Calcination Temperature Induced Structural, Optical and Magnetic Transformations in Titanium Ferrite Nanoparticles
Abstract
:1. Introduction
2. Synthesis and Characterizations
3. Results & Discussions
3.1. UV-Visible Absorption and Crystallographic Properties of Titanium Ferrite Nanopowders
3.2. Morphological and Compositional Investigation of Nanopowder
3.3. Structural Characterization of Calcined Nanopowders Using Vibrational Spectroscopic Techniques
3.4. Magnetic Properties of Titanium Ferrite Nanopowder Calcined at Different Temperatures
3.5. Reactions during Synthesis and Calcination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalska-Szostko, B.; Wykowska, U.; Satula, D.; Nordblad, P. Thermal treatment of magnetite nanoparticles. Beilstein J. Nanotechnol. 2015, 6, 1385–1396. [Google Scholar] [CrossRef] [Green Version]
- Go’mez-Polo, C.; Larumbe, S.; Barquín, L.F.; Fernández, L.R. Magnetic induction heating as a new tool for the synthesis of Fe3O4–TiO2 nanoparticle systems. J. Nanopart. Res. 2016, 18, 118–127. [Google Scholar] [CrossRef]
- Küchler, R.; Hiergeist, P.; Abstreiter, G.; Reithmaier, J.-P.; Riechert, H.; Lösch, R. Magneto-Luminescence and Magneto-Luminescence Excitation Spectroscopy in Strained Layer Heterostructures. In High Magnetic Fields in Semiconductor Physics III. Springer Series in Solid-State Sciences; Landwehr, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Shukla, A.; Pandey, B.K.; Singh, S.C.; Uttam, K.N.; Shah, J.; Kotnala, R.K.; Kumar, A.; Gopal, R. Liquid-Assisted Pulsed Laser Ablation Synthesis of Titanium Ferrite Nanomaterials. Mater. Focus 2015, 4, 327–332. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, T.; Liu, Z. Highly photoactive Ti-doped α-Fe2O3 nanorod arrays photoanode prepared by a hydrothermal method for photoelectrochemical water splitting. Electrochim. Acta 2014, 129, 358–363. [Google Scholar] [CrossRef]
- Maaz, K.; Karim, S.; Mumtaz, A.; Hasanain, S.K. Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J. Magn. Magn. Mater. 2009, 321, 1838–1842. [Google Scholar] [CrossRef]
- Ziarati, A.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ganjali, M.R.; Badiei, A. Sonication method synergism with rare earth based nanocatalyst: Preparation of NiFe2–xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earths 2017, 35, 374–381. [Google Scholar] [CrossRef]
- Sobhani-Nasab, A.; Zahraei, Z.; Akbari, M.; Maddahfar, M.; Hosseinpour-Mashkani, S.M. Synthesis, characterization, and antibacterial activities of ZnLaFe2O4/NiTiO3 nanocomposite. J. Mol. Struct. 2017, 1139, 430–435. [Google Scholar] [CrossRef]
- Hosseinpour-Mashkani, S.M.; Maddahfar, M.; Sobhani-Nasab, A. Novel Silver-doped NiTiO3: Auto-combustion Synthesis, Characterization and Photovoltaic Measurements. S. Afr. J. Chem. 2017, 70, 44. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.C.; Yao, K.S.; Yeh, N.; Chang, C.I.; Hsu, H.C.; Chien, Y.T.; Chang, C.Y. Visible light activated bactericidal effect of TiO2/Fe3O4 magnetic particles on fish pathogens. Surf. Coat. Technol. 2009, 204, 1141. [Google Scholar] [CrossRef]
- Elhami, V.; Karimi, A. Preparation of Kissiris/TiO2/Fe3O4/GOx Biocatalyst: Feasibility study of MG decolorization. Adv. Environ. Technol. 2016, 2, 111. [Google Scholar]
- Jiang, W.; Zhang, X.; Gong, X.; Yan, F.; Zhang, Z. Sonochemical synthesis and characterization of magnetic separable Fe3O4-TiO2 nanocomposites and their catalytic properties. Int. J. Smart Nano Mater. 2010, 1, 278–287. [Google Scholar] [CrossRef]
