Synthesis and Reactivity of Cyclic Oxonium Derivatives of nido-Carborane: A Review
Abstract
:1. Introduction
2. Synthesis of Oxonium Derivatives of nido-Carborane
3. Properties of Oxonium Derivatives of nido-Carborane. Reactions with Nucleophiles
4. Synthesis and Properties of Oxonium Derivatives of nido-carborane-Based Half-Sandwich Complexes
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCleverty, J.A. Highlights in inorganic chemistry over the last 100 years. Annu. Rep. Prog. Chem. Sect. A 2004, 100, 3–13. [Google Scholar] [CrossRef]
- Wiesboeck, R.A.; Hawthorne, M.F. Dicarbaundecaborane(13) and Derivatives. J. Am. Chem. Soc. 1964, 86, 1642–1643. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Young, D.C.; Garrett, P.M.; Owen, D.A.; Schwerin, S.G.; Tebbe, F.N.; Wegner, P.A. Preparation and characterization of the (3)-1,2- and (3)-1,7-dicarbadodecahydroundecarborate(-1) ions. J. Am. Chem. Soc. 1968, 90, 862–868. [Google Scholar] [CrossRef]
- Zakharkin, L.I.; Kalinin, V.I. On the reaction of amines with barenes. Tetrahedron Lett. 1965, 7, 407–409. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Wegner, P.A.; Stafford, R.C. Comments on the reaction of amines with 1,2-dicarbaclovododecaborane(12). Inorg. Chem. 1965, 4, 1675. [Google Scholar] [CrossRef]
- Davidson, M.G.; Fox, M.A.; Hibbert, T.G.; Howard, J.A.K.; Mackinnon, A.; Neretin, I.S.; Wade, K. Deboronation of ortho-carborane by an iminophosphorane: Crystal structures of the novel carborane adduct nido-C2B10H12·HNP(NMe2)3 and the borenium salt [(Me2N)3PNHBNP(NMe2)3]2O2+(C2B9H12−)2. Chem. Commun. 1999, 1649–1650. [Google Scholar] [CrossRef]
- Wise, S.D.; Au, W.; Getman, T.D. The effect of varying the solvent system on the rate of the deboration of o-carborane by n-butyl amine. Main Group Met. Chem. 2002, 25, 411–413. [Google Scholar] [CrossRef]
- Tomita, H.; Luu, H.; Onak, T. Cage opening of parent closo cage carboranes with fluoride ion: Formation of 5-fluoro-hexahydro-nido-2,4-dicarbahexaborate(1-) ([5-F-nido-2,4-C2B4H6]−). Inorg. Chem. 1991, 30, 812–815. [Google Scholar] [CrossRef]
- Fox, M.A.; Gill, W.R.; Herbertson, P.L.; MacBride, J.A.H.; Wade, K.; Colquhoun, H.M. Deboronation of C-substituted ortho- and meta-closo-carboranes using “wet” fluoride ion solutions. Polyhedron 1996, 15, 565–571. [Google Scholar] [CrossRef]
- Getman, T.D. Investigation of potassium fluoride supported on alumina in the deboronation of o-carborane. Inorg. Chem. 1998, 37, 3422–3423. [Google Scholar] [CrossRef]
- Yoo, J.; Hwang, J.-W.; Do, Y. Facile and mild deboronation of o-carboranes using cesium fluoride. Inorg. Chem. 2001, 40, 568–570. [Google Scholar] [CrossRef] [PubMed]
- Hawthorne, M.F.; Young, D.C.; Andrews, T.D.; Howe, D.V.; Pilling, R.L.; Pitts, A.D.; Reintjer, M.; Warren, L.F.; Wegner, P.A. π-Dicarbollyl derivatives of the transition metals. Metallocene analogs. J. Am. Chem. Soc. 1968, 90, 879–896. [Google Scholar] [CrossRef]
- Grimes, R.N. Transitional metal metallacarbaboranes. In Comprehensive Organometallic Chemistry II; Elsevier: Oxford, UK, 1995; Volume 1, pp. 373–430. [Google Scholar]
- Grimes, R.N. Metallacarboranes in the new millennium. Co-ord. Chem. Rev. 2000, 200, 773–811. [Google Scholar] [CrossRef]
- Hosmane, N.S.; Maguire, J.A. Metallacarboranes of d- and f-block metals. In Comprehensive Organometallic Chemistry III; Elsevier: Oxford, UK, 2007; Volume 3, pp. 175–264. [Google Scholar]
