Smart Designs of Anti-Coking and Anti-Sintering Ni-Based Catalysts for Dry Reforming of Methane: A Recent Review
Abstract
:1. Introduction
2. Surface Regulation
Catalyst a) | Preparation Method | Reaction Condition | Methane Conversion | CO2 Conversion | Carbon Formation | Comments | Ref. |
---|---|---|---|---|---|---|---|
Ni/La2O3 | Wet impregnation method | 700 °C; CH4/CO2 = 1 | 70% for CH4 after 50 h | 75% for CO2 after 50 h | 10.3% | Carbon species reacted with the La oxycarbonate to form CO. | [42] |
Ni/MgO-La2O3 | Co-precipitation and impregnation method | 700 °C; CH4/CO2 = 1 | 63% for CH4 after 200 h | 65% for CO2 after 200 h | 0.031 molC/molCH4 | When MgO was added into the Ni/La2O3, more CO2 adsorbed on the surface to react with La2O3 to form monoclinic La2O3CO3. | [48] |
Ce-NiMgAl | Co-precipitation method | 550 °C; CH4/CO2 = 1 | 54.8% for CH4 after 5 h | 37.4% for CO2 after 5 h | Around 90% | CeO2 enhanced the amount of medium and strong basic sites. | [50] |
Ni/SiO2–Ga2O3 | Incipient wetness impregnation method | 700 °C; CH4/CO2 = 1 | 70% for CH4 after 10 h | 79% for CO2 after 10 h | 16.8 mg/gcat | Ga2O3 was added as a promoter to enhance the basicity to facilitate the adsorption of CO2 to form carbonate or bicarbonate. | [51] |
5%Ni/B2O3–Al2O3 | Impregnation method | 700 °C; CH4/CO2 = 1 | 75% for CH4 after 65 h | 67% for CO2 after 65 h | 13% | The borated surface was rich in OH group which promoted the oxidation of carbon deposits. | [52] |
HTNi-Y | Co-precipitation method | 700 °C; CH4/CO2 = 1 | 74% for CH4 after 10 h | 78% for CO2 after 10 h | 75.8% | Y2O3 was added to introduce more weak and medium basic sites on the surface. | [54] |
Y-NiMgAl | Co-precipitation method | 700 °C; CH4/CO2 = 1 | 85% for CH4 after 5 h | 90% for CO2 after 5 h | 35.1% | Basicity increased with the increase loading of Y. | [55] |
La-NiMgAl | Co-precipitation method | 550 °C; CH4/CO2 = 1 | 45% for CH4 after 8 h | 37% for CO2 after 8 h | 87.5% | La dopant enhanced the content of medium and weak basic sites. | [56] |
3. Oxygen Defects
3.1. Rare-Earth Metal Oxides
3.2. Transition Metal Oxides
3.3. Perovskites
Catalyst | Preparation Method | Reaction Condition | Methane Conversion | CO2 Conversion | Carbon Formation | Comments | Ref. |
---|---|---|---|---|---|---|---|
Ni–CaO–ZrO2 | Co-precipitation method | 700 °C; CH4/CO2 = 1 | 73% for CH4 after 35 h | 83% for CO2 after 35 h | NA | The lattice oxygen of ZrO2 reacted with CHx to form CO and H2 and regenerated the Ni active sites. | [59] |
NiRhCe2Zr1.51 | Pseudo sol–gel method | 700 °C; CH4/CO2 = 7:3 | 16% for CH4 after 25 h | 37.5% for CO2 after 25 h | 4–10 mgc/100 mgcat | ZrO2 and CeO2 formed a cubic phase of CexZr1-xO2, generating more oxygen vacancies and higher oxygen storage capacities than tetragonal phase. | [81] |
Ni/CeO2−ZrO2 | Co-precipitation/molten salt synthesis | 750 °C; CH4/CO2 = 1 | 2.56 mmol/(m2·h) | NA | 3.75 × 10−6 mgcoke/(m2·h) | With the increase of Ni concentration, oxygen vacancies increased accordingly. | [82] |
PdO–NiO/Y2O3 | Wet impregnation method | 700 °C; CH4/CO2/O2 = 2/1/1 | 91.11% for CH4 after 24 h | 44.98% for CO2 after 24 h | 16.8 mg/gcat/h | α-oxygen was found on the surface of Y2O3 to activate CH4 and remove the carbon. | [83] |
Ni-SDL (Sr doped La) | Wet impregnation method | 600 °C; CH4/CO2 = 1 | 78% for CH4 after 10 h | 60% for CO2 after 10 h | 50 mg/gcat/h | The addition of small amount of Sr could enhance the surface oxygen species mobility. | [84] |
Ce0.70La0.20Ni0.10O2-δ | Combustion synthesis | 750 °C; CH4/CO2 = 1 | 71% for CH4 after 50 h | 83% for CO2 after 50 h | n.d. | The lattice of CeO2 expanded due to the partial dissolution of La3+ into the lattice structure to generate oxygen vacancies. | [85] |
Ni-ZrO2@SiO2 | Microemulsion method | 800 °C; CH4/CO2 = 1 | 90.5% for CH4 after 240 h | 93.2% for CO2 after 240 h | n.d. | More abundant active oxygen provided by ZrO2 easily accessed to the carbon species and oxidized the coke to form CO. | [89] |
Ni/ZrO2 | Deposition-precipitation method | 700 °C; CH4/CO2 = 1 | 52% for CH4 after 300 min | 59% for CO2 after 300 min | 26.7% | The optimal ratio of surface adsorbed oxygen to lattice oxygen was achieved under H2 treatment. | [90] |
La(CoxNi1-x)0.5Fe0.5O3 | Sol-gel self-combustion method | 750 °C; CH4/CO2 = 1 | 70% for CH4 after 30 h | 80% for CO2 after 30 h | <3 mgc/gcat | Co was doped into LaNiFeO3 to improve the oxygen mobility due to the spin state, multivalent property and oxygen affinity of Co. | [102] |
La0.8Sr0.2Ni0.8Cu0.2O3 | Sol-gel method | 600–800 °C; CH4/CO2 = 1 | 80% for CH4 after 24 h | 80% for CO2 after 24 h | 70 mg/gcat/h | Partial substitution by Sr and Cu generated higher lattice oxygen mobility. | [105] |
La1-xCexNi0.5Fe0.5O3 | Sol-gel self-combustion method | 750 ℃; CH4/CO2 = 1 | 62% for CH4 after 25 h | 72% for CO2 after 25 h | NA | More oxygen vacancies brought by Ce enhanced the oxygen mobility and backfilling of lattice oxygen. | [107] |
4. Interfacial Engineering
4.1. Ni-Metal Alloy Formation
4.1.1. Alloy of Ni and Noble Metals
4.1.2. Alloy of Ni and Transition Metals
4.2. Ni-Support Interaction
Catalyst | Preparation Method | Reaction Condition | Methane Conversion | CO2 Conversion | Carbon Formation | Comments | Ref. |
---|---|---|---|---|---|---|---|
NiCo/CeO2 | Incipient wetness impregnation method | 700 °C; CH4/CO2 = 1 | 64% for CH4 after 300 min | 69% for CO2 after 300 min | 11.5% | When a layer of CeO2 covered the Ni-Co alloys, the promotional effect of Co on the enhanced MSI was cancelled off. | [63] |
Ni/CeO2 | NA | 450 °C; CH4/CO2 = 1 | 10−7 torr CH4 after 80 h | 10−7 torr CO2 after 80 h | NA | Ni and O atoms cooperatively adsorbed the CH4 molecules due to the Ni-Ce solid solution formation. | [65] |
Ni/TiO2 | Impregnation method | 790 °C; CH4/CO2 = 1 | 41% for CH4 initially | 67% for CO2 initially | 8.0 × 10−4 gC/gcat | The surface free energy may be reduced due to the coverage of Ni active sites by the migration of TiOx species. | [108] |
NiPt/Al2O3 | NA | 700 °C; CH4/CO2 = 1 | 85.8% for CH4 after 18 h | 91.2% for CO2 after 18 h | 0.1 molC/molsurface metal/h | Pt monolayer in a core-shell structure with Ni facilitated the oxidation of CH and carbon removal. | [119] |
NiCo/MgO-ZrO2 | Co-precipitation and impregnation method | 600 °C; CH4/CO2 = 1 | 6.6 mol·(g·atom·NiCosurface·s)−1 | NA | NA | For Ni-Co alloy, due to the high affinity of Co for oxygen, CH4 reacted with oxygen atoms to form CH3 and OH species. | [134] |
Fe-Ni/MgAl2O4 | Co-precipitation and incipient wetness impregnation method | 750 °C; CH4/CO2 = 1 | 0.13 molCH4 s−1 molNi−1 after third cycle | NA | 5.02 molCO molNi+Fe−1 | Carbon species on the surface of Ni were oxidized by FeOx to form CO and Fe. | [135] |
Fe-Ni/MgAl2O4 | Co-precipitation and incipient wetness impregnation method | 750 °C; CH4/CO2 = 1 | NA | NA | NA | The redox cycle of Fe/Fe2+ was crucial in inhibiting the carbon formation. | [136] |
Cu–Ni/SiO2 | Hydrothermal process | 700 °C; CH4/CO2 = 1 | 70% for CH4 after 30 h | NA | 3% | When Cu formed alloy with Ni, the metal sintering and carbon formation were alleviated. | [137] |
Ca-promoted Ni/α-Al2O3 | Wetness co-impregnation method | 800 °C; CH4/CO2 = 1 | 84.8% for CH4 after 240 min | 85.5% for CO2 after 240 min | 24.9 mg/gcat/h | Ca promoted the interaction between Ni and Al2O3, thus impeding the metal sintering and improving the dispersion of Ni. | [138] |
AuNi/MgAl2O4 | Sol preparation method | 650 °C; CH4/CO2 = 69:30 | 20% for CH4 after 1000 min | 48% for CO2 after 1000 min | 3 mg | MgAl2O4 spinel structure increased the basicity of the support, so CO2 adsorption will be promoted, and carbon deposition will be alleviated | [145] |
