37–47. [Google Scholar] [CrossRef]
- Sharma, K.; Subedi, M.; Parajuli, R.R.; Pokharel, B. Effects of surface geology and topography on the damage severity during the 2015 Nepal Gorkha earthquake. Lowl. Technol. Int. 2017, 18, 269–282. [Google Scholar]
- Sharma, K.; Deng, L. Reconnaissance Report on Geotechnical Engineering Aspect of the 2015 Gorkha, Nepal, Earthquake. J. Earthq. Eng. 2019, 23, 512–537. [Google Scholar] [CrossRef]
- Chiaro, G.; Kiyota, T.; Pokhrel, R.M.; Goda, K.; Katagiri, T.; Sharma, K. Reconnaissance report on geotechnical and structural damage caused by the 2015 Gorkha Earthquake, Nepal. Soils Found. 2015, 55, 1030–1043. [Google Scholar] [CrossRef] [Green Version]
- Egoda, K.; Ekiyota, T.; Epokhrel, R.M.; Chiaro, G.; Ekatagiri, T.; Esharma, K.; Ewilkinson, S. The 2015 Gorkha Nepal Earthquake: Insights from Earthquake Damage Survey. Front. Built Environ. 2015, 1. [Google Scholar] [CrossRef]
- Sharma, K.; Deng, L.; Noguez, C.C. Field investigation on the performance of building structures during the April 25, 2015, Gorkha earthquake in Nepal. Eng. Struct. 2016, 121, 61–74. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency (JICA). The Study of Earthquake Disaster Mitigation in the Kathmandu Valley, Kingdom of Nepal; Final Report, I–IV; JICA: Tokyo, Japan, 2002.
- Shrestha, S.; Semkuyu, D.J.; Pandey, V.P. Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal. Sci. Total. Environ. 2016, 556, 23–35. [Google Scholar] [CrossRef]
- Lamichhane, S.; Shakya, N.M. Shallow aquifer groundwater dynamics due to land use/cover change in highly urbanized basin: The case of Kathmandu Valley. J. Hydrol. Reg. Stud. 2020, 30, 100707. [Google Scholar] [CrossRef]
- Prajapati, R.; Upadhyay, S.; Talchabhadel, R.; Thapa, B.R.; Ertis, B.; Silwal, P.; Davids, J.C. Investigating the nexus of groundwater levels, rainfall and land-use in the Kathmandu Valley, Nepal. Groundw. Sustain. Dev. 2021, 14, 100584. [Google Scholar] [CrossRef]
- Orense, R.P.; Hickman, N.A.; Hill, B.T.; Pender, M.J. Spatial evaluation of liquefaction potential in Christchurch following the 2010/2011 Canterbury earthquakes. Int. J. Geotech. Eng. 2014, 8, 420–425. [Google Scholar] [CrossRef]
- Jradi, L.; Dupla, J.-C.; El Dine, B.S.; Canou, J. Effect of fine particles on cyclic liquefaction resistance of sands. Int. J. Geotech. Eng. 2020, 14, 860–875. [Google Scholar] [CrossRef]
- Japan National Committee on Earthquake Engineering (JNC). Niigata Earthquake of 1964. In Proceedings of the Third World Conference on Earthquake Engineering 1965, Auckland and Wellington, New Zealand, 22 January–1 February 1965; Volume 3, pp. 78–109. [Google Scholar]
- Shengcong, F.; Tatsuoka, F. Soil Liquefaction during Haicheng and Tangshan Earthquake in China; a Review. Soils Found. 1984, 24, 11–29. [Google Scholar] [CrossRef] [Green Version]
- Adalier, K.; Aydingun, O. Liquefaction during the June 27, 1998 Adana-Ceyhan (Turkey) Earthquake. Geotech. Geol. Eng. 2000, 18, 155–174. [Google Scholar] [CrossRef]