- Gozzi, M.; Schwarze, B.; Hey-Hawkins, E. Half- and mixed-sandwich metallacarboranes in catalysis. In Handbook of Boron Chemistry with Applications in Organometallics, Catalysis, Materials and Medicine. Boron in Catalysis; Hosmane, N.S., Eagling, R., Eds.; World Scientific Publishing Europe Ltd.: London, UK, 2019; Volume 2, pp. 27–80. [Google Scholar] [CrossRef]
- Zhu, Y.; Hosmane, N.S. Carborane-based catalysts for polymerization of olefins. In Handbook of Boron Chemistry with Applications in Organometallics, Catalysis, Materials and Medicine. Boron in Catalysis; Hosmane, N.S., Eagling, R., Eds.; World Scientific Publishing Europe Ltd.: London, UK, 2019; Volume 2, pp. 117–134. [Google Scholar] [CrossRef]
- Hawthorne, M.F. The role of chemistry in the development of boron neutron capture therapy of cancer. Angew. Chem. Int. Ed. Engl. 1993, 32, 950–984. [Google Scholar] [CrossRef]
- Soloway, A.H.; Tjarks, W.; Barnum, B.A.; Rong, F.-G.; Barth, R.F.; Codogni, I.M.; Wilson, J.G. The chemistry of neutron capture therapy. Chem. Rev. 1998, 98, 1515–1562. [Google Scholar] [CrossRef] [PubMed]
- Valliant, J.F.; Guenther, K.J.; King, A.S.; Morel, P.; Schaffer, P.; Sogbein, O.O.; Stephenson, K.A. The medicinal chemistry of carboranes. Co-ord. Chem. Rev. 2002, 232, 173–230. [Google Scholar] [CrossRef]
- Armstrong, A.F.; Valliant, J.F. The bioinorganic and medicinal chemistry of carboranes: From new drug discovery to molecular imaging and therapy. Dalton Trans. 2007, 4240–4251. [Google Scholar] [CrossRef]
- Lee, W.; Sarkar, S.; Ahn, H.; Kim, J.Y.; Lee, Y.J.; Chang, Y.; Yoo, J. PEGylated liposome encapsulating nido-carborane showed significant tumor suppression in boron neutron capture therapy (BNCT). Biochem. Biophys. Res. Commun. 2020, 522, 669–675. [Google Scholar] [CrossRef]
- Varaksin, M.V.; Smyshliaeva, L.A.; Rusinov, V.L.; Makeev, O.G.; Melekhin, V.V.; Baldanshirieva, A.D.; Gubina, O.G.; Charushin, V.N.; Chupakhin, O.N. Synthesis, characterization, and in vitro assessment of cytotoxicity for novel azaheterocyclic nido-carboranes—Candidates in agents for boron neutron capture therapy (BNCT) of cancer. Tetrahedron 2021, 102, 132525. [Google Scholar] [CrossRef]
- Tolmachev, V.V.; Sjöberg, S. Polyhedral boron compounds as potential linkers for attachment of radiohalogens to targeting proteins and peptides. A review. Collect. Czech. Chem. Commun. 2002, 67, 913–935. [Google Scholar] [CrossRef]
- Wilbur, D.S.; Chyan, M.-C.; Hamlin, D.K.; Vessella, R.L.; Wedge, T.J.; Hawthorne, M.F. Reagents for astatination of biomolecules. 2. Conjugation of anionic boron cage pendant groups to a protein provides a method for direct labeling that is stable to in vivo deastatination. Bioconjugate Chem. 2007, 18, 1226–1240. [Google Scholar] [CrossRef]
- Green, A.E.C.; Harrington, L.E.; Valliant, J.F. Carborane-carbohydrate derivatives—Versatile platforms for developing targeted radiopharmaceuticals. Can. J. Chem. 2008, 86, 1063–1069. [Google Scholar] [CrossRef]
- Armstrong, A.F.; Lebert, J.M.; Brennan, J.D.; Valliant, J.F. Functionalized carborane complexes of the [M(CO)2(NO)]2+ core (M = 99mTc, Re): A new class of organometallic probes for correlated in vitro and in vivo imaging. Organometallics 2009, 28, 2986–2992. [Google Scholar] [CrossRef]