Ni@Ni embedded SiO2 | Self-templating method | 700 °C; CH4/CO2 = 1 | 74% for CH4 after 50 h | 82% for CO2 after 50 h | n.d. | Upon decomposition of the phyllosilicate, highly dispersed Ni particles interacted strongly with the SiO2. | [149] |
Ni/SiO2 | Incipient wetness impregnation method | 700 °C; CH4/CO2 = 1 | 80% for CH4 after 100 h | 85% for CO2 after 100 h | n.d. | Sequential H2-air calcination enhanced Ni dispersion and MSI with SiO2. | [150] |
5. Structural Optimization
5.1. Porous Supports
5.2. Hierarchical Designs
Catalyst a) | Preparation Method | Reaction Condition | Methane Conversion | CO2 Conversion | Carbon Formation | Comments | Ref. |
---|---|---|---|---|---|---|---|
NiCo/SiO2 | Incipient wetness impregnation method | 700 °C; CH4/CO2 = 1 | 73% for CH4 after 30 h | 77% for CO2 after 30 h | n.d. | Homogeneous Ni-Co alloy supported on mesoporous silica was synthesized by oleylamine/oleic acid organic pair. | [133] |
NiPhy (Ni phyllosilicate) hollow sphere (HS) | Hydrothermal method | 700 °C; CH4/CO2 = 1 | 77.5% for CH4 after 70 h | 86.6% for CO2 after 70 h | <5% | Ni phyllosilicates exhibited a unique pore structure with the smallest pore volume and pore size. | [147] |
Ni yolk@Ni@SiO2 | Self-templating method | 700 °C; CH4/CO2 = 1 | 74% for CH4 after 50 h | 82% for CO2 after 50 h | 1.4% | A yolk-shell Ni@SiO2 catalyst increased the TOF by tuning surface area and Ni exposure | [149] |
Ni@C | Wet impregnation method | 700 °C; CH4/CO2 = 1 | 68% for CH4 after 800 min | 80% for CO2 after 800 min | 79.3% | Porous carbon anchored Ni2+ and enhanced dispersion. | [151] |
Ni/SBA-15 | Modified impregnation method | 750 °C; CH4/CO2 = 1 | 87% for CH4 after 34 h | 92% for CO2 after 34 h | 3.8% | Ni-EG complexes were pumped into the pores of SBA-15 by capillary force, hindering the migration of Ni. | [154] |
Ni/SBA-15 | Modified impregnation method | 750 °C; CH4/CO2 = 1 | 85% for CH4 after 40 h | 88% for CO2 after 40 h | 3.63 mgc/gcat | Little sintering took place due to the confinement effect of SBA-15 with ordered channels. | [155] |
Ni/KIT-6 | Impregnation method | 750 °C; CH4/CO2 = 1 | 60% for CH4 after 20 h | 78% for CO2 after 20 h | NA | The micropores were occupied by Ni particles so that the pathways of reactants were blocked despite the high Ni dispersion. | [157] |
Ni/HMS | S0I0 assembly pathways | 700 °C; CH4/CO2 = 1 | 72% for CH4 after 100 h | 84% for CO2 after 100 h | 6.22% | Hexagonal mesoporous silica (HMS) improved the metal dispersion and inhibit sintering by forming Si-O-Ni bonds. | [158] |
NiCo/SBA-15 | Co-precipitation method | 700 °C; CH4/CO2 = 1 | 70% for CH4 after 50 h | 78% for CO2 after 50 h | n.d. | Small particle size (4–5 nm) and high metal dispersions (17–20%) were achieved by the confinement effect of ordered channel of SBA-15. | [159] |
LaxNiyOz/KIT-6 | Sol-gel method | 800 °C; CH4/CO2 = 1 | 88% for CH4 after 60 h | 100% for CO2 after 60 h | 3.41% | Perovskite structures LaNiO3 were also impregnated into the mesoporous SBA-15 supports. | [160] |
Ni (SiyOz)/SiO2 | Colloidal approach | 500 °C; CH4/CO2 = 1.3 | 465 molCO/ h·moltot.Ni | 450 molCO2/ h·moltot.Ni | NA | Colloidal approach was applied by converting Ni-silicide colloids into highly dispersed Ni nanoensembles supported on porous silica. | [163] |
Ni/SiO2 | Incipient wetness impregnation method | 700 °C; CH4/CO2 = 1 | 70% for CH4 after 1000 min | 72% for CO2 after 1000 min | n.d. | Co-ligands to protect Ni from agglomeration by ligand and hydrogen bond and steric hindrance. | [165] |
Ni/SiO2 | Incipient wetness impregnation method | 700 °C; CH4/CO2 = 1 | 70% for CH4 after 20 h | 78% for CO2 after 20 h | 1.8 mgc/gcat h | With a small size, high dispersion and strong MSI, Ni/SiO2 prepared with oleylamine showed the most stable catalytic performances. | [166] |
NiO–MgO–Al2O3 | evaporation induced self-assembly strategy | 700 °C; CH4/CO2 = 1 | 78% for CH4 after 100 h | 83% for CO2 after 100 h | 7.0% | Ni particles were anchored within the pores to alleviate the sintering effect and basicity of support could enhance CO2 adsorption and remove coke. | [167] |
NiO-CeO2-Al2O3 | evaporation induced self-assembly strategy | 700 °C; CH4/CO2 = 1 | 78% for CH4 after 80 h | 73% for CO2 initially | 21.5% | The excellent thermal stability of this mesoporous structures protected Ni from sintering and the redox property of CeO2 oxidized carbon deposits. | [171] |
Silica@Ni@Silica | Ammonia evaporation method | 600 °C; CH4/CO2 = 1 | 44% for CH4 after 24 h | 54% for CO2 after 24 h | 7.6% | With a layer of SiO2 covering the Ni metals, a good activity was achieved at 600 °C over 24 h | [180] |
Ni@SiO2 | Sol-gel process | 750 °C; CH4/CO2 = 1 | 54.1% for CH4 after 25 h | 65.6% for CO2 after 25 h | 1.2% | Strong resistance towards filamentous carbon deposition was exhibited; however, amorphous carbon still formed within the nanocavities | [183] |
Ni@SiO2 | Microemulsion method | 800 °C; CH4/CO2 = 1 | 90% for CH4 after 90 h | 95% for CO2 after 90 h | 4.8% | With a 11.2 nm of thickness, this unique structure exhibited an enhanced conversion and stability with the strong MSI and small satellite Ni particles. | [184] |
Ni@SiO2 | Reverse micelle method | 800 °C; CH4/CO2 = 1 | 87% for CH4 after 100 h | 88% for CO2 after 100 h | NA | Ni particles migrated into the SiO2 shell, leading to the formation of uni-nuclear Ni core embedded in the shell. | [185] |
Silica coated Ni/SiO2 | Microemulsion method | 800 °C; CH4/CO2 = 1 | 42.5% for CH4 after 170 h | 56.6% for CO2 after 170 h | n.d. | To achieve a better anti-sintering property, a layer of silica was coated. | [186] |
Ni@Ni-MgPhy | Hydrothermal method | 700 °C; CH4/CO2 = 1 | 78% for CH4 after 95 h | 81% for CO2 after 95 h | 4.4% after 20 h | By adjusting the duration of treatment, an ideal porosity and basicity could be realized. | [187] |
Ni@Ni-MgPhy | Hydrothermal method | 750 °C; CH4/CO2 = 1 | 85% for CH4 after 72 h | 89% for CO2 after 72 h | n.d. | Strong MSI and the protective layer of mesoporous silica prevented metal sintering. | [188] |
NiMgAl-(LDH)@mesoporous-SiO2 | Hydrothermal and sol-gel method | 750 °C; CH4/CO2 = 1 | 79% for CH4 after 8 h | 88% for CH4 after 8 h | 2.5% | Ni nanoparticles were generated inside the cavity, which were confined by both MgO and silica layer. | [189] |
Cu–Ni@SiO2 | Microemulsion method | 700 °C; CH4/CO2 = 1 | 75% for CH4 after 16 h | NA | NA | Being covered by the silica shell, the sintering of alloys could be alleviated. | [190] |
NiCo@SiO2 | Microemulsion method | 800 °C; CH4/CO2 = 1 | 90% for CH4 after 1000 h | 90% for CO2 after 1000 h | n.d. after 150 h | With the increase of crystallinity of SiO2 and enhanced MSI, the activity could be maintained stable. | [191] |
6. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Das, S.; Ashok, J.; Xi, S.; Borgna, A.; Hidajat, K.; Kawi, S. Highly Dispersed Ni/Silica by Carbonization–Calcination of a Chelated Precursor for Coke-Free Dry Reforming of Methane. ACS Appl. Energy Mater. 2020, 3, 7719–7735. [Google Scholar] [CrossRef]
- Mo, L.; Leong, K.K.M.; Kawi, S. A highly dispersed and anti-coking Ni–La2O3/SiO2 catalyst for syngas production from dry carbon dioxide reforming of methane. Catal. Sci. Technol. 2014, 4, 2107–2114. [Google Scholar] [CrossRef]
- Ashok, J.; Bian, Z.; Wang, Z.; Kawi, S. Ni-phyllosilicate structure derived Ni–SiO2–MgO catalysts for bi-reforming applications: Acidity, basicity and thermal stability. Catal. Sci. Technol. 2018, 8, 1730–1742. [Google Scholar] [CrossRef]