- Rajendran, C.P.; Sanwal, J.; John, B.; Anandasabari, K.; Rajendran, K.; Kumar, P.; Jaiswal, M.; Chopra, S. Footprints of an elusive mid-14th century earthquake in the central Himalaya: Consilience of evidence from Nepal and India. Geol. J. 2019, 54, 2829–2846. [Google Scholar] [CrossRef]
- Ayothiraman, R.; Kanth, S.T.G.R.; Sreelatha, S. Evaluation of liquefaction potential of Guwahati: Gateway city to Northeastern India. Nat. Hazards 2012, 63, 449–460. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Hyodo, M.; Goda, K.; Tazoh, T.; Taylor, C. Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake. Soil Dyn. Earthq. Eng. 2011, 31, 1618–1628. [Google Scholar] [CrossRef]
- Ishihara, K.; Araki, K.; Bradley, B. Characteristics of Liquefaction-Induced Damage in the 2011 Great East Japan Earthquake. In Proceedings of the International Conference on Geotechnics for Sustainable Development (Geotec), Hanoi, Vietnam, 6–7 October 2011. [Google Scholar]
- Yasuda, S.; Towhata, I.; Ishii, I.; Sato, S.; Uchimura, T. Liquefaction-induced damage to structures during the 2011 great east japan earthquake. J. JSCE 2013, 1, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Cubrinovski, M.; Bray, J.D.; Taylor, M.; Giorgini, S.; Bradley, B.; Wotherspoon, L.; Zupan, J. Soil Liquefaction Effects in the Central Business District during the February 2011 Christchurch Earthquake. Seism. Res. Lett. 2011, 82, 893–904. [Google Scholar] [CrossRef]
- Sassa, S.; Takagawa, T. Liquefied gravity flow-induced tsunami: First evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters. Landslides 2018, 16, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Toprak, S.; Holzer, T.L. Liquefaction Potential Index: Field Assessment. J. Geotech. Geoenviron. Eng. 2003, 129, 315–322. [Google Scholar] [CrossRef]
- Sonmez, H. Modification of the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol, Turkey). Environ. Earth Sci. 2003, 44, 862–871. [Google Scholar] [CrossRef]
- Tang, A.; Kwasinski, A.; Eidinger, J.; Foster, C.; Anderson, P. Telecommunication Systems’ Performance: Christchurch Earthquakes. Earthq. Spectra 2014, 30, 231–252. [Google Scholar] [CrossRef]
- Mian, J.; Kontoe, S.; Free, M. Assessing and managing the risk of earthquake-induced liquefaction to civil infrastructure. In Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems; Woodhead Publishing: Sawston, UK, 2013; pp. 113–138. [Google Scholar] [CrossRef]
- Maurer, B.; Green, R.; Cubrinovski, M.; Bradley, B. Fines-content effects on liquefaction hazard evaluation for infrastructure in Christchurch, New Zealand. Soil Dyn. Earthq. Eng. 2015, 76, 58–68. [Google Scholar] [CrossRef]
- Meslem, A.; Iversen, H.; Iranpour, K.; Lang, D. A computational platform to assess liquefaction-induced loss at critical infrastructures scale. Bull. Earthq. Eng. 2021, 1–32. [Google Scholar] [CrossRef]
- Phule, R.R.; Choudhury, D. Assessing and Mapping Seismic Liquefaction Hazard, Vulnerability, and Risk of the Transportation Infrastructure of Mumbai City, India. In Geotechnical Earthquake Engineering and Soil Dynamics V: Seismic Hazard Analysis, Earthquake Ground Motions, and Regional-Scale Assessment; Geotechnical Special Publication No. GSP 291; ASCE: Austin, TX, USA, 2018; pp. 658–666. [Google Scholar] [CrossRef]
