Behavior of Premixed Sooting Flame in a High-Pressure Burner
Abstract
:1. Introduction
2. Simulation Conditions and Approaches
3. Results and Discussion
3.1. Justifying 2D and 1D Simulation
3.2. Demonstration Study
3.3. Pressure and Edge Inter-Matrices Effect
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hofmann, M.; Bessler, W.G.; Schulz, C.; Jander, H. Laser-induced incandescence for soot diagnostics at high pressures. Appl. Opt. 2003, 42, 2052–2062. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.; Kronemayer, H.; Kock, B.; Jander, H.; Schulz, C. Laser-induced incandescence and multi-line NO-LIF thermometry for soot diagnostics at high pressures. In European Combustion Meeting; Optical Publishing Group: Louvain-la-Neuve, Belgium, 2005. [Google Scholar]
- Tsurikov, M.S.; Geigle, K.P.; Krüger, V.; Schneider-Kühnle, Y.; Stricker, W.; Lückerath, R.; Hadef, R.; Aigner, M. Laser-Based Investigation of Soot Formation in Laminar Premixed Flames at Atmospheric and Elevated Pressures. Combust. Sci. Technol. 2005, 177, 1835–1862. [Google Scholar] [CrossRef]
- Leschowski, M.; Dreier, T.; Schulz, C. An automated thermophoretic soot sampling device for laboratory-scale high-pressure flames. Rev. Sci. Instrum. 2014, 85, 045103. [Google Scholar] [CrossRef] [PubMed]
- Leschowski, M.; Dreier, T.; Schulz, C. A Standard Burner for High Pressure Laminar Premixed Flames: Detailed Soot Diagnostics. Z. Phys. Chem. 2015, 229, 781–805. [Google Scholar] [CrossRef]
- Mi, X.; Saylam, A.; Endres, T.; Schulz, C.; Dreier, T. Near-threshold soot formation in premixed flames at elevated pressure. Carbon 2021, 181, 143–154. [Google Scholar] [CrossRef]
- Heidermann, T.; Jander, H.; Gg, H. Wagner, Soot particles in premixed C2H4–air-flames at high pressures (P=30–70 bar). Phys. Chem. Chem. Phys. 1999, 1, 3497–3502. [Google Scholar] [CrossRef]
- Migliorini, F.; De Iuliis, S.; Cignoli, F.; Zizak, G. How “flat” is the rich premixed flame produced by your McKenna burner? Combust. Flame 2008, 153, 384–393. [Google Scholar] [CrossRef]
- Hadef, R.; Geigle, K.P.; Meier, W.; Aigner, M. Soot characterization with laser-induced incandescence applied to a laminar premixed ethylene–air flame. Int. J. Therm. Sci. 2010, 49, 1457–1467. [Google Scholar] [CrossRef]
- Desgroux, P.; Mercier, X.; Lefort, B.; Lemaire, R.; Therssen, E.; Pauwels, J. Soot volume fraction measurement in low-pressure methane flames by combining laser-induced incandescence and cavity ring-down spectroscopy: Effect of pressure on soot formation. Combust. Flame 2008, 155, 289–301. [Google Scholar] [CrossRef]
- Desgroux, P.; Faccinetto, A.; Mercier, X.; Mouton, T.; Karkar, D.A.; El Bakali, A. Comparative study of the soot formation process in a “nucleation” and a “sooting” low pressure premixed methane flame. Combust. Flame 2017, 184, 153–166. [Google Scholar] [CrossRef]
- Desgroux, P.; Betrancourt, C.; Mercier, X. Development of highly sensitive quantitative measurements of nascent soot particles in flames by coupling cavity-ring-down extinction and laser induced incandescence for improving the understanding of soot nucleation process. In Laser Applications to Chemical, Security and Environmental Analysis; Optical Publishing Group: Orlando, FL, USA, 2018; p. LTu5C-1. [Google Scholar]
- Bejaoui, S.; Batut, S.; Therssen, E.; Lamoureux, N.; Desgroux, P.; Liu, F. Measurements and modeling of laser-induced incandescence of soot at different heights in a flat premixed flame. Appl. Phys. B Laser Opt. 2015, 118, 449–469. [Google Scholar] [CrossRef]
- Holthuis & Associates, The McKenna Flat Flame Burner. Available online: https://www.flatflame.com/ (accessed on 4 January 2023).