- Oemar, U.; Hidajat, K.; Kawi, S. High catalytic stability of Pd-Ni/Y2O3 formed by interfacial Cl for oxy-CO2 reforming of CH4. Catal. Today 2017, 281, 276–294. [Google Scholar] [CrossRef]
- Dewangan, N.; Hui, W.M.; Jayaprakash, S.; Bawah, A.-R.; Poerjoto, A.J.; Jie, T.; Ashok, J.; Hidajat, K.; Kawi, S. Recent progress on layered double hydroxide (LDH) derived metal-based catalysts for CO2 conversion to valuable chemicals. Catal. Today 2020, 356, 490–513. [Google Scholar] [CrossRef]
- Oemar, U.; Hidajat, K.; Kawi, S. Pd–Ni catalyst over spherical nanostructured Y2O3 support for oxy-CO2 reforming of methane: Role of surface oxygen mobility. Int. J. Hydrogen Energy 2015, 40, 12227–12238. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, Z.; Jiang, B.; Hongmanorom, P.; Zhong, W.; Kawi, S. A review on perovskite catalysts for reforming of methane to hydrogen production. Renew. Sustain. Energy Rev. 2020, 134, 110291. [Google Scholar] [CrossRef]
- Li, Z.; Lin, Q.; Li, M.; Cao, J.; Liu, F.; Pan, H.; Wang, Z.; Kawi, S. Recent advances in process and catalyst for CO2 reforming of methane. Renew. Sustain. Energy Rev. 2020, 134, 110312. [Google Scholar] [CrossRef]
- Das, S.; Pérez-Ramírez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B.C.; Kawi, S. Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004. [Google Scholar] [CrossRef] [PubMed]
- Hongmanorom, P.; Ashok, J.; Zhang, G.; Bian, Z.; Wai, M.H.; Zeng, Y.; Xi, S.; Borgna, A.; Kawi, S. Enhanced performance and selectivity of CO2 methanation over phyllosilicate structure derived Ni-Mg/SBA-15 catalysts. Appl. Catal. B 2021, 282, 119564. [Google Scholar] [CrossRef]
- Wai, M.H.; Ashok, J.; Dewangan, N.; Das, S.; Xi, S.; Borgna, A.; Kawi, S. Design of Ceria Catalysts for Low-Temperature CO Oxidation. ChemCatChem 2020, 12, 1–11. [Google Scholar]
- Ashok, J.; Ang, M.L.; Kawi, S. Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods. Catal. Today 2017, 281, 304–311. [Google Scholar] [CrossRef]
- Ashok, J.; Pati, S.; Hongmanorom, P.; Zhang, T.; Chen, J.; Kawi, S. A review of recent catalyst advances in CO2 methanation processes. Catal. Today 2020, 356, 471–489. [Google Scholar] [CrossRef]
- Bian, Z.; Chan, Y.M.; Yu, Y.; Kawi, S. Morphology dependence of catalytic properties of Ni/CeO2 for CO2 methanation: A kinetic and mechanism study. Catal. Today 2020, 347, 31–38. [Google Scholar] [CrossRef]
- Yu, Y.; Chan, Y.M.; Bian, Z.; Song, F.; Wang, J.; Zhong, Q.; Kawi, S. Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of Ni-CeO2 catalyst: Kinetics and DRIFTS studies. Int. J. Hydrogen Energy 2018, 43, 15191–15204. [Google Scholar] [CrossRef]
- Yu, Y.; Bian, Z.; Song, F.; Wang, J.; Zhong, Q.; Kawi, S. Influence of Calcination Temperature on Activity and Selectivity of Ni–CeO2 and Ni–Ce0.8Zr0.2O2 Catalysts for CO2 Methanation. Top. Catal. 2018, 61, 1514–1527. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, T.; Dewangan, N.; Li, Z.; Das, S.; Pati, S.; Li, Z.; Lin, J.Y.S.; Kawi, S. Catalytic mixed conducting ceramic membrane reactors for methane conversion. React. Chem. Eng. 2020, 5, 1868–1891. [Google Scholar] [CrossRef]
- Wang, Z.; Ashok, J.; Pu, Z.; Kawi, S. Low temperature partial oxidation of methane via BaBi0.05Co0.8Nb0.15O3−δ-Ni phyllosilicate catalytic hollow fiber membrane reactor. Chem. Eng. J. 2017, 315, 315–323. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Z.; Liu, L.; Pati, S.; Wai, M.H.; Kawi, S. Coupling CO2 separation with catalytic reverse water-gas shift reaction via ceramic-carbonate dual-phase membrane reactor. Chem. Eng. J. 2020, 379, 122182. [Google Scholar] [CrossRef]
- Kathiraser, Y.; Wang, Z.; Kawi, S. Oxidative CO2 Reforming of Methane in La0.6Sr0.4Co0.8Ga0.2O3-δ (LSCG) Hollow Fiber Membrane Reactor. Environ. Sci. Technol. 2013, 47, 14510–14517. [Google Scholar] [CrossRef]
- Subhasis, P.; Jangam, A.; Nikita, D.; Chen, T.; Kawi, S. Ultra-thin (~1 μm) Pd–Cu membrane reactor for coupling CO2 hydrogenation and propane dehydrogenation applications. J. Membr. Sci. 2020, 595, 117496. [Google Scholar]
- Hu, J.; Poelman, H.; Marin, G.B.; Detavernier, C.; Kawi, S.; Galvita, V.V. FeO controls the sintering of iron-based oxygen carriers in chemical looping CO2 conversion. J. CO2 Util. 2020, 40, 101216. [Google Scholar] [CrossRef]
- Liu, L.; Das, S.; Chen, T.; Dewangan, N.; Ashok, J.; Xi, S.; Borgna, A.; Li, Z.; Kawi, S. Low temperature catalytic reverse water-gas shift reaction over perovskite catalysts in DBD plasma. Appl. Catal. B 2020, 265, 118573. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Z.; Das, S.; Xi, S.; Kawi, S. LaNiO3 as a precursor of Ni/La2O3 for reverse water-gas shift in DBD plasma: Effect of calcination temperature. Energy Convers. Manag. 2020, 206, 112475. [Google Scholar] [CrossRef]
- Maneerung, T.; Hidajat, K.; Kawi, S. Co-production of hydrogen and carbon nanofibers from catalytic decomposition of methane over LaNi(1−x)MxO3−α perovskite (where M = Co, Fe and X = 0, 0.2, 0.5, 0.8, 1). Int. J. Hydrogen Energy 2015, 40, 13399–13411. [Google Scholar] [CrossRef]
- Bian, Z.F.; Das, S.; Wai, M.H.; Hongmanorom, P.; Kawi, S. A Review on Bimetallic Nickel-Based Catalysts for CO2 Reforming of Methane. ChemPhysChem 2017, 18, 3117–3134. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.W.; Li, M.; Bian, Z.F.; Kathiraser, Y.; Kawi, S. Design of highly stable and selective core/yolk–shell nanocatalysts-A review. Appl. Catal. B 2016, 188, 324–341. [Google Scholar] [CrossRef]
- Kathiraser, Y.; Oemar, U.; Saw, E.T.; Li, Z.W.; Kawi, S. Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts. Chem. Eng. J. 2015, 278, 62–78. [Google Scholar] [CrossRef]
- Bian, Z.F.; Kawi, S. Preparation, characterization and catalytic application of phyllosilicate: A review. Catal. Today 2020, 339, 3–23. [Google Scholar] [CrossRef]
- Kawi, S.; Kathiraser, Y.; Ni, J.; Oemar, U.; Li, Z.W.; Saw, E.T. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane. ChemSusChem 2015, 8, 3556–3575. [Google Scholar] [CrossRef]
- Li, Z.W.; Das, S.; Hongmanorom, P.; Dewangan, N.; Wai, M.H.; Kawi, S. Silica-based micro- and mesoporous catalysts for dry reforming of methane. Catal. Sci. Technol. 2018, 8, 2763–2778. [Google Scholar] [CrossRef]
- Bradford, M.C.J.; Vannice, M.A. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity. Appl. Catal. A 1996, 142, 73–96. [Google Scholar] [CrossRef]
- Gadalla, A.M.; Bower, B. The role of catalyst support on the activity of nickel for reforming methane with CO2. Chem. Eng. Sci. 1988, 43, 3049–3062. [Google Scholar] [CrossRef]
- Chubb, T.A. Characteristics of CO2/CH4 reforming-methanation cycle relevant to the solchem thermochemical power system. Sol. Energy 1980, 24, 342–345. [Google Scholar] [CrossRef]
- McCrary, J.H.; McCrary, G.E.; Chubb, T.A.; Nemecek, J.J.; Simmons, D.E. An experimental study of the CO2-CH4 reforming-methanation cycle as a mechanism for converting and transporting solar energy. Sol. Energy 1982, 29, 141–151. [Google Scholar] [CrossRef]
- Kaichev, V.V.; Gladky, A.Y.; Prosvirin, I.P.; Saraev, A.A.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R.; Bukhtiyarov, V.I. In situ XPS study of self-sustained oscillations in catalytic oxidation of propane over nickel. Surf. Sci. 2013, 609, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Zhao, J.; Chen, L.W.; Lin, J.Y.; Kawi, S. Lewis Acid Sites Stabilized Nickel Catalysts for Dry (CO2) Reforming of Methane. ChemCatChem 2016, 8, 3732–3739. [Google Scholar] [CrossRef]
