Methodological Advancement in Resistive-Based, Real-Time Spray Deposition Assessment with Multiplexed Acquisition
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Tracer Solutions
2.2. Collectors, Electrodes, and Electrical Measurement Principle
2.3. Test Facility and Experimental Design
2.4. Nozzle Characterization
2.5. Monitoring of Environmental Conditions
2.6. Electrical Instrumentation and Multiplexed Acquisition
2.7. Determination of the Tracer Deposit by Spectrophotometric Techniques
2.8. Gravimetric Measurement
2.9. Sequence of Operations
2.10. Data Processing and Statistics
3. Results and Discussion
3.1. Nozzle Characterization
3.2. Multipoint Calibration Curves
3.3. Time-Resolved Deposition
3.4. Method Comparison
3.5. Spatial Distribution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, S.; Wang, M.; Ou, M.; Zhou, H.; Jia, W.; Gao, R.; Wang, C.; Wang, G.; Li, Z.; Chen, H. Development and Experiment of an Online Measuring System for Spray Deposition. Agriculture 2022, 12, 1195. [Google Scholar] [CrossRef]
- Sarkar, S.; Gil, J.D.B.; Keeley, J.; Jansen, K. The Use of Pesticides in Developing Countries and Their Impact on Health and the Right to Food; European Parliament, Policy Department for External Relations: Brussels, Belgium, 2021. [Google Scholar]
- Singh, P.; Singh, V.K.; Singh, R.; Borthakur, A.; Madhav, S.; Ahamad, A.; Kumar, A.; Pal, D.B.; Tiwary, D.; Mishra, P.K. Bioremediation: A Sustainable Approach for Management of Environmental Contaminants. In Abatement of Environmental Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–23. [Google Scholar]
- Popp, J.; Pető, K.; Nagy, J. Pesticide Productivity and Food Security. A Review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Lipiński, S.; Kaliniewicz, Z.; Markowski, P.; Szczyglak, P. Evaluation of Air-Assisted Spraying Technology for Pesticide Drift Reduction. Sustainability 2025, 17, 5036. [Google Scholar] [CrossRef]
- European Community (EC) Official Journal of the European Union. Directive 2009/128/EC of the European Parliament and the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. 2009. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0071:0086:en:PDF (accessed on 2 September 2024).
- Palma, R.P.; Cunha, J.P.A.R.D. Multivariate Analysis Applied to the Ground Application of Pesticides in the Corn Crop. AgriEngineering 2023, 5, 829–839. [Google Scholar] [CrossRef]
- Cunha, J.P.A.R.D.; Lopes, L.D.L.; Alves, C.O.R.; Alvarenga, C.B.D. Spray Deposition and Losses to Soil from a Remotely Piloted Aircraft and Airblast Sprayer on Coffee. AgriEngineering 2024, 6, 2385–2394. [Google Scholar] [CrossRef]
- Pagliai, A.; Sarri, D.; Pinheiro Amantea, R.; Perna, C.; Rimbotti, N.; Lisci, R.; Vieri, M. On-Field Spray Downwash Characterization of a Commercial Unmanned Aerial Vehicle for Spray Application. In Biosystems Engineering Promoting Resilience to Climate Change—AIIA 2024—Mid-Term Conference; Sartori, L., Tarolli, P., Guerrini, L., Zuecco, G., Pezzuolo, A., Eds.; Lecture Notes in Civil Engineering; Springer Nature: Cham, Switzerland, 2025; Volume 586, pp. 715–722. ISBN 978-3-031-84211-5. [Google Scholar]
- Roma, E.; Orlando, S.; Carella, A.; Lo Bianco, R.; Massenti, R.; Catania, P. Fraction Cover Estimation Using Drone-Based Multispectral Images in Six Olive Cultivars and Different Planting Systems: A Case Study in Sicily. Smart Agric. Technol. 2025, 12, 101323. [Google Scholar] [CrossRef]
- Grella, M.; Marucco, P.; Balsari, P. Toward a New Method to Classify the Airblast Sprayers According to Their Potential Drift Reduction: Comparison of Direct and New Indirect Measurement Methods. Pest Manag. Sci. 2019, 75, 2219–2235. [Google Scholar] [CrossRef]
- Nuyttens, D.; Sonck, B.; De Schampheleire, M.; Steurbaut, W.; Baetens, K.; Verboven, P.; Nicolai, B.; Ramon, H. A PDPA Laser-Based Measuring Set-up for the Characterisation of Spray Nozzles. Commun. Agric. Appl. Biol. Sci. 2005, 70, 1023. [Google Scholar]
- Ellis, M.C.B.; Lane, A.G.; O’Sullivan, C.M.; Jones, S. Wind Tunnel Investigation of the Ability of Drift-Reducing Nozzles to Provide Mitigation Measures for Bystander Exposure to Pesticides. Biosyst. Eng. 2021, 202, 152–164. [Google Scholar] [CrossRef]
- ISO 22856:2008(E); Equipment for Crop Protection—Methods for the Laboratory Measurement of Spray Drift—Wind Tunnels. International Organization for Standardization (ISO): Geneva, Switzerland, 2008.