- El-Zaria, M.E.; Janzen, N.; Valliant, J.F. Room-temperature synthesis of Re(I) and Tc(I) metallocarboranes. Organometallics 2012, 31, 5940–5949. [Google Scholar] [CrossRef]
- Visbal, R.; Ospino, I.; López-de-Luzuriaga, J.M.; Laguna, A.; Gimeno, M.C. N-Heterocyclic carbene ligands as modulators of luminescence in three-coordinate gold(I) complexes with spectacular quantum yields. J. Am. Chem. Soc. 2013, 135, 4712–4715. [Google Scholar] [CrossRef] [PubMed]
- Axtell, J.C.; Kirlikovali, K.O.; Djurovich, P.I.; Jung, D.; Nguyen, V.T.; Munekiyo, B.; Royappa, A.T.; Rheingold, A.L.; Spokoyny, A.M. Blue phosphorescent zwitterionic iridium(III) complexes featuring weakly coordinating nido-carborane-based ligands. J. Am. Chem. Soc. 2016, 138, 15758–15765. [Google Scholar] [CrossRef]
- Shafikov, M.Z.; Suleymanova, A.F.; Czerwieniec, R.; Yersin, H. Design strategy for Ag(I)-based thermally activated delayed fluorescence reaching an efficiency breakthrough. Chem. Mater. 2017, 29, 1708–1715. [Google Scholar] [CrossRef]
- Nghia, N.V.; Jana, S.; Sujith, S.; Ryu, J.Y.; Lee, J.; Lee, S.U.; Lee, M.H. nido-Carboranes: Donors for thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 2018, 57, 12483–12488. [Google Scholar] [CrossRef]
- Nghia, N.V.; Oh, J.; Sujith, S.; Jung, J.; Lee, M.H. Tuning the photophysical properties of carboranyl luminophores by closo- to nido-carborane conversion and application to OFF–ON fluoride sensing. Dalton Trans. 2018, 47, 17441–17449. [Google Scholar] [CrossRef]
- He, T.-F.; Ren, A.-M.; Chen, Y.-N.; Hao, X.-L.; Shen, L.; Zhang, B.-H.; Wu, T.-S.; Zhang, H.-X.; Zou, L.-Y. Molecular-level insight of Cu(I) complexes with the 7,8-bis(diphenylphosphino)-7,8-dicarba-nido-undecaborate ligand as a thermally activated delayed fluorescence emitter: Luminescent mechanism and design strategy. Inorg. Chem. 2021, 59, 12039–12053. [Google Scholar] [CrossRef]
- Li, Q.; Shi, C.; Huang, M.; Zhang, X.; Sun, F.; Zheng, Y.; Yan, H.; Yang, C.; Yuan, A. Three types of charged ligand-based neutral phosphorescent iridium(III) complexes featuring nido-carborane: Synthesis, structures, and solution processed organic light-emitting diode applications. Dalton Trans. 2021, 50, 16304–16310. [Google Scholar] [CrossRef]
- Alconchel, A.A.; Crespo, O.; García-Orduña, P.; Gimeno, M.C. closo- or nido-Carborane diphosphane as responsible for strong thermochromism or time activated delayed fluorescence (TADF) in [Cu(N^N)(P^P)]0. Inorg. Chem. 2021, 60, 18521–18528. [Google Scholar] [CrossRef] [PubMed]
- Lerouge, F.; Ferrer-Ugalde, A.; Viñas, C.; Teixidor, F.; Sillanpää, R.; Abreu, A.; Xochitiotzi, E.; Farfán, N.; Santillan, R.; Núñez, R. Synthesis and fluorescence emission of neutral and anionic di- and tetra-carboranyl compounds. Dalton Trans. 2011, 40, 7541–7550. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hosmane, N.S. Ionic liquids: Recent advances and applications in boron chemistry. Eur. J. Inorg. Chem. 2017, 38-39, 4369–4377. [Google Scholar] [CrossRef] [Green Version]
- Sivaev, I.B. Nitrogen heterocyclic salts of polyhedral borane anions: From ionic liquids to energetic materials. Chem. Heterocycl. Compd. 2017, 53, 638–658. [Google Scholar] [CrossRef]
- Grimes, R.N. Carboranes, 3rd ed.; Academic Press: London, UK, 2016; pp. 179–257. [Google Scholar] [CrossRef]