- Wang, C.; Sun, N.; Kang, M.; Wen, X.; Zhao, N.; Xiao, F.; Wei, W.; Zhao, T.; Sun, Y. The bi-functional mechanism of CH4 dry reforming over a Ni–CaO–ZrO2 catalyst: Further evidence via the identification of the active sites and kinetic studies. Catal. Sci. Technol. 2013, 3, 2435–2443. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Arafat, Y.; Atia, H.; Ibrahim, A.A.; Ha, Q.L.M.; Schneider, M.; M-Pohl, M.; Fakeeha, A.H. CO2-reforming of methane to produce syngas over Co-Ni/SBA-15 catalyst: Effect of support modifiers (Mg, La and Sc) on catalytic stability. J. CO2 Util. 2017, 21, 395–404. [Google Scholar] [CrossRef]
- Phan, T.S.; Sane, A.R.; de Vasconcelos, B.R.; Nzihou, A.; Sharrock, P.; Grouset, D.; Minh, D.P. Hydroxyapatite supported bimetallic cobalt and nickel catalysts for syngas production from dry reforming of methane. Appl. Catal. B 2018, 224, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lian, J.; Li, L.; Peng, C.; Liu, W.M.; Xu, X.L.; Fang, X.Z.; Wang, Z.; Wang, X.; Peng, H.E. LaNiO3 nanocube embedded in mesoporous silica for dry reforming of methane with enhanced coking resistance. Microporous Mesoporous Mater. 2018, 266, 189–197. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, D.; Tian, H.; Zeng, L.; Zhao, J.-Z.; Gong, J.L. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl. Catal. B 2017, 202, 683–694. [Google Scholar] [CrossRef]
- Zhang, Z.; Verykios, X.E.; MacDonald, S.; Affrossman, S. Comparative Study of Carbon Dioxide Reforming of Methane to Synthesis Gas over Ni/La2O3 and Conventional Nickel-Based Catalysts. J. Phys. Chem. 1996, 100, 744–752. [Google Scholar] [CrossRef]
- Jabbour, K.; Massiani, P.; Davidson, A.; Casale, S.; El Hassan, N. Ordered mesoporous “one-pot” synthesized Ni-Mg(Ca)-Al2O3 as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM). Appl. Catal. B 2017, 201, 527–542. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.Z.; Zhang, J.; Liu, J.J.; Wang, C.; Huang, Q.; Xu, X.L.; Peng, H.G.; Liu, W.M.; Wang, X.; Zhou, W.F. Methane dry reforming over Ni/Mg-Al-O: On the significant promotional effects of rare earth Ce and Nd metal oxides. J. CO2 Util. 2018, 25, 242–253. [Google Scholar] [CrossRef]
- Zuo, Z.J.; Liu, S.Z.; Wang, Z.C.; Liu, C.; Huang, W.; Huang, J.; Liu, P. Dry Reforming of Methane on Single-Site Ni/MgO Catalysts: Importance of Site Confinement. ACS Catal. 2018, 8, 9821–9835. [Google Scholar] [CrossRef]
- Feng, X.Q.; Liu, J.; Zhang, P.; Zhang, Q.; Xu, L.Y.; Zhao, L.P.; Song, X.F.; Gao, L. Highly coke resistant Mg–Ni/Al2O3 catalyst prepared via a novel magnesiothermic reduction for methane reforming catalysis with CO2: The unique role of Al–Ni intermetallics. Nanoscale 2019, 11, 1262–1272. [Google Scholar] [CrossRef]
- Ni, J.; Chen, L.W.; Lin, J.Y.; Schreyer, M.K.; Wang, Z.; Kawi, S. High performance of Mg–La mixed oxides supported Ni catalysts for dry reforming of methane: The effect of crystal structure. Int. J. Hydrogen Energy 2013, 38, 13631–13642. [Google Scholar] [CrossRef]
- Li, K.; He, F.; Yu, H.M.; Wang, Y.; Wu, Z.J. Theoretical study on the reaction mechanism of carbon dioxide reforming of methane on La and La2O3 modified Ni(111) surface. J. Catal. 2018, 364, 248–261. [Google Scholar] [CrossRef]
- Dębek, R.; Motak, M.; Galvez, M.E.; Da Costa, P.; Grzybek, T. Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: On the effect of Ce promotion and feed gas composition. Reac. Kinet. Mech. Cat. 2017, 121, 185–208. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.Y.; Kuai, P.; Liu, Y.; Ge, Q.; Liu, C.J. Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Nicatalyst. Energy Environ. Sci. 2010, 3, 1322–1325. [Google Scholar] [CrossRef]
- Ni, J.; Chen, L.; Lin, J.; Kawi, S. Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH4. Nano Energy 2012, 1, 674–686. [Google Scholar] [CrossRef]
- Dębek, R.; Motak, M.; Galvez, M.E.; Grzybek, T.; Da Costa, P. Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts at low temperature CO2 methane reforming. Int. J. Hydrogen Energy 2017, 42, 23556–23567. [Google Scholar] [CrossRef]
- Świrk, K.; Gálvez, M.E.; Motak, M.; Grzybek, T.; Rønning, M.; Da Costa, P. Yttrium promoted Ni-based double-layered hydroxides for dry methane reforming. J. CO2 Util. 2018, 27, 247–258. [Google Scholar] [CrossRef]
- Świrk, K.; Zhang, H.; Li, S.; Chen, Y.; Rønning, M.; Motak, M.; Grzybek, T.; Da Costa, P. Carbon-resistant NiO-Y2O3-nanostructured catalysts derived from double-layered hydroxides for dry reforming of methane. Catal. Today 2020, in press. [Google Scholar]
- Liu, H.; Wierzbicki, D.; Debek, R.; Motak, M.; Grzybek, T.; Da Costa, P.; Gálvez, M.E. La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures. Fuel 2016, 182, 8–16. [Google Scholar] [CrossRef]
- Sun, G.B.; Hidajat, K.; Wu, X.S.; Kawi, S. A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts. Appl. Catal. B 2008, 81, 303–312. [Google Scholar] [CrossRef]
- Lian, Z.; Olanrele, S.O.; Si, C.W.; Yang, M.; Li, B. Critical Role of Interfacial Sites between Nickel and CeO2 Support in Dry Reforming of Methane: Revisit of Reaction Mechanism and Origin of Stability. J. Phys. Chem. C 2020, 124, 5118–5124. [Google Scholar] [CrossRef]
- Sun, N.; Wen, X.; Wang, F.; Peng, W.; Zhao, N.; Xiao, F.K.; Wei, W.; Sun, Y.H.; Kang, J.T. Catalytic performance and characterization of Ni–CaO–ZrO2 catalysts for dry reforming of methane. Appl. Surf. Sci. 2011, 257, 9169–9176. [Google Scholar] [CrossRef]
- Tao, Q.Q.; Wang, Z.D.; Bandara, J.; Guo, C.Q.; Gan, Y.; Zhang, L.; Lu, Z.X.; Tan, H.Y.; Yan, C.F. Enhanced catalytic activity of Ni–Mo2C/La2O3–ZrO2 bifunctional catalyst for dry reforming of methane. J. Mater. Sci. 2018, 53, 14559–14572. [Google Scholar] [CrossRef]
- Jang, W.J.; Shim, J.O.; Kim, H.M.; Yoo, S.Y.; Roh, H.S. A review on dry reforming of methane in aspect of catalytic properties. Catal. Today 2019, 324, 15–26. [Google Scholar] [CrossRef]
- Wang, F.; Xu, L.; Yang, J.; Zhang, J.; Zhang, L.; Li, H.; Zhao, Y.; Li, H.X.; Wu, K.; Xu, G.Q.; et al. Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction. Catal. Today 2017, 281, 295–303. [Google Scholar] [CrossRef]
- Ay, H.; Üner, D. Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts. Appl. Catal. B 2015, 179, 128–138. [Google Scholar] [CrossRef]
- Elsayed, N.H.; Roberts, N.R.M.; Joseph, B.; Kuhn, J.N. Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts. Appl. Catal. B 2015, 179, 213–219. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Grinter, D.C.; Lustemberg, P.G.; Nguyen-Phan, T.-D.; Zhou, Y.H.; Luo, S.; Waluyo, I.; Crumlin, E.J.; Stacchiola, D.J.; Zhou, J.; et al. Dry Reforming of Methane on a Highly-Active Ni-CeO2 Catalyst: Effects of Metal-Support Interactions on C−H Bond Breaking. Angew. Chem. Int. Ed. 2016, 55, 7455–7459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasiliades, M.A.; Makri, M.M.; Djinović, P.; Erjavec, B.; Pintar, A.; Efstathiou, A.M. Dry reforming of methane over 5 wt% Ni/Ce1-xPrxO2-δ catalysts: Performance and characterisation of active and inactive carbon by transient isotopic techniques. Appl. Catal. B 2016, 197, 168–183. [Google Scholar] [CrossRef]
- Lustemberg, P.G.; Ramírez, P.J.; Liu, Z.Y.; Gutiérrez, R.A.; Grinter, D.G.; Carrasco, J.; Senanayake, S.D.; Rodriguez, J.A.; Ganduglia-Pirovano, M.V. Room-Temperature Activation of Methane and Dry Re-forming with CO2 on Ni-CeO2(111) Surfaces: Effect of Ce3+ Sites and Metal–Support Interactions on C–H Bond Cleavage. ACS Catal. 2016, 6, 8184–8191. [Google Scholar] [CrossRef]
- Löfberg, A.; Guerrero-Caballero, J.; Kane, T.; Rubbens, A.; Jalowiecki-Duhamel, L. Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production. Appl. Catal. B 2017, 212, 159–174. [Google Scholar] [CrossRef]