- Gul, I.H.; Ahmed, W.; Maqsood, A. Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 2008, 320, 270–275. [Google Scholar] [CrossRef]
- Peña-Flores, J.I.; Palomec-Garfias, A.F.; Márquez-Beltrán, C.; Sánchez-Mora, E.; Gómez-Barojas, E.; Pérez-Rodríguez, F. Fe effect on the optical properties of TiO2:Fe2O3 nanostructured composites supported on SiO2 microsphere assemblies. Nanoscale Res. Lett. 2014, 9, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, W.Q.; Malus, S.; Ryan, D.H.; Altounian, Z. Crystal structure and cation distributions in the FeTi2O5–Fe2TiO5 solid solution series. J. Phys. Condens. Matter 1999, 11, 6337–6346. [Google Scholar] [CrossRef]
- Shukla, A.; Singh, S.C.; Pandey, B.K.; Uttam, K.N.; Shah, J.; Kotnala, R.K.; Gopal, R. Liquid-assisted pulsed laser ablation synthesized titanium ferrite nanoparticles: Structural, optical and magnetic properties. Adv. Mater. Lett. 2015, 6, 1066–1072. [Google Scholar]
- Seitz, G.; Penin, N.; Decoux, L.; Wattiaux, A.; Duttine, M.; Gaudon, M. Near the Ferric Pseudobrookite Composition (Fe2TiO5). Inorg. Chem. 2016, 55, 2499–2507. [Google Scholar]
- Singh, S.C.; Gopal, R. Laser irradiance and wavelength-dependent compositional evolution of inorganic ZnO and ZnOOH/organic SDS nanocomposite material. J. Phys. Chem. C 2008, 112, 2812–2819. [Google Scholar]
- Yu, W.; Yin, J.; Li, Y.; Lai, B.; Jiang, T.; Li, Y.; Liu, H.; Liu, J.; Zhao, C.; Singh, S.C.; et al. Ag2S quantum dots as an infrared excited photocatalyst for hydrogen production. Appl. Energy Mater. 2019, 4, 2751–2759. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Shukla, A.K.; Maurya, S.; Singh, S.C.; Uttam, K.N.; Sundaram, S.; Singh, M.P.; Gopal, R. Direct sunlight enabled photo-biochemical synthesis of silver nanoparticles and their Bactericidal Efficacy: Photon energy as key for size and distribution control. J. Photochem. Photobiol. B Biol. 2018, 188, 42–49. [Google Scholar] [CrossRef]
- Singh, S.C.; Li, H.; Yao, C.; Zhan, Z.; Yu, W.; Yu, Z.; Guo, C. Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes. Nano Energy 2018, 51, 774–785. [Google Scholar] [CrossRef]
- Singh, S.C. Zinc Oxide Nanostructures: Synthesis, Characterizations and Device Applications. J. Nanoeng. Nanomanufact. 2012, 3, 283–310. [Google Scholar] [CrossRef]
- Singh, S.C. Effect of oxygen injection on the size and compositional evolution of ZnO/Zn(OH)2 nanocomposite synthesized by pulsed laser ablation in distilled water. J. Nanopart. Res. 2011, 13, 4143–4152. [Google Scholar] [CrossRef]
- Reyes-Coronado, D.; Rodríguez-Gattorno, G.; Espinosa-Pesqueira, M.E.; Cab, C.; de Coss, R.; Oskam, G. Nanotechnology Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile. Nanotechnology 2008, 19, 145605. [Google Scholar] [CrossRef]
- Maiti, D.; Manju, U.; Velaga, S.; Devi, P.S. Phase Evolution and Growth of Iron Oxide Nanoparticles: Effect of Hydrazine Addition During Sonication. Cryst. Growth Des. 2013, 13, 3637–3644. [Google Scholar] [CrossRef]
- Singh, S.C.; Gopal, R. Drop shaped zinc oxide quantum dots and their self-assembly into dendritic nanostructures: Liquid assisted pulsed laser ablation and characterizations. Appl. Surf. Sci. 2012, 258, 2211–2218. [Google Scholar] [CrossRef]