- Zakharova, M.V.; Sivaev, I.B.; Anufriev, S.A.; Timofeev, S.V.; Suponitsky, K.Y.; Godovikov, I.A.; Bregadze, V.I. A new approach to the synthesis of functional derivatives of nido-carborane: Alkylation of [9-MeS-nido-7,8-C2B9H11]−. Dalton Trans. 2014, 43, 5044–5053. [Google Scholar] [CrossRef]
- Anufriev, S.A.; Zakharova, M.V.; Sivaev, I.B.; Bregadze, V.I. New carborane-containing acids and amines. Russ. Chem. Bull. 2017, 66, 1643–1649. [Google Scholar] [CrossRef]
- Timofeev, S.V.; Zhidkova, O.B.; Prikaznova, E.A.; Sivaev, I.B.; Semioshkin, A.; Godovikov, I.A.; Starikova, Z.A.; Bregadze, V.I. Direct synthesis of nido-carborane derivatives with pendant functional groups by copper-promoted reactions with dimethylalkylamines. J. Organomet. Chem. 2014, 757, 21–27. [Google Scholar] [CrossRef]
- Druzina, A.A.; Zhidkova, O.B.; Dudarova, N.V.; Kosenko, I.D.; Ananyev, I.V.; Timofeev, S.V.; Bregadze, V.I. Synthesis and structure of nido-carboranyl azide and its “click” reactions. Molecules 2021, 26, 530. [Google Scholar] [CrossRef]
- Druzina, A.A.; Zhidkova, O.B.; Dudarova, N.V.; Nekrasova, N.A.; Suponitsky, K.Y.; Timofeev, S.V.; Bregadze, V.I. Synthesis of zwitter-ionic conjugate of nido-carborane with cholesterol. Molecules 2021, 26, 6687. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, W.; Liu, W.; Wei, X.; Chen, M.; Zhang, X.; Zhang, X.; Liang, Y.; Lu, C.; Yan, H. Metal-free oxidative B-N coupling of nido-carborane with N-heterocycles. Angew. Chem. Int. Ed. 2019, 58, 11886–11892. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jei, B.B.; Scheremetjew, A.; Kuniyil, R.; Ackermann, L. Electrochemical B-H nitrogenation: Access to amino acids and BODIPY-labeled nido-carboranes. Angew. Chem. Int. Ed. 2021, 60, 1482–1487. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, D.; Xu, J.; Li, C.; Lu, C.; Yan, H. Electrooxidative B-H functionalization of nido-carboranes. Angew. Chem. Int. Ed. 2021, 60, 7838–7844. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhao, W.; Xu, S.; Xu, J.; Li, C.; Lu, C.; Yan, H. Photoredox B-H functionalization to selective B-N(sp3) coupling of nido-carborane with primary and secondary amines. Chem. Commun. 2021, 57, 8580–8583. [Google Scholar] [CrossRef] [PubMed]
- Anufriev, S.A.; Sivaev, I.B.; Suponitsky, K.Y.; Godovikov, I.A.; Bregadze, V.I. Synthesis of 10-methylsulfide and 10-alkylmethylsulfonium nido-carborane derivatives: B–H π interactions between the B–H–B hydrogen atom and alkyne group in 10-RC≡CCH2S(Me)-7,8-C2B9H11. Eur. J. Inorg. Chem. 2017, 2017, 4436–4443. [Google Scholar] [CrossRef] [Green Version]
- Erokhina, S.A.; Stogniy, M.Y.; Suponitsky, K.Y.; Kosenko, I.D.; Sivaev, I.B.; Bregadze, V.I. Synthesis of new nido-carborane based carboxylic acids and amines. Polyhedron 2018, 153, 145–151. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Anisimov, A.A.; Sivaev, I.B.; Bregadze, V.I. Nucleophilic addition reactions to the ethylnitrilium derivative of nido-carborane 10-EtC≡N-7,8-C2B9H11. New J. Chem. 2018, 42, 17958–17967. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Anisimov, A.A.; Suponitsky, K.Y.; Sivaev, I.B.; Bregadze, V.I. 10-NCCH2CH2OCH2CH2C≡N-7,8-C2B9H11: Synthesis and reactions with various nucleophiles. Polyhedron 2019, 174, 114170. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Anisimov, A.A.; Godovikov, I.A.; Sivaev, I.B.; Bregadze, V.I. Synthesis of novel carboranyl amidines. J. Organomet. Chem. 2020, 909, 121111. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Markov, V.Y.; Sivaev, I.B. Synthesis and crystal structures of nickel(II) and palladium(II) complexes with o-carboranyl amidine ligands. Dalton Trans. 2021, 50, 4967–4975. [Google Scholar] [CrossRef]