- Akri, M.; Pronier, S.; Chafik, T.; Achak, O.; Granger, P.; Simon, P.; Trentesaux, M.; Batiot-Dupeyrat, C. Development of nickel supported La and Ce-natural illite clay for autothermal dry reforming of methane: Toward a better resistance to deactivation. Appl. Catal. B 2017, 205, 519–531. [Google Scholar] [CrossRef]
- Gurav, H.R.; Dama, S.; Samuel, V.; Chilukuri, S. Influence of preparation method on activity and stability of Ni catalysts supported on Gd doped ceria in dry reforming of methane. J. CO2 Util. 2017, 20, 357–367. [Google Scholar] [CrossRef]
- Shamskar, F.R.; Meshkani, F.; Rezaei, M. Preparation and characterization of ultrasound-assisted co-precipitated nanocrystalline La-, Ce-, Zr –promoted Ni-Al2O3 catalysts for dry reforming reaction. J. CO2 Util. 2017, 22, 124–134. [Google Scholar] [CrossRef]
- Le Saché, E.; Santos, J.L.; Smith, T.J.; Centeno, M.A.; Arellano-Garcia, H.; Odriozola, J.A.; Reina, T.R. Multicomponent Ni-CeO2 nanocatalysts for syngas production from CO2/CH4 mixtures. J. CO2 Util. 2018, 25, 68–78. [Google Scholar] [CrossRef]
- Damyanova, S.; Pawelec, B.; Palcheva, R.; Karakirova, Y.; Sanchez, M.C.C.; Tyuliev, G.; Gaigneaux, E.; Fierro, J.L.G. Structure and surface properties of ceria-modified Ni-based catalysts for hydrogen production. Appl. Catal. B 2018, 225, 340–353. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Akhtamberdinova, Z.; Chen, X.P.; Jiang, G.D.; Liu, D. Dry Reforming of Shale Gas and Carbon Dioxide with Ni-Ce-Al2O3 Catalyst: Syngas Production Enhanced over Ni-CeOx Formation. ChemCatChem 2018, 10, 4689–4698. [Google Scholar] [CrossRef]
- Luisetto, I.; Tuti, S.; Romano, C.; Boaro, M.; Di Bartolomeo, E.; Kesavan, J.K.; Kumar, S.M.S.; Selvakumar, K. Dry reforming of methane over Ni supported on doped CeO2: New insight on the role of dopants for CO2 activation. J. CO2 Util. 2019, 30, 63–78. [Google Scholar] [CrossRef]
- Yan, X.L.; Hu, T.; Liu, P.; Li, S.; Zhao, B.; Zhang, Q.; Jiao, W.Y.; Chen, S.; Wang, P.F.; Lu, J.J.; et al. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2. Appl. Catal. B 2019, 246, 221–231. [Google Scholar] [CrossRef]
- Sagar, T.V.; Padmakar, D.; Lingaiah, N.; Prasad, P.S.S. Influence of Solid Solution Formation on the Activity of CeO2 Supported Ni–Cu Mixed Oxide Catalysts in Dry Reforming of Methane. Catal. Lett. 2019, 149, 2597–2606. [Google Scholar] [CrossRef]
- Abdulrasheed, A.; Jalil, A.A.; Gambo, Y.; Ibrahim, M.; Hambali, H.U.; Hamid, M.Y.S. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew. Sustain. Energy Rev. 2019, 108, 175–193. [Google Scholar] [CrossRef]
- Macario, A.; Frontera, P.; Candamano, S.; Crea, F.; De Luca, P.; Antonucci, P.L. Nanostructured Catalysts for Dry-Reforming of Methane. J. Nanosci. Nanotechnol. 2019, 19, 3135–3147. [Google Scholar] [CrossRef]
- Laosiripojana, N.; Assabumrungrat, S. Catalytic dry reforming of methane over high surface area ceria. Appl. Catal. B 2005, 60, 107–116. [Google Scholar] [CrossRef]
- Horváth, A.; Stefler, G.; Geszti, O.; Kienneman, A.; Pietraszek, A.; Guczi, L. Methane dry reforming with CO2 on CeZr-oxide supported Ni, NiRh and NiCo catalysts prepared by sol–gel technique: Relationship between activity and coke formation. Catal. Today 2011, 169, 102–111. [Google Scholar] [CrossRef]
- Safavinia, B.; Wang, Y.M.; Jiang, C.Y.; Roman, C.; Darapaneni, P.; Larriviere, J.; Cullen, D.A.; Dooley, K.M.; Dorman, J.A. Enhancing CexZr1–xO2 Activity for Methane Dry Reforming Using Subsurface Ni Dopants, Role of catalyst support over PdO–NiO catalysts on catalyst activity and stability for oxy-CO2 reforming of methane. ACS Catal. 2020, 10, 4070–4079. [Google Scholar] [CrossRef]
- Oemar, U.; Hidajat, K.; Kawi, S. Role of catalyst support over PdO–NiO catalysts on catalyst activity and stability for oxy-CO2 reforming of methane. Appl. Catal. A 2011, 402, 176–187. [Google Scholar] [CrossRef]
- Sutthiumporn, K.; Kawi, S. Promotional effect of alkaline earth over Ni–La2O3 catalyst for CO2 reforming of CH4: Role of surface oxygen species on H2 production and carbon suppression. Int. J. Hydrogen Energy 2011, 36, 14435–14446. [Google Scholar] [CrossRef]
- Pino, L.; Italiano, C.; Vita, A.; Laganà, M.; Recupero, V. Ce0.70La0.20Ni0.10O2-δ catalyst for methane dry reforming: Influence of reduction temperature on the catalytic activity and stability. Appl. Catal. B 2017, 218, 779–792. [Google Scholar] [CrossRef]
- Yang, W.Q.; Wang, Z.B.; Tan, W.Z.; Peng, R.R.; Wu, X.J.; Lu, Y.L. First principles study on methane reforming over Ni/TiO2(110) surface in solid oxide fuel cells under dry and wet atmospheres. Sci. China Mater. 2020, 63, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Steib, M.; Zhang, Q.; Tiefenbacher, K.; Horváth, A.; Jentys, A.; Liu, Y.; Lercher, J.A. Design of stable Ni/ZrO2 catalysts for dry reforming of methane. J. Catal. 2017, 356, 147–156. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, L.; Wang, Y.; Wang, S.H.; Zhao, Q.; Mao, D.H.; Hu, C.W. Low-Temperature Catalytic CO2 Dry Reforming of Methane on Ni-Si/ZrO2 Catalyst. ACS Catal. 2018, 8, 6495–6506. [Google Scholar] [CrossRef]
- Liu, W.M.; Li, L.; Zhang, X.H.; Wang, Z.; Wang, X.; Peng, H.G. Design of Ni-ZrO2@SiO2 catalyst with ultra-high sintering and coking resistance for dry reforming of methane to prepare syngas. J. CO2 Util. 2018, 27, 297–307. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.F.; Wu, Y.Q.; Pan, J.X.; Zhang, Q.D.; Tan, Y.S.; Han, Y.Z. Insight into the effects of the oxygen species over Ni/ZrO2 catalyst surface on methane reforming with carbon dioxide. Appl. Catal. B 2019, 244, 427–437. [Google Scholar] [CrossRef]
- Peña, M.A.; Fierro, J.L.G. Chemical Structures and Performance of Perovskite Oxides. Chem. Rev. 2001, 101, 1981–2018. [Google Scholar] [CrossRef] [PubMed]
- Royer, S.; Duprez, D. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. ChemCatChem 2011, 3, 24–65. [Google Scholar] [CrossRef]
- Kim, C.H.; Qi, G.; Dahlbery, K.; Li, W. Strontium-Doped Perovskites Rival Platinum Catalysts for Treating NOx in Simulated Diesel Exhaust. Science 2010, 327, 1624–1627. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cuaspud, J.; Perez, C.A.; Schmal, M. Nanostructured La0.8Sr0.2Fe0.8Cr0.2O3 Perovskite for the Steam Methane Reforming. Catal. Lett. 2016, 146, 2504–2515. [Google Scholar] [CrossRef]
- Gomez-Cuaspud, J.A.; Vera-Lopez, E.; Carda-Castello, J.B.; Barrachina-Albert, E. One-step hydrothermal synthesis of LaFeO3 perovskite for methane steam reforming. React. Kinet. Mech. Catal. 2016, 120, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Di Bartolomeo, E.; Basoli, F.; Luisetto, I.; Tuti, S.; Zurlo, F.; Salehi, Z.; Licoccia, S. Ni and Ni-Co La0.8Sr0.2Ga0.8Mg0.2O3−δ infiltrated cells in H2 and CH4/CO2 mixture. Appl. Catal. B 2016, 191, 1–7. [Google Scholar] [CrossRef]
- Messaoudi, H.; Thomas, S.; Djaidja, A.; Slyemi, S.; Barama, A. Study of LaxNiOy and LaxNiOy/MgAl2O4 catalysts in dry reforming of methane. J. CO2 Util. 2018, 24, 40–49. [Google Scholar] [CrossRef]
- Kang, D.; Lim, H.S.; Lee, M.; Lee, J.W. Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane. Appl. Energy 2018, 211, 174–186. [Google Scholar] [CrossRef]
- Fan, M.S.; Abdullah, A.Z.; Bhatia, S. Catalytic Technology for Carbon Dioxide Reforming of Methane to Synthesis Gas. ChemCatChem 2009, 1, 192–208. [Google Scholar] [CrossRef]
- Pakhare, D.; Schwartz, V.; Abdelsayed, V.; Haynes, D.; Shekhawat, D.; Puston, J.; Spivey, J. Kinetic and mechanistic study of dry (CO2) reforming of methane over Rh-substituted La2Zr2O7 pyrochlores. J. Catal. 2014, 316, 78–92. [Google Scholar] [CrossRef]