- Kim, C.; Xu, F.; Sunderland, P.; El-Leathy, A.; Faeth, G. Soot formation and oxidation in laminar flames. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9–11 January 2006; p. 1508. [Google Scholar]
- Mouton, T.; Mercier, X.; Wartel, M.; Lamoureux, N.; Desgroux, P. Laser-induced incandescence technique to identify soot nucleation and very small particles in low-pressure methane flames. Appl. Phys. B Laser Opt. 2013, 112, 369–379. [Google Scholar] [CrossRef]
- Aubagnac-Karkar, D.; El Bakali, A.; Desgroux, P. Soot particles inception and PAH condensation modelling applied in a soot model utilizing a sectional method. Combust. Flame 2018, 189, 190–206. [Google Scholar] [CrossRef]
- Skandan, G.; Chen, Y.-J.; Glumac, N.; Kear, B. Synthesis of oxide nanoparticles in low pressure flames. Nanostructured Mater. 1999, 11, 149–158. [Google Scholar] [CrossRef]
- Weise, C.; Faccinetto, A.; Kluge, S.; Kasper, T.; Wiggers, H.; Schulz, C.; Wlokas, I.; Kempf, A. Buoyancy induced limits for nanoparticle synthesis experiments in horizontal premixed low-pressure flat-flame reactors. Combust. Theory Model. 2013, 17, 504–521. [Google Scholar] [CrossRef]
- Pennington, A.M.; Halim, H.; Shi, J.; Kear, B.H.; Celik, F.E.; Tse, S.D. Low-pressure flame synthesis of carbon-stabilized TiO2-II (srilankite) nanoparticles. J. Aerosol Sci. 2021, 156, 105775. [Google Scholar] [CrossRef]
- Gu, M.; Liu, F.; Consalvi, J.-L.; Gülder, Ö. Effects of pressure on soot formation in laminar coflow methane/air diffusion flames doped with n-heptane and toluene between 2 and 8 atm. Proc. Combust. Inst. 2021, 38, 1403–1412. [Google Scholar] [CrossRef]
- Böhm, H.; Feldermann, C.; Heidermann, T.; Jander, H.; Lüers, B.; Wagner, H. Soot formation in premixed C2H4-air flames for pressures up to 100 bar. Symp. (Int.) Combust. 1992, 24, 991–998. [Google Scholar] [CrossRef]
- Böhm, H.; Hesse, D.; Jander, H.; Lüers, B.; Pietscher, J.; Wagner, H.; Weiss, M. The influence of pressure and temperature on soot formation in premixed flames. Symp. (Int.) Combust. 1989, 22, 403–411. [Google Scholar] [CrossRef]
- Ciajolo, A.; D’Anna, A.; Barbella, R.; Tregrossi, A.; Violi, A. The effect of temperature on soot inception in premixed ethylene flames. Symp. (Int.) Combust. 1996, 26, 2327–2333. [Google Scholar] [CrossRef]
- Ishii, K.; Ohashi, N.; Teraji, A.; Kubo, M. Soot formation in hydrocarbon pyrolysis behind reflected shock waves. In Proceedings of the 22nd Int. Colloquium on the Dynamics of Explosions and Reactive Systems, Napoli, Italy, 19–24 June 2009. [Google Scholar]
- Prado, G.; Lahaye, J. Physical Aspects of Nucleation and Growth of Soot Particles. In Particulate Carbon: Formation During Combustion; Siegla, D., Smith, G., Eds.; Springer: Boston, MA, USA, 1981; pp. 143–175. [Google Scholar]
- Whitesides, R.; Frenklach, M. Detailed Kinetic Monte Carlo Simulations of Graphene-Edge Growth. J. Phys. Chem. A 2010, 114, 689–703. [Google Scholar] [CrossRef]
- Fortugno, P.; Musikhin, S.; Shi, X.; Wang, H.; Wiggers, H.; Schulz, C. Synthesis of freestanding few-layer graphene in microwave plasma: The role of oxygen. Carbon 2021, 186, 560–573. [Google Scholar] [CrossRef]
- Bladh, H.; Olofsson, N.-E.; Mouton, T.; Simonsson, J.; Mercier, X.; Faccinetto, A.; Bengtsson, P.-E.; Desgroux, P. Probing the smallest soot particles in low-sooting premixed flames using laser-induced incandescence. Proc. Combust. Inst. 2015, 35, 1843–1850. [Google Scholar] [CrossRef]
- ANSYS® Academic Research Mechanical; Release 2020 R1; ANSYS, Inc.: Canonsburg, PA, USA, 2020.
- Brookes, S.; Moss, J. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames. Combust. Flame 1999, 116, 486–503. [Google Scholar] [CrossRef]
- Luo, Z.; Lu, T.; Liu, J. A reduced mechanism for ethylene/methane mixtures with excessive NO enrichment. Combust. Flame 2011, 158, 1245–1254. [Google Scholar] [CrossRef]
- Frenklach, M. Method of moments with interpolative closure. Chem. Eng. Sci. 2002, 57, 2229–2239. [Google Scholar] [CrossRef]
- Saggese, C.; Ferrario, S.; Camacho, J.; Cuoci, A.; Frassoldati, A.; Ranzi, E.; Wang, H.; Faravelli, T. Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame. Combust. Flame 2015, 162, 3356–3369. [Google Scholar] [CrossRef]
- Goodwin, D.G.; Moffat, H.K.; Speth, R.L. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Available online: https://www.cantera.org (accessed on 11 March 2021). [CrossRef]
- Wang, T.; Matula, R.; Farmer, R. Combustion kinetics of soot formation from toluene. Symp. (Int.) Combust. 1981, 18, 1149–1158. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Wang, F.; Wu, Y.; Xiao, Y. Influence of Multi-Source Vortex Structure on the Mixing of Fuel/Air. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–4. [Google Scholar]
- Chakraborty, N. Influence of Thermal Expansion on Fluid Dynamics of Turbulent Premixed Combustion and Its Modelling Implications. Flow Turbul. Combust. 2021, 106, 753–848. [Google Scholar] [CrossRef]
- DeNet, B.; Bychkov, V. Low vorticity and small gas expansion in premixed flames. Combust. Sci. Technol. 2005, 177, 1543–1566. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saylam, A. Behavior of Premixed Sooting Flame in a High-Pressure Burner. Reactions 2023, 4, 155-170. https://doi.org/10.3390/reactions4010009
Saylam A. Behavior of Premixed Sooting Flame in a High-Pressure Burner. Reactions. 2023; 4(1):155-170. https://doi.org/10.3390/reactions4010009
Chicago/Turabian StyleSaylam, Ahmad. 2023. "Behavior of Premixed Sooting Flame in a High-Pressure Burner" Reactions 4, no. 1: 155-170. https://doi.org/10.3390/reactions4010009
APA StyleSaylam, A. (2023). Behavior of Premixed Sooting Flame in a High-Pressure Burner. Reactions, 4(1), 155-170. https://doi.org/10.3390/reactions4010009