- Semioshkin, A.A.; Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008, 977–992. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives as an efficient synthetic tool for the modification of polyhedral boron hydrides. In Boron Science: New Technologies and Applications; Hosmane, N.S., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 623–637. [Google Scholar]
- Druzina, A.A.; Shmalko, A.V.; Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives of cobalt and iron bis(dicarbollide)s and their use in organic synthesis. Russ. Chem. Rev. 2021, 90, 785–830. [Google Scholar] [CrossRef]
- Young, D.C.; Howe, D.V.; Hawthorne, M.F. Ligand derivatives of (3)-1,2-dicarbadodecahydroundecaborate(-1). J. Am. Chem. Soc. 1969, 91, 859–862. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Abramova, E.N.; Lobanova, I.A.; Sivaev, I.B.; Bragin, V.I.; Petrovskii, P.V.; Tsupreva, V.N.; Sorokina, O.V.; Bregadze, V.I. Synthesis of functional derivatives of 7,8-dicarba-nido-undecaborate anion by ring-opening of its cyclic oxonium derivatives. Collect. Czech. Chem. Commun. 2007, 72, 1676–1688. [Google Scholar] [CrossRef]
- Zakharkin, L.I.; Kalinin, V.N.; Zhigareva, G.G. Oxidation of dicarbadodecahydronidoundecaborate anions by mercury chloride in tetrahydrofuran and pyridine. Bull. Acad. Sci. USSR Div. Chem. Sci. 1979, 28, 2198–2199. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Sivaev, I.B.; Malysheva, Y.B.; Bregadze, V.I. Synthesis of tetrahydropyran oxonium derivative of 7,8-dicarba-nido-undecaborane anion [10-(CH2)5O-7,8-C2B9H11]. Vestnik N. I. Lobachevskiy Nizhegorod Univ. 2013, 4, 115–117. Available online: http://www.unn.ru/pages/e-library/vestnik/99999999_West_2013_4(1)/19.pdf (accessed on 30 December 2021).
- Laskova, J.; Kosenko, I.; Serdyukov, A.; Sivaev, I.; Bregadze, V.I. Synthesis of naphthalimide derivatives of closo-dodecaborate and nido-carborane. J. Organomet. Chem. 2022, 959, 122186. [Google Scholar] [CrossRef]
- Sivaev, I.B.; Stogniy, M.Y. Mercury derivatives of polyhedral boranes, carboranes, and metallacarboranes. Russ. Chem. Bull. 2019, 68, 217–253. [Google Scholar] [CrossRef]
- Colquhoun, H.M.; Greenhough, T.J.; Wallbridge, M.G.H. Carbaborane derivatives of the late- and post-transition elements. Part 2. Dicarbaundecaboranyl compounds of copper(I), gold(I), and mercury(II); the crystal and molecular structure of 3-triphenylphosphine-3-mercura-1,2-dicarbadodecaborane(II), a pseudo-σ-bonded metallacarbaborane. J. Chem. Soc. Dalton Trans. 1979, 619–628. [Google Scholar] [CrossRef]
- Teixidor, F.; Ayllon, J.A.; Viñas, C.; Kivekäs, R.; Sillanpää, R.; Casabo, J. Mercury coordination to Exo-dithio-7,8-dicarba-nido-undecaborate derivatives. J. Organomet. Chem. 1994, 483, 153–157. [Google Scholar] [CrossRef]
- Shaw, K.F.; Reid, B.D.; Welch, A.J. Synthesis and characterisation of metal complexes of ether carbaboranes. Molecular structures of d6 ML3, d8 ML2 and d10 ML complexes of mono- and di-ether C2B9 carbaborane ligands, showing the progressive importance of secondary M…O bonding. J. Organomet. Chem. 1994, 482, 207–220. [Google Scholar] [CrossRef]