- Wang, H.Q.; Dong, X.L.; Zhao, T.T.; Yu, H.R.; Li, M. Dry reforming of methane over bimetallic Ni-Co catalyst prepared from La(CoxNi1-x)0.5Fe0.5O3 perovskite precursor: Catalytic activity and coking resistance. Appl. Catal. B 2019, 245, 302–313. [Google Scholar] [CrossRef]
- Yang, E.H.; Noh, Y.S.; Hong, G.H.; Moon, D.J. Combined steam and CO2 reforming of methane over La1-xSrxNiO3 perovskite oxides. Catal. Today. 2018, 299, 242–250. [Google Scholar] [CrossRef]
- Rynkowski, J.; Samulkiewicz, P.; Ladavos, A.; Pomonis, P. Catalytic performance of reduced La2−xSrxNiO4 perovskite-like oxides for CO2 reforming of CH4. Appl. Catal. A 2004, 263, 1–9. [Google Scholar] [CrossRef]
- Sutthiumporn, K.; Maneerung, T.; Kathiraser, Y.; Kawi, S. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C–H activation and carbon suppression. Int. J. Hydrogen Energy 2012, 37, 11195–11207. [Google Scholar] [CrossRef]
- Tsoukalou, A.; Imtiaz, Q.; Kim, S.M.; Abdala, P.M.; Yoon, S.; Müller, C.R. Dry-reforming of methane over bimetallic Ni–M/La2O3 (M = Co, Fe): The effect of the rate of La2O2CO3 formation and phase stability on the catalytic activity and stability. J. Catal. 2016, 343, 208–214. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, T.T.; Dong, X.L.; Li, M.; Wang, H.Q. Effects of Ce substitution at the A-site of LaNi0.5Fe0.5O3 perovskite on the enhanced catalytic activity for dry reforming of methane. Appl. Catal. B 2018, 224, 214–221. [Google Scholar] [CrossRef]
- Figueredo, G.P.; Medeiros, R.L.B.A.; Macedo, H.P.; De Oliveira, Â.A.S.; Braga, R.M.; Mercury, J.M.R.; Melo, M.A.F. A comparative study of dry reforming of methane over nickel catalysts supported on perovskite-type LaAlO3 and commercial α-Al2O3. Int. J. Hydrogen Energy 2018, 43, 11022–11037. [Google Scholar] [CrossRef]
- Ruckenstein, E.; Hu, Y.H. Role of Support in CO2 Reforming of CH4 to Syngas over Ni Catalysts. J. Catal. 1996, 162, 230–238. [Google Scholar] [CrossRef]
- Foley, H.C.; Hong, A.J.; Brinen, J.S.; Allard, L.F.; Garrat-Reed, A.J. Bimetallic catalysts comprised of dissimilar metals for the reduction of carbon monoxide with hydrogen. Appl. Catal. 1990, 61, 351–375. [Google Scholar] [CrossRef]
- Fan, C.; Zhu, Y.A.; Xu, Y.; Zhou, Y.; Zhou, X.G.; Chen, D. Origin of synergistic effect over Ni-based bimetallic surfaces: A density functional theory study. J. Chem. Phys. 2012, 137, 014703. [Google Scholar] [CrossRef]
- De, S.; Zhang, J.; Luque, R.; Yan, N. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314–3347. [Google Scholar] [CrossRef] [Green Version]
- Tanksale, A.; Beltramini, J.N.; Dumesic, J.A.; Lu, G.Q. Effect of Pt and Pd promoter on Ni supported catalysts—A TPR/TPO/TPD and microcalorimetry study. J. Catal. 2008, 258, 366–377. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, B.; Wang, X.; Li, W.; Han, Y.; Gu, J.; Zhang, J. Non-mercury catalytic acetylene hydrochlorination over bimetallic Au–Co(III)/SAC catalysts for vinyl chloride monomer production. Green Chem. 2013, 15, 829–836. [Google Scholar] [CrossRef]
- Sankar, M.; Dimitratos, N.; Miedziak, P.J.; Wells, P.P.; Kiely, C.J.; Hutchings, G.J. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 2012, 41, 8099–8139. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Hariharan, S.; Tiwari, A.K. Pt–Ni Subsurface Alloy Catalysts: An Improved Performance toward CH4 Dissociation. J. Phys. Chem. C 2018, 122, 10857–10870. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, E.G.; Joo, O.S.; Jung, K.D. Stabilization of Ni/Al2O3 catalyst by Cu addition for CO2 reforming of methane. Appl. Catal. A 2004, 269, 1–6. [Google Scholar] [CrossRef]
- Fan, M.S.; Abdullah, A.Z.; Bhatia, S. Utilization of Greenhouse Gases through Dry Reforming: Screening of Nickel-Based Bimetallic Catalysts and Kinetic Studies. ChemSusChem 2011, 4, 1643–1653. [Google Scholar] [CrossRef]
- Kambolis, A.; Matralis, H.; Trovarelli, A.; Papadopoulou, C. Ni/CeO2-ZrO2 catalysts for the dry reforming of methane. Appl. Catal. A 2010, 377, 16–26. [Google Scholar] [CrossRef]
- Li, L.; Zhou, L.; Ould-Chikh, S.; Anjum, D.H.; Kanoun, M.B.; Scaranto, J.; Hedhili, M.N.; Khalid, S.; Laveille, V.P.; D’Souza, L.; et al. Controlled Surface Segregation Leads to Efficient Coke-Resistant Nickel/Platinum Bimetallic Catalysts for the Dry Reforming of Methane. ChemCatChem 2015, 7, 819–829. [Google Scholar] [CrossRef]
- Lucci, F.R.; Marcinkowski, M.D.; Lawton, T.J.; Sykes, E.C.H. H2 Activation and Spillover on Catalytically Relevant Pt–Cu Single Atom Alloys. J. Phys. Chem. C 2015, 119, 24351–24357. [Google Scholar] [CrossRef]
- Tomishige, K.; Kanazawa, S.; Ito, S.-I.; Kunimori, K. Catalyst development for direct heat supply from combustion to reforming in methane reforming with CO2 and O2. Appl. Catal. A 2003, 244, 71–82. [Google Scholar] [CrossRef]
- Kim, J.; Park, W.H.; Doh, W.H.; Lee, S.W.; Noh, M.C.; Gallet, J.-J.; Bournel, F.; Kondoh, H.; Mase, K.; Jung, Y.; et al. Adsorbate-driven reactive interfacial Pt-NiO1−x nanostructure formation on the Pt3Ni(111) alloy surface. Sci. Adv. 2018, 4, eaat3151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.T.; Kim, J.; Song, H.C.; Kim, D.; Jeong, B.; Lee, J.; Shin, J.W.; Ryoo, R.; Park, J.Y. Catalytic Synergy on PtNi Bimetal Catalysts Driven by Interfacial Intermediate Structures. ACS Catal. 2020, 10, 10459–10467. [Google Scholar] [CrossRef]
- Mukainakano, Y.; Yoshida, K.; Okumura, K.; Kunimori, K.; Tomishige, K. Catalytic performance and QXAFS analysis of Ni catalysts modified with Pd for oxidative steam reforming of methane. Catal. Today 2008, 132, 101–108. [Google Scholar] [CrossRef] [Green Version]
- AlSabban, B.; Falivene, L.; Kozlov, S.M.; Aguilar-Tapia, A.; Ould-Chikh, S.; Hazemann, J.-L.; Cavallo, L.; Basset, J.-M.; Takanabe, K. In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH4/CO2 reaction. Appl. Catal. B 2017, 213, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Margossian, T.; Larmier, K.; Kim, S.M.; Krumeich, F.; Muller, C.; Copéret, C. Supported Bimetallic NiFe Nanoparticles through Colloid Synthesis for Improved Dry Reforming Performance. ACS Catal. 2017, 7, 6942–6948. [Google Scholar] [CrossRef]
- Bian, Z.F.; Kawi, S. Highly carbon-resistant Ni–Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane. J. CO2 Util. 2017, 18, 345–352. [Google Scholar] [CrossRef]
- Das, S.; Sengupta, M.; Bag, A.; Shah, M.; Bordoloi, A. Facile synthesis of highly disperse Ni–Co nanoparticles over mesoporous silica for enhanced methane dry reforming. Nanoscale 2018, 10, 6409–6425. [Google Scholar] [CrossRef]
- Wu, Z.X.; Yang, B.; Miao, S.; Liu, W.; Xie, J.L.; Lee, S.; Pellin, M.J.; Xiao, D.Q.; Su, D.S.; Ma, D. Lattice Strained Ni-Co alloy as a High-Performance Catalyst for Catalytic Dry Reforming of Methane. ACS Catal. 2019, 9, 2693–2700. [Google Scholar] [CrossRef]
- Nagaoka, K.; Takanabe, K.; Aika, K.-I. Modification of Co/TiO2 for dry reforming of methane at 2 MPa by Pt, Ru or Ni. Appl. Catal. A 2004, 268, 151–158. [Google Scholar] [CrossRef]
- Jones, G.; Jakobsen, G.J.; Shim, S.S.; Kleis, J.; Andersson, M.P.; Rossmeisl, J.; Abild-Pedersen, F.; Bligaard, T.; Helveg, S.; Hinnemann, B.; et al. First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J. Catal. 2008, 259, 147–160. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Z.; Zhu, Y.-A.; Tong, G.; Zhang, J.; Engelbrekt, C.; Ulstrup, J.; Zhu, K.; Zhou, X. Tuning the composition of metastable CoxNiyMg100−x−y(OH)(OCH3) nanoplates for optimizing robust methane dry reforming catalyst. J. Catal. 2015, 330, 106–119. [Google Scholar] [CrossRef]