- Lazarević, Z.Ž.; Jovalekić, Č.; Milutinović, A.; Sekulić, D.; Slankamenac, M.; Romčević, M.; Romčević, N.Ž. Study of NiFe2O4 and ZnFe2O4 Spinel Ferrites Prepared by Soft Mechanochemical Synthesis. Ferroelectrics 2013, 448, 1–11. [Google Scholar] [CrossRef]
- Ahlawat, A.; Sathe, V.G. Raman study of NiFe2O4 nanoparticles, bulk and films: Effect of laser power. J. Raman Spectrosc. 2011, 42, 1087. [Google Scholar] [CrossRef]
- Sousa, M.H.; Tourinho, F.A.; Rubim, J.C. Use of Raman micro-spectroscopy in the characterization of MIIFe2O4 (M = Fe, Zn) electric double layer ferrofluids. J. Raman Spectrosc. 2000, 31, 185. [Google Scholar] [CrossRef]
- Camargo, P.H.; Nunes, G.G.; Sá, E.L.D.; Tremiliosi-Filho, G.; Evans, D.J.; Zarbin, A.J.; Soares, J.F. Synthesis of Fe/Ti Oxides from a Single Source Alkoxide Precursor under Inert Atmosphere. J. Braz. Chem. Soc. 2008, 8, 1501–1512. [Google Scholar] [CrossRef]
- Camargo, P.H.C.; Nunes, G.G.; Friedermann, G.R.; Evans, D.J.; Leigh, G.J.; Tremiliosi-Filho, G.; de Sa, E.L.; Zarbin, A.J.G.; Soares, J.F. Titanium and iron oxides produced by sol–gel processing of [FeCl{Ti2(OPri)9}]: Structural, spectroscopic and morphological features. Mater. Res. Bull. 2003, 38, 1915–1928. [Google Scholar] [CrossRef]
- Zhu, S.; Yao, F. Fe2O3/TiO2 photocatalyst of hierarchical structure for H2 production from water under visible light irradiation. Microporous Mesoporous Mater. 2014, 190, 10–16. [Google Scholar] [CrossRef]
- Singh, S.C.; Kotnala, R.K.; Gopal, R. Room temperature ferromagnetism in liquid-phase pulsed laser ablation synthesized nanoparticles of nonmagnetic oxides. J. Appl. Phys. 2015, 118, 064305. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.; Bhardwaj, A.K.; Singh, S.C.; Uttam, K.N.; Gautam, N.; Himanshu, A.K.; Shah, J.; Kotnala, R.K.; Gopal, R. Microwave assisted scalable synthesis of titanium ferrite nanomaterials. J. Appl. Phys. 2018, 123, 161411. [Google Scholar] [CrossRef]
- Amyn, S.T.; Pei-Yoong, K. Synthesis, Properties, and Applications of Magnetic Iron Oxide Nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22–45. [Google Scholar]
S. No | Sample | Ms (emu/g) | Mr (emu/g) | Hc (Oe) |
---|---|---|---|---|
1. | CP-01-200 | 19.169 | 3.897 | 115.461 |
2. | CP-01-500 | 20.358 | 4.564 | 133.095 |
3. | CP-01-800 | 0.376 | 0.085 | 225.966 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shukla, A.; Singh, S.C.; Bhardwaj, A.; Kotnala, R.K.; Uttam, K.N.; Guo, C.; Gopal, R. Calcination Temperature Induced Structural, Optical and Magnetic Transformations in Titanium Ferrite Nanoparticles. Reactions 2022, 3, 224-232. https://doi.org/10.3390/reactions3010017
Shukla A, Singh SC, Bhardwaj A, Kotnala RK, Uttam KN, Guo C, Gopal R. Calcination Temperature Induced Structural, Optical and Magnetic Transformations in Titanium Ferrite Nanoparticles. Reactions. 2022; 3(1):224-232. https://doi.org/10.3390/reactions3010017
Chicago/Turabian StyleShukla, Abhishek, Subhash C. Singh, Abhishek Bhardwaj, Ravindra Kumar Kotnala, Kailash Narayan Uttam, Chunlei Guo, and Ram Gopal. 2022. "Calcination Temperature Induced Structural, Optical and Magnetic Transformations in Titanium Ferrite Nanoparticles" Reactions 3, no. 1: 224-232. https://doi.org/10.3390/reactions3010017
APA StyleShukla, A., Singh, S. C., Bhardwaj, A., Kotnala, R. K., Uttam, K. N., Guo, C., & Gopal, R. (2022). Calcination Temperature Induced Structural, Optical and Magnetic Transformations in Titanium Ferrite Nanoparticles. Reactions, 3(1), 224-232. https://doi.org/10.3390/reactions3010017