- Řezácová, P.; Pokorná, J.; Brynda, J.; Kožíšek, M.; Cígler, P.; Lepšík, M.; Fanfrlík, J.; Řezáč, J.; Šašková, K.G.; Sieglová, I.; et al. Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes. J. Med. Chem. 2009, 52, 7132–7141. [Google Scholar] [CrossRef]
- Frank, R.; Auer, H.; Hey-Hawkins, E. Functionalization of the nido-dicarbaborate anion nido-7,8-C2B9H12− by hydride abstraction. J. Organomet. Chem. 2013, 747, 217–224. [Google Scholar] [CrossRef]
- Plešek, J.; Jelínek, T.; Mareš, F.; Heřmánek, S. Unique dialkylsulfoniomethylation of the 7,8-C2B9H12− ion to the 9-R2S-CH2-7,8-C2B9H11 zwitterions by formaldehyde and dialkyl sulfides. General synthesis of the compounds 10-R2E-7,8-C2B9H11 (E = O, S). Collect. Czech. Chem. Commun. 1993, 58, 1534–1547. [Google Scholar] [CrossRef]
- Bakardjiev, M.; El Anwar, S.; Bavol, D.; Růžičková, Z.; Grüner, B. Focus on chemistry of the 10-dioxane-nido-7,8-dicarba-undecahydrido undecaborate zwitterion; exceptionally easy abstraction of hydrogen bridge and double-action pathways observed in ring cleavage reactions with OH− as nucleophile. Molecules 2020, 25, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stogniy, M.Y.; Erokhina, S.A.; Kosenko, I.D.; Semioshkin, A.A.; Sivaev, I.B. Dimethyloxonium and methoxy derivatives of nido-carborane and metal complexes thereof. Inorganics 2019, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Shmal’ko, A.V.; Anufriev, S.A.; Anisimov, A.A.; Stogniy, M.Y.; Sivaev, I.B.; Bregadze, V.I. Synthesis of cobalt and nickel 6,6′-diphenylbis(dicarbollides). Russ. Chem. Bull. 2019, 68, 1239–1247. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Anufriev, S.A.; Bogdanova, E.V.; Sivaev, I.B.; Bregadze, V.I. Mercury(II) chloride in the synthesis of nido-carborane derivatives with B-N, B-O and B-S bonds. Russ. Chem. Bull. 2022, 71, 91–101. [Google Scholar]
- Stogniy, M.Y.; Anufriev, S.A.; Shmal’ko, A.V.; Antropov, S.M.; Anisimov, A.A.; Suponitsky, K.Y.; Filippov, O.A.; Sivaev, I.B. The unexpected reactivity of 9-iodo-nido-carborane: From nucleophilic substitution reactions to the synthesis of tricobalt tris(dicarbollide) Na[4,4′,4′’-(MeOCH2CH2O)3-3,3′,3′’-Co3(μ3-O)(μ3-S)(1,2-C2B9H10)3]. Dalton Trans. 2021, 50, 2671–2688. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Sivaev, I.B.; Petrovskii, P.V.; Bregadze, V.I. Halogenation of the 7,8-dicarba-nido-undecaborate anion derivatives [10-RO-7,8-C2B9H11]−. Russ. Chem. Bull. 2012, 82, 91–94. [Google Scholar] [CrossRef]
- Serdyukov, A.; Kosenko, I.; Druzina, A.; Grin, M.; Mironov, A.F.; Bregadze, V.I.; Laskova, J. Anionic polyhedral boron clusters conjugates with 7-diethylamino-4-hydroxycoumarin. Synthesis and lipophilicity determination. J. Organomet. Chem. 2021, 946–947, 121905. [Google Scholar] [CrossRef]
- Stogniy, M.Y.; Kazakov, G.S.; Sivaev, I.B.; Bregadze, V.I. Synthesis of podands with nido-carboranyl groups as a basis for construction of crown ethers with an incorporated metallacarborane moiety. Russ. Chem. Bull. 2013, 3, 699–704. [Google Scholar] [CrossRef]
- Kazakov, G.S.; Stogniy, M.Y.; Sivaev, I.B.; Suponitsky, K.Y.; Godovikov, I.A.; Kirilin, A.D.; Bregadze, V.I. Synthesis of crown ethers with the incorporated cobalt bis(dicarbollide) fragment. J. Organomet. Chem. 2015, 798, 196–203. [Google Scholar] [CrossRef]
- Olejniczak, A.; Wojtczak, B.; Lesnikowski, Z.J. 2′-Deoxyadenosine bearing hydrophobic carborane pharmacophore nucleosides. Nucleotides Nucleic Acids 2007, 26, 1611–1613. [Google Scholar] [CrossRef] [PubMed]