- D’Apuzzo, M.; Evangelisti, A.; Modoni, G.; Spacagna, R.-L.; Paolella, L.; Santilli, D.; Nicolosi, V. Simplified Approach for Liquefaction Risk Assessment of Transportation Systems: Preliminary Outcomes. In Proceedings of the International Conference on Computational Science and Its Applications, Cagliari, Italy, 1–4 July 2020; pp. 130–145. [Google Scholar] [CrossRef]
- Paolella, L.; Spacagna, R.L.; Chiaro, G.; Modoni, G. A simplified vulnerability model for the extensive liquefaction risk assessment of buildings. Bull. Earthq. Eng. 2020, 1–29. [Google Scholar] [CrossRef]
- Mosavat, N.; Oh, D.E.; Chai, D.G. Liquefaction Risk Potential of Road Foundation in the Gold Coast Region, Australia. Electron. J. Geotech. Eng. 2013, 14, 1493–1504. [Google Scholar]
- Coelho, P.; Costa, A. Identification and characterization of liquefaction risks for highspeed railways in Portugal. In Geotechnical Safety and Risk, Proceedings of the 2nd International Symposium on Geotechnical Safety and Risk, Gifu, Japan, 11–12 June 2009; Honjo, Y., Hara, T., Suzuki, M., Zhang, F., Eds.; CRC Press-Taylor and Francis Group: Gifu, Japan, 2009. [Google Scholar]
- Van Ballegooy, S.; Malan, P.; Lacrosse, V.; Jacka, M.E.; Cubrinovski, M.; Bray, J.D.; O’Rourke, T.D.; Crawford, S.A.; Cowan, H. Assessment of Liquefaction-Induced Land Damage for Residential Christchurch. Earthq. Spectra 2014, 30, 31–55. [Google Scholar] [CrossRef]
- Sakai, H. Stratigraphic division and sedimentary facies of the Kathmandu Basin sediments. J. Nep. Geol. Soc. 2001, 25, 19–32. [Google Scholar]
- Subedi, M.; Sharma, K.; Upadhayay, B.; Poudel, R.K.; Khadka, P. Soil liquefaction potential in Kathmandu Valley. Int. J. Lsld. Environ. 2013, 1, 91–92. [Google Scholar]
- Sajan, K.C.; Bhochhibhoya, S.; Adhikari, P.; Adhikari, P.; Gautam, D. Probabilistic seismic liquefaction hazard assessment of Kathmandu valley, Nepal. Geomat. Nat. Hazards Risk 2020, 11, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Sapkota, S.N.; Bollinger, L.; Klinger, Y.; Tapponnier, P.; Gaudemer, Y.; Tiwari, D.R. Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat. Geosci. 2013, 6, 71–76. [Google Scholar] [CrossRef]
- Chitrakar, G.R.; Pandey, M.R. Historical earthquakes of Nepal. Bull. Geol. Soc. Nepal 1986, 4, 7–8. [Google Scholar]
- Bilham, R.; Gaur, V.K.; Molnar, P. Himalayan seismic hazard. Science 2001, 293, 1442–1444. [Google Scholar] [CrossRef] [Green Version]
- Ram, T.D.; Wang, G. Probabilistic seismic hazard analysis in Nepal. Earthq. Eng. Eng. Vib. 2013, 12, 577–586. [Google Scholar] [CrossRef]
- Sharma, K.; Deng, L.; Khadka, D. Reconnaissance of liquefaction case studies in 2015 Gorkha (Nepal) earthquake and assessment of liquefaction susceptibility. Int. J. Geotech. Eng. 2019, 13, 326–338. [Google Scholar] [CrossRef]
- Nepal Road Standard (NRS); Ministry of Physical Infrastructure and Transport, Department of Roads: Kathmandu, Nepal, 2013.