- Gao, X.Y.; Ashok, J.; Widjaja, S.; Hidajat, K.; Kawi, S. Ni/SiO2 catalyst prepared via Ni-aliphatic amine complexation for dry reforming of methane: Effect of carbon chain number and amine concentration. Appl. Catal. A 2015, 503, 34–42. [Google Scholar] [CrossRef]
- Tu, W.; Ghoussoub, M.; Singh, C.V.; Chin, C.Y.-H. Molecularly Tailored Nickel Precursor and Support Yield a Stable Methane Dry Reforming Catalyst with Superior Metal Utilization. J. Am. Chem. Soc. 2017, 139, 6928–6945. [Google Scholar] [CrossRef]
- Theofanidis, S.A.; Galvita, V.V.; Poelman, H.; Marin, G.B. Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: Role of Fe. ACS Catal. 2015, 5, 3028–3039. [Google Scholar] [CrossRef]
- Theofanidis, S.A.; Batchu, R.; Galvita, V.V.; Poelman, H.; Marin, G.B. Carbon gasification from Fe–Ni catalysts after methane dry reforming. Appl. Catal. B 2016, 185, 42–55. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Q.; Cai, W.; Zhang, P.; Song, X.; Sun, Z.; Gao, L. Phyllosilicate evolved hierarchical Ni- and Cu–Ni/SiO2 nanocomposites for methane dry reforming catalysis. Appl. Catal. A 2015, 503, 94–102. [Google Scholar] [CrossRef]
- Hou, Z.; Yokota, O.; Tanaka, T.; Yashima, T. Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2. Appl. Catal. A 2003, 253, 381–387. [Google Scholar] [CrossRef]
- Pakhare, D.; Spivey, J.Y. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837. [Google Scholar] [CrossRef]
- Arbag, H.; Yasyerli, S.; Yasyerli, N.; Dogu, G.; Dogu, T. Enhancement of catalytic performance of Ni based mesoporous alumina by Co incorporation in conversion of biogas to synthesis gas. Appl. Catal. B 2016, 198, 254–265. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Łamacz, A.; Krztoń, A.; Djéga-Mariadassou, G. Partial oxidation of methane over Ni0/La2O3 bifunctional catalyst IV: Simulation of methane total oxidation, dry reforming and partial oxidation using the Quasi-Steady State Approximation. Appl. Catal. B 2016, 199, 424–432. [Google Scholar] [CrossRef]
- García-Vargas, J.M.; Valverde, J.L.; Lucas-Consuegra, A.D.; Gomez-Monedero, B.; Dorado, F.; Sanchez, P. Methane tri-reforming over a Ni/β-SiC-based catalyst: Optimizing the feedstock composition. Int. J. Hydrogen Energy 2013, 38, 4524–4532. [Google Scholar] [CrossRef]
- Tomishige, K.; Yamazaki, O.; Chen, Y.G.; Yokoyama, K.; Li, X.H.; Fujimoto, K. Development of ultra-stable Ni catalysts for CO2 reforming of methane. Catal. Today 1998, 45, 35–39. [Google Scholar] [CrossRef]
- Yu, M.; Zhu, K.; Liu, Z.; Xiao, H.; Deng, W.; Zhou, X. Carbon dioxide reforming of methane over promoted NixMg1−xO (1 1 1) platelet catalyst derived from solvothermal synthesis. Appl. Catal. B 2014, 148–149, 177–190. [Google Scholar] [CrossRef]
- Horváth, A.; Guczi, L.; Kocsonya, A.; Safran, G.; Parola, V.L.; Liotta, L.F.; Pantaleo, G.; Venezia, A.M. Sol-derived AuNi/MgAl2O4 catalysts: Formation, structure and activity in dry reforming of methane. Appl. Catal. A 2013, 468, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Miller, J.T.; Shakouri, M.; Xi, C.; Wu, T.; Zhao, H.; Akatay, M.C. XANES and EXAFS studies on metal nanoparticle growth and bimetallic interaction of Ni-based catalysts for CO2 reforming of CH4. Catal. Today 2013, 207, 3–12. [Google Scholar] [CrossRef]
- Li, Z.W.; Kawi, S. Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: Influence of Ni precursors on structure, sintering, and carbon resistance. Catal. Sci. Technol. 2018, 8, 1915–1922. [Google Scholar] [CrossRef]
- Li, Z.W.; Jiang, B.; Wang, Z.G.; Kawi, S. High carbon resistant Ni@Ni phyllosilicate@SiO2 core shell hollow sphere catalysts for low temperature CH4 dry reforming. J. CO2 Util. 2018, 27, 238–246. [Google Scholar] [CrossRef]
- Li, Z.; Kathiraser, Y.; Kawi, S. Facile Synthesis of High Surface Area Yolk–Shell Ni@Ni Embedded SiO2 via Ni Phyllosilicate with Enhanced Performance for CO2 Reforming of CH4. ChemCatChem 2015, 7, 160–168. [Google Scholar] [CrossRef]
- Gao, X.Y.; Hidajat, K.; Kawi, S. Facile synthesis of Ni/SiO2 catalyst by sequential hydrogen/air treatment: A superior anti-coking catalyst for dry reforming of methane. J. CO2 Util. 2016, 15, 146–153. [Google Scholar] [CrossRef]
- Choi, H.; Oh, S.; Tran, S.B.T.; Park, J.Y. Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol. J. Catal. 2019, 376, 68–76. [Google Scholar] [CrossRef]
- Li, Y.M.; Wang, Z.J.; Zhang, B.; Liu, Z.G.; Yang, T.X. Dry Reforming of Methane (DRM) by Highly Active and Stable Ni Nanoparticles on Renewable Porous Carbons. Catalysts 2020, 10, 501. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, T.; Shi, Y.; Zhao, B.; Wang, M.; Liu, Q.; Wang, J.; Long, K.; Duan, Y.; Ning, P. A sintering and carbon-resistant Ni-SBA-15 catalyst prepared by solid-state grinding method for dry reforming of methane. J. CO2 Util. 2017, 17, 10–19. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Sun, M.H.; Ning, P.; Long, K.X.; Wang, J.; Tang, T.; Fan, J.; Sun, H.Y.; Yin, L.T.; Lin, Q. Effect of thermal induction temperature on re-dispersion behavior of Ni nanoparticles over Ni/SBA-15 for dry reforming of methane. Appl. Surf. Sci. 2019, 469, 368–377. [Google Scholar] [CrossRef]
- Kang, D.; Lim, S.H.; Lee, J.W. Enhanced catalytic activity of methane dry reforming by the confinement of Ni nanoparticles into mesoporous silica. Int. J. Hydrogen Energy 2017, 42, 11270–11282. [Google Scholar] [CrossRef]
- Baktash, E.; Littlewood, P.; Pfrommer, J.; Schomäcker, R.; Driess, M.; Thomas, A. Controlled Formation of Nickel Oxide Nanoparticles on Mesoporous Silica using Molecular Ni4O4 Clusters as Precursors: Enhanced Catalytic Performance for Dry Reforming of Methane. ChemCatChem 2015, 7, 1280–1284. [Google Scholar] [CrossRef]
- Qian, L.; Huang, K.; Wang, H.; Kung, M.C.; Kung, H.H.; Li, J.; Chen, G.; Du, Q. Evaluation of the catalytic surface of Ni impregnated meso-microporous silica KIT-6 in CH4 dry reforming by inverse gas chromatography. Microporous Mesoporous Mater. 2017, 243, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhang, Q.; Zhang, T.; Wang, Y.; Wang, J.; Long, K.; Song, Z.; Liu, X.; Ning, P. Facile one-pot synthesis of highly dispersed Ni nanoparticles embedded in HMS for dry reforming of methane. Chem. Eng. J. 2017, 313, 1370–1381. [Google Scholar] [CrossRef]
- Xin, J.; Cui, H.; Cheng, Z.; Zhou, Z. Bimetallic Ni-Co/SBA-15 catalysts prepared by urea co-precipitation for dry reforming of methane. Appl. Catal. A 2018, 554, 95–104. [Google Scholar] [CrossRef]
- Guo, Y.H.; Xia, C.; Liu, B.S. Catalytic properties and stability of cubic mesoporous LaxNiyOz/KIT-6 catalysts for CO2 reforming of CH4. Chem. Eng. J. 2014, 237, 421–429. [Google Scholar] [CrossRef]
- Liu, D.; Quek, X.Y.; Cheo, W.N.E.; Lau, R.; Borgna, A.; Yang, Y. MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: Effect of strong metal–support interaction. J. Catal. 2009, 266, 380–390. [Google Scholar] [CrossRef]
- Liu, D.; Quek, X.Y.; Adeline, H.H.; Zeng, G.; Li, Y.; Yang, Y. Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts. Catal. Today 2009, 148, 243–250. [Google Scholar] [CrossRef]
- Baudouin, D.; Szeto, K.C.; Laurent, P.; Mallman, A.D.; Fenet, B.; Veyre, L.; Rodemerck, U.; Copéret, C.; Thieuleux, C. Nickel–Silicide Colloid Prepared under Mild Conditions as a Versatile Ni Precursor for More Efficient CO2 Reforming of CH4 Catalysts. J. Am. Chem. Soc. 2012, 134, 20624–20627. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Shi, L.; Zhang, J.; Zhang, D. Immobilizing Ni nanoparticles to mesoporous silica with size and location control via a polyol-assisted route for coking- and sintering-resistant dry reforming of methane. Chem. Commun. 2014, 50, 7250–7253. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.Y.; Liu, H.J.; Hidajat, K.; Kawi, S. Anti-Coking Ni/SiO2 Catalyst for Dry Reforming of Methane: Role of Oleylamine/Oleic Acid Organic Pair. ChemCatChem 2015, 7, 4188–4196. [Google Scholar] [CrossRef]