- Wojtczak, B.A.; Andrysiak, A.; Grüner, B.; Lesnikowski, Z.J. “Chemical ligation”: A versatile method for nucleoside modification with boron clusters. Chem. Eur. J. 2008, 14, 10675–10682. [Google Scholar] [CrossRef] [PubMed]
- Stanislav, I.; Presolski, V.; Hong, P.; Finn, M.G. Copper-catalyzed azide-alkyne click chemistry for bioconjugation. Curr. Protoc. Chem. Biol. 2011, 3, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Astruc, D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev. 2011, 255, 2933–2945. [Google Scholar] [CrossRef]
- Jiang, Z.; He, H.; Liu, H.; Thayumanavan, S. Azide-terminated RAFT polymers for biological applications. Curr. Protoc. Chem. Biol. 2020, 12, e85. [Google Scholar] [CrossRef]
- Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev. 2016, 116, 3086–3240. [Google Scholar] [CrossRef]
- Druzina, A.A.; Stogniy, M.Y. Synthesis of cholesterol derivatives based on closo- and nido-carboranes. Russ. Chem. Bull. 2021, 70, 527–532. [Google Scholar] [CrossRef]
- Shmal’ko, A.V.; Stogniy, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9878. [Google Scholar] [CrossRef] [PubMed]
- Šubrtová, V.; Petříček, V.; Hummel, L. Structure of the zwitterionic 10-[2-(dimethylsulfonioethoxy)ethoxy]undecahydro-7,8-dicarba-nido-undecaborate(1-). Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1989, 45, 1964–1966. [Google Scholar] [CrossRef]
- Gómez-Saso, M.; Mullica, D.F.; Sappenfield, E.; Stone, F.G.A. Reaction of nido-7,8-C2B9H13 with pentacarbonyl(methyl)manganese: Crystal structure of the charge-compensated complex [Mn(CO)3{η5-7,8-C2B9H10-10-O(CH2)4}]. Polyhedron 1996, 15, 793–801. [Google Scholar] [CrossRef]
- Hata, M.; Kautz, J.A.; Lu, X.L.; McGrath, T.D.; Stone, F.G.A. Revisiting [Mn(CO)3(η5-nido-7,8-C2B9H11)]−, the dicarbollide analogue of [(η5-C5H5)Mn(CO)3]: Reactivity studies leading to boron atom functionalization. Organometallics 2004, 23, 3590–3602. [Google Scholar] [CrossRef]
- Perekalin, D.S.; Lyssenko, K.A.; Kudinov, A.R.; Corsini, M.; Fabrizi de Biani, F. Synthesis of 13-vertex dimetallacarboranes by electrophilic insertion into 12-vertex ruthenacarboranes. Dalton Trans. 2017, 46, 15710–15718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullica, D.F.; Sappenfield, E.L.; Stone, F.G.A.; Woollam, S.F. Allyl carborane complexes of molybdenum and tungsten: Cage-hydride abstraction reactions in the presence of donor molecules. Organometallics 1994, 13, 157–166. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stogniy, M.Y.; Sivaev, I.B. Synthesis and Reactivity of Cyclic Oxonium Derivatives of nido-Carborane: A Review. Reactions 2022, 3, 172-191. https://doi.org/10.3390/reactions3010013
Stogniy MY, Sivaev IB. Synthesis and Reactivity of Cyclic Oxonium Derivatives of nido-Carborane: A Review. Reactions. 2022; 3(1):172-191. https://doi.org/10.3390/reactions3010013
Chicago/Turabian StyleStogniy, Marina Yu., and Igor B. Sivaev. 2022. "Synthesis and Reactivity of Cyclic Oxonium Derivatives of nido-Carborane: A Review" Reactions 3, no. 1: 172-191. https://doi.org/10.3390/reactions3010013
APA StyleStogniy, M. Y., & Sivaev, I. B. (2022). Synthesis and Reactivity of Cyclic Oxonium Derivatives of nido-Carborane: A Review. Reactions, 3(1), 172-191. https://doi.org/10.3390/reactions3010013