- Idriss, I.M.; Boulanger, R.W. Soil Liquefaction during Earthquakes; Earthquake Engineering Research Institute: Oakland, CA, USA, 2008. [Google Scholar]
- Seed, H.B.; Tokimatsu, K.; Harder, L.F.; Chung, R.M. Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations. J. Geotech. Eng. 1985, 111, 1425–1445. [Google Scholar] [CrossRef]
- Robertson, P.K.; Fear, C.E. Cyclic liquefaction and its evaluation based on the SPT and CPT. In Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Salt Lake City, UT, USA, 31 December 1997; pp. 41–87. [Google Scholar]
- Cetin, K.O.; Seed, R.B.; Der Kiureghian, A.; Tokimatsu, K.; Harder, L.F.; Kayen, R.E.; Moss, R.E.S. Standard Penetration Test-Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential. J. Geotech. Geoenviron. Eng. 2004, 130, 1314–1340. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.E.; Seed, R.B.; Kayen, R.E.; Stewart, J.P.; Der Kiureghian, A.; Cetin, K.O. CPT-Based Probabilistic and Deterministic Assessment of In Situ Seismic Soil Liquefaction Potential. J. Geotech. Geoenviron. Eng. 2006, 132, 1032–1051. [Google Scholar] [CrossRef] [Green Version]
- Kayen, R.E.; Moss, R.E.S.; Thompson, E.; Seed, R.B.; Cetin, K.O.; Der Kiureghian, A.; Tanaka, Y.; Tokimatsu, K. Shear-Wave Velocity–Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential. J. Geotech. Geoenviron. Eng. 2013, 139, 407–419. [Google Scholar] [CrossRef] [Green Version]
- Cetin, K.O.; Seed, R.B.; Kayen, R.E.; Moss, R.E.; Bilge, H.T.; Ilgac, M.; Chowdhury, K. SPT-based probabilistic and deterministic assessment of seismic soil liquefaction triggering hazard. Soil Dyn. Earthq. Eng. 2018, 115, 698–709. [Google Scholar] [CrossRef]
- Cetin, K.O.; Seed, R.B.; Kayen, R.E.; Moss, R.E.; Bilge, H.T.; Ilgac, M.; Chowdhury, K. Examination of differences between three SPT-based seismic soil liquefaction triggering relationships. Soil Dyn. Earthq. Eng. 2018, 113, 75–86. [Google Scholar] [CrossRef]
- Cetin, K.O.; Bilge, H.T.; Wu, J.; Kammerer, A.M.; Seed, R.B. Probabilistic Model for the Assessment of Cyclically Induced Reconsolidation (Volumetric) Settlements. J. Geotech. Geoenviron. Eng. 2009, 135, 387–398. [Google Scholar] [CrossRef]
- Iwasaki, T.; Tokida, K.I.; Tatsuoka, F.; Watanabe, S.; Yasuda, S.; Sato, H. Microzonation for soil liquefaction potential using simplified methods. In Proceedings of the 3rd International Conference on Microzonation, Seattle, WA, USA, 28 June–1 July 1982; Volume 3, pp. 1310–1330. [Google Scholar]
Depth (m) | Corrected SPT-N Value | Soil Saturation | FC (%) | σvc (kPa) | σ’vc (kPa) | rd | CSR | MSF for Sand | Kσ * | CRR for M = 7.5 and σvc’ = 1 atm | CRR | FS | LPI |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.5 | 11.90 | Unsaturated | 7 | 27.00 | 27.00 | 1.00 | 0.19 | 0.88 | 1.10 | 0.13 | n.a. | 0.00 | |
3 | 20.90 | Unsaturated | 7 | 54.00 | 54.00 | 0.99 | 0.19 | 0.88 | 1.09 | 0.22 | n.a. | 0.00 | |
4.5 | 27.14 | Unsaturated | 7 | 81.00 | 81.00 | 0.98 | 0.19 | 0.88 | 1.04 | 0.36 | n.a. | 0.00 | |
6 | 13.43 | Saturated | 7 | 110.25 | 95.54 | 0.97 | 0.22 | 0.88 | 1.01 | 0.14 | 0.13 | 0.58 | 4.36 |