- Gao, X.Y.; Tan, Z.W.; Hidajat, K.; Kawi, S. Highly reactive Ni-Co/SiO2 bimetallic catalyst via complexation with oleylamine/oleic acid organic pair for dry reforming of methane. Catal. Today 2017, 281, 250–258. [Google Scholar] [CrossRef]
- Xu, L.; Song, H.; Chou, L. Carbon dioxide reforming of methane over ordered mesoporous NiO–MgO–Al2O3 composite oxides. Appl. Catal. B 2011, 108–109, 177–190. [Google Scholar] [CrossRef]
- Xu, L.; Song, H.; Chou, L. Mesoporous nanocrystalline ceria–zirconia solid solutions supported nickel based catalysts for CO2 reforming of CH4. Int. J. Hydrogen Energy 2012, 37, 18001–18020. [Google Scholar] [CrossRef]
- Xu, L.; Miao, Z.; Song, H.; Chen, W.; Chou, L. Significant roles of mesostructure and basic modifier for ordered mesoporous Ni/CaO–Al2O3 catalyst towards CO2 reforming of CH4. Catal. Sci. Technol. 2014, 4, 1759–1770. [Google Scholar] [CrossRef]
- Ashcroft, A.T.; Cheetham, A.K.; Green, M.L.H.; Vernon, P.D.F. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 1991, 352, 225–226. [Google Scholar] [CrossRef]
- Wang, N.; Xu, Z.; Deng, J.; Shen, K.; Yu, X.; Qian, W.; Chu, W.; Wei, F. One-pot Synthesis of Ordered Mesoporous NiCeAl Oxide Catalysts and a Study of Their Performance in Methane Dry Reforming. ChemCatChem 2014, 6, 1470–1480. [Google Scholar] [CrossRef]
- Fakeeha, A.H.; Khan, W.U.; Al-Fatesh, A.S.; Abasaeed, A.E. Stabilities of zeolite-supported Ni catalysts for dry reforming of methane. Chin. J. Catal. 2013, 34, 764–768. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, S.; Zhang, A.; Song, C.; Shi, C.; Guo, X. Hollow zeolite encapsulated Ni–Pt bimetals for sintering and coking resistant dry reforming of methane. J. Mater. Chem. A 2015, 3, 16461–16468. [Google Scholar] [CrossRef]
- Yin, Y.; Rioux, R.M.; Erdonmez, C.K.; Hughes, S.; Somorjai, G.A.; Alivisatos, A.P. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science 2004, 304, 711–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.C.; Bang, J.U.; Lee, J.; Ko, C.H.; Song, H. Ni@SiO2yolk-shell nanoreactor catalysts: High temperature stability and recyclability. J. Mater. Chem. 2010, 20, 1239–1246. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.Y.; Han, S.W.; Cho, Y.K.; Jeong, M.-G.; Park, E.J.; Kim, Y.D. The catalytic stability of TiO2-shell/Ni-core catalysts for CO2 reforming of CH4. Appl. Catal. A 2015, 495, 184–191. [Google Scholar]
- Lu, Y.; Guo, D.; Ruan, Y.Z.; Zhao, Y.J.; Wang, S.P.; Ma, X.B. Facile one-pot synthesis of Ni@HSS as a novel yolk-shell structure catalyst for dry reforming of methane. J. CO2 Util. 2018, 24, 190–199. [Google Scholar] [CrossRef]
- Li, Z.W.; Kawi, S. Facile Synthesis of Multi-Ni-Core@Ni Phyllosilicate@CeO2 Shell Hollow Spheres with High Oxygen Vacancy Concentration for Dry Reforming of CH4. ChemCatChem 2018, 10, 2994–3001. [Google Scholar] [CrossRef]
- Cao, Y.; Lu, M.R.; Fang, J.H.; Shi, L.Y.; Zhang, D.S. Hexagonal boron nitride supported mesoSiO2-confined Ni catalysts for dry reforming of methane. Chem. Commun. 2017, 53, 7549–7552. [Google Scholar] [CrossRef]
- Tian, J.Q.; Ma, B.; Bu, S.Y.; Yuan, Q.H.; Zhao, C. One-pot synthesis of highly sintering- and coking-resistant Ni nanoparticles encapsulated in dendritic mesoporous SiO2 for methane dry reforming. Chem. Commun. 2018, 54, 13993–13996. [Google Scholar] [CrossRef]
- Dou, J.; Zhang, R.G.; Hao, X.B.; Bao, Z.H.; Wu, T.P.; Wang, B.J.; Yu, F. Sandwiched SiO2@Ni@ZrO2 as a coke resistant nanocatalyst for dry reforming of methane. Appl. Catal. B 2019, 254, 612–623. [Google Scholar] [CrossRef]
- Bian, Z.F.; Kawi, S. Sandwich-Like Silica@Ni@Silica Multicore–Shell Catalyst for the Low-Temperature Dry Reforming of Methane: Confinement Effect Against Carbon Formation. ChemCatChem 2018, 10, 320–328. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F. Coke-resistant Ni@SiO2 catalyst for dry reforming of methane. Appl. Catal. B 2015, 176–177, 513–521. [Google Scholar] [CrossRef]
- Li, Z.; Mo, L.; Kathiraser, Y.; Kawi, S. Yolk–Satellite–Shell Structured Ni–Yolk@Ni@SiO2 Nanocomposite: Superb Catalyst toward Methane CO2 Reforming Reaction. ACS Catal. 2014, 4, 1526–1536. [Google Scholar] [CrossRef]
- Peng, X.Z.H.; Zhang, L.; Rao, C.; Lian, J.; Liu, W.; Ying, G.Z.J.; Wang, Z.; Zhang, N.; Wang, X. One-Pot Facile Fabrication of Multiple Nickel Nanoparticles Confined in Microporous Silica Giving a Multiple-Cores@Shell Structure as a Highly Efficient Catalyst for Methane Dry Reforming. ChemCatChem 2017, 9, 127–136. [Google Scholar] [CrossRef]
- Han, J.W.; Kim, C.; Park, J.S.; Lee, H. Highly Coke-Resistant Ni Nanoparticle Catalysts with Minimal Sintering in Dry Reforming of Methane. ChemSusChem 2014, 7, 451–456. [Google Scholar] [CrossRef]
- Li, Z.W.; Kathiraser, Y.; Ashok, J.; Oemar, U.; Kawi, S. Simultaneous Tuning Porosity and Basicity of Nickel@Nickel–Magnesium Phyllosilicate Core–Shell Catalysts for CO2 Reforming of CH4. Langmuir 2014, 30, 14694–14705. [Google Scholar] [CrossRef]
- Bian, Z.F.; Suryawinata, I.Y.; Kawi, S. Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane. Appl. Catal. B 2016, 195, 1–8. [Google Scholar] [CrossRef]
- Du, X.; Zhang, D.; Gao, R.; Huang, L.; Shi, L.; Zhang, J. Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane. Chem. Commun. 2013, 49, 6770–6772. [Google Scholar] [CrossRef]
- Wu, T.; Cai, W.; Zhang, P.; Song, X.; Gao, L. Cu–Ni@SiO2 alloy nanocomposites for methane dry reforming catalysis. RSC Adv. 2013, 3, 23976–23979. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, H.; Li, H. NiCo@SiO2 core-shell catalyst with high activity and long lifetime for CO2 conversion through DRM reaction. Nano Energy 2018, 45, 101–108. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Z.; Hu, J.; Wai, M.H.; Kawi, S.; Lin, Y.S. High CO2 permeability of ceramic-carbonate dual-phase hollow fiber membrane at medium-high temperature. J. Membr. Sci. 2020, 597, 117770. [Google Scholar] [CrossRef]
- Yang, T.N.; Kathiraser, Y.; Kawi, S. La0.6Sr0.4Co0.8Ni0.2O3−δ hollow fiber membrane reactor: Integrated oxygen separation—CO2 reforming of methane reaction for hydrogen production. Int. J. Hydrogen Energy 2013, 38, 4483–4491. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Z.; Das, S.; Liu, L.; Li, Y.; Kawi, S.; Lin, Y.S. A novel study of sulfur-resistance for CO2 separation through asymmetric ceramic-carbonate dual-phase membrane at high temperature. J. Membr. Sci. 2019, 581, 72–81. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Ashok, J.; Kawi, S. Smart Designs of Anti-Coking and Anti-Sintering Ni-Based Catalysts for Dry Reforming of Methane: A Recent Review. Reactions 2020, 1, 162-194. https://doi.org/10.3390/reactions1020013
Gao X, Ashok J, Kawi S. Smart Designs of Anti-Coking and Anti-Sintering Ni-Based Catalysts for Dry Reforming of Methane: A Recent Review. Reactions. 2020; 1(2):162-194. https://doi.org/10.3390/reactions1020013
Chicago/Turabian StyleGao, Xingyuan, Jangam Ashok, and Sibudjing Kawi. 2020. "Smart Designs of Anti-Coking and Anti-Sintering Ni-Based Catalysts for Dry Reforming of Methane: A Recent Review" Reactions 1, no. 2: 162-194. https://doi.org/10.3390/reactions1020013
APA StyleGao, X., Ashok, J., & Kawi, S. (2020). Smart Designs of Anti-Coking and Anti-Sintering Ni-Based Catalysts for Dry Reforming of Methane: A Recent Review. Reactions, 1(2), 162-194. https://doi.org/10.3390/reactions1020013