7.5 | 18.27 | Saturated | 9 | 139.50 | 110.07 | 0.95 | 0.24 | 0.88 | 0.99 | 0.19 | 0.17 | 0.71 | 2.69 |
9 | 26.50 | Saturated | 5 | 168.75 | 124.61 | 0.94 | 0.25 | 0.88 | 0.96 | 0.33 | 0.28 | 1.12 | 0.00 |
10.5 | 27.67 | Saturated | 5 | 198.00 | 139.14 | 0.93 | 0.26 | 0.88 | 0.94 | 0.37 | 0.31 | 1.19 | 0.00 |
12 | 30.05 | Saturated | 5 | 227.25 | 153.68 | 0.91 | 0.26 | 0.88 | 0.91 | 0.49 | 0.39 | 1.49 | 0.00 |
13.5 | 24.41 | Saturated | 5 | 256.50 | 168.21 | 0.89 | 0.27 | 0.88 | 0.92 | 0.28 | 0.22 | 0.84 | 0.79 |
15 | 27.98 | Saturated | 5 | 285.75 | 182.75 | 0.88 | 0.27 | 0.88 | 0.89 | 0.38 | 0.30 | 1.12 | 0.00 |
16.5 | 27.06 | Saturated | 5 | 315.00 | 197.28 | 0.86 | 0.27 | 0.88 | 0.88 | 0.35 | 0.27 | 1.00 | 0.00 |
18 | 26.20 | Saturated | 5 | 344.25 | 211.82 | 0.84 | 0.27 | 0.88 | 0.87 | 0.32 | 0.25 | 0.92 | 0.12 |
20 | 25.16 | Saturated | 5 | 383.25 | 231.20 | 0.82 | 0.26 | 0.88 | 0.86 | 0.29 | 0.22 | 0.84 | 0.00 |
7.96 |
LPI | Susceptibility |
---|---|
0 | Very low |
0 < LPI ≤ 5 | Low |
5 < LPI ≤ 15 | High |
LPI > 15 | Very high |
LPI | Highways | Feeder Roads | District Roads | Other Roads | Total | |||||
---|---|---|---|---|---|---|---|---|---|---|
km | % | km | % | km | % | km | % | km | % | |
Very low | 0.1 | 0.2 ≈ 0 | 0.6 | 1 | 12.7 | 7 | 79.8 | 5 | 93.3 | 5 |
Low | 3.6 | 7 | 16.5 | 28 | 28.7 | 15 | 365.3 | 22 | 414.0 | 21 |
High | 18.0 | 32 | 21.2 | 37 | 66.7 | 35 | 538.3 | 32 | 644.3 | 32 |
Very high | 33.9 | 61 | 19.8 | 34 | 81.2 | 43 | 687.6 | 41 | 822.5 | 42 |
Total | 55.6 | 100 | 58.1 | 100 | 189.3 | 100 | 1671.0 | 100 | 1974.1 | 100 |
Liquefaction Susceptibility | Airport | |
---|---|---|
Area (Sq. m) | Percentage (%) | |
Very low | 0 | 0 |
Low | 0.16 | 6 |
High | 2.16 | 78 |
Very high | 0.44 | 16 |
Total | 2.76 | 100 |
Liquefaction Susceptibility | Health Facility | |
---|---|---|
Number | Percentage (%) | |
Very low | 2 | 1 |
Low | 18 | 7 |
High | 84 | 32 |
Very high | 159 | 60 |
Total | 263 | 100 |
Liquefaction Susceptibility | School | College | ||
---|---|---|---|---|
Number | Percentage (%) | Number | Percentage (%) | |
Very low | 43 | 2 | 2 | 0.5 ≈ 0 |
Low | 232 | 12 | 15 | 4 |
High | 629 | 32 | 130 | 32 |
Very high | 1069 | 54 | 257 | 64 |
Total | 1973 | 100 | 404 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharya, P.; Sharma, K.; Acharya, I.P. Seismic Liquefaction Risk Assessment of Critical Facilities in Kathmandu Valley, Nepal. GeoHazards 2021, 2, 153-171. https://doi.org/10.3390/geohazards2030009
Acharya P, Sharma K, Acharya IP. Seismic Liquefaction Risk Assessment of Critical Facilities in Kathmandu Valley, Nepal. GeoHazards. 2021; 2(3):153-171. https://doi.org/10.3390/geohazards2030009
Chicago/Turabian StyleAcharya, Prabin, Keshab Sharma, and Indra Prasad Acharya. 2021. "Seismic Liquefaction Risk Assessment of Critical Facilities in Kathmandu Valley, Nepal" GeoHazards 2, no. 3: 153-171. https://doi.org/10.3390/geohazards2030009
APA StyleAcharya, P., Sharma, K., & Acharya, I. P. (2021). Seismic Liquefaction Risk Assessment of Critical Facilities in Kathmandu Valley, Nepal. GeoHazards, 2(3), 153-171. https://doi.org/10.3390/geohazards2030009