- Jomantas, T.; Lekavičienė, K.; Steponavičius, D.; Andriušis, A.; Zaleckas, E.; Zinkevičius, R.; Popescu, C.V.; Salceanu, C.; Ignatavičius, J.; Kemzūraitė, A. The Influence of Newly Developed Spray Drift Reduction Agents on Drift Mitigation by Means of Wind Tunnel and Field Evaluation Methods. Agriculture 2023, 13, 349. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, T.; Song, C.; Yu, X.; Shan, C.; Gu, H.; Lan, Y. Evaluation of Spray Drift of Plant Protection Drone Nozzles Based on Wind Tunnel Test. Agriculture 2023, 13, 628. [Google Scholar] [CrossRef]
- Wang, C.; He, X.; Wang, X.; Wang, Z.; Wang, S.; Li, L.; Jane, B.; Andreas, H.; Wang, Z.; Mei, S. Distribution Characteristics of Pesticide Application Droplets Deposition of Unmanned Aerial Vehicle Based on Testing Method of Deposition Quality Balance. Trans. Chin. Soc. Agric. Eng. 2016, 32, 89–97. [Google Scholar]
- Wen, Y.; Zhang, R.; Chen, L.; Huang, Y.; Yi, T.; Xu, G.; Li, L.; Hewitt, A.J. A New Spray Deposition Pattern Measurement System Based on Spectral Analysis of a Fluorescent Tracer. Comput. Electron. Agric. 2019, 160, 14–22. [Google Scholar] [CrossRef]
- Kwak, D.-B.; Kim, S.C.; Kuehn, T.H.; Pui, D.Y.H. Quantitative Analysis of Droplet Deposition Produced by an Electrostatic Sprayer on a Classroom Table by Using Fluorescent Tracer. Build. Environ. 2021, 205, 108254. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, W.C.; Salyani, M. Spray Deposition on Citrus Canopies under Different Meteorological Conditions. Trans. ASAE 1996, 39, 17–22. [Google Scholar] [CrossRef]
- Sánchez-Hermosilla, J.; Rincón, V.J.; Páez, F.C.; Pérez-Alonso, J.; Callejón-Ferre, Á.-J. Evaluation of the Effect of Different Hand-Held Sprayer Types on a Greenhouse Pepper Crop. Agriculture 2021, 11, 532. [Google Scholar] [CrossRef]
- Grella, M.; Gallart, M.; Marucco, P.; Balsari, P.; Gil, E. Ground Deposition and Airborne Spray Drift Assessment in Vineyard and Orchard: The Influence of Environmental Variables and Sprayer Settings. Sustainability 2017, 9, 728. [Google Scholar] [CrossRef]
- Gil, E.; Balsari, P.; Gallart, M.; Llorens, J.; Marucco, P.; Andersen, P.G.; Fàbregas, X.; Llop, J. Determination of Drift Potential of Different Flat Fan Nozzles on a Boom Sprayer Using a Test Bench. Crop Prot. 2014, 56, 58–68. [Google Scholar] [CrossRef]
- Grella, M.; Gil, E.; Balsari, P.; Marucco, P.; Gallart, M. Advances in Developing a New Test Method to Assess Spray Drift Potential from Air Blast Sprayers. Span. J. Agric. Res. 2017, 15, e0207. [Google Scholar] [CrossRef]
- Grella, M.; Marucco, P.; Balafoutis, A.T.; Balsari, P. Spray Drift Generated in Vineyard during Under-Row Weed Control and Suckering: Evaluation of Direct and Indirect Drift-Reducing Techniques. Sustainability 2020, 12, 5068. [Google Scholar] [CrossRef]
- Derksen, R.C.; Gray, R.L. Gray Deposition and Air Speed Patterns of Air-Carrier Apple Orchard Sprayers. Trans. ASAE 1995, 38, 5–11. [Google Scholar] [CrossRef]
- Pergher, G. Recovery Rate of Tracer Dyes Used for Spray Deposit Assessment. Trans. ASAE 2001, 44, 787. [Google Scholar] [CrossRef]
- Yan, T.; Zhang, Z.; Shou, J. Development of a Capacitive Sensor for Spray Deposition and Drift Measurements. Smart Agric. Technol. 2025, 12, 101164. [Google Scholar] [CrossRef]
- Palleja, T.; Tresanchez, M.; Llorens, J.; Saiz-Vela, A. Design and Characterization of a Real-Time Capacitive System to Estimate Pesticides Spray Deposition and Drift. Comput. Electron. Agric. 2023, 207, 107720. [Google Scholar] [CrossRef]
- Pagliai, A.; Sarri, D.; Perna, C.; Vieri, M. Can a Variable-Rate Sprayer Be Efficient and Economic? Testing and Economic Analysis in Viticulture. In AIIA 2022: Biosystems Engineering Towards the Green Deal; Ferro, V., Giordano, G., Orlando, S., Vallone, M., Cascone, G., Porto, S.M.C., Eds.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2023; Volume 337, pp. 805–815. ISBN 978-3-031-30328-9. [Google Scholar]
- Abbas, I.; Liu, J.; Faheem, M.; Noor, R.S.; Shaikh, S.A.; Solangi, K.A.; Raza, S.M. Different Sensor Based Intelligent Spraying Systems in Agriculture. Sens. Actuators A Phys. 2020, 316, 112265. [Google Scholar] [CrossRef]
- Wei, Z.; Xue, X.; Salcedo, R.; Zhang, Z.; Gil, E.; Sun, Y.; Li, Q.; Shen, J.; He, Q.; Dou, Q.; et al. Key Technologies for an Orchard Variable-Rate Sprayer: Current Status and Future Prospects. Agronomy 2022, 13, 59. [Google Scholar] [CrossRef]
- Ali, A.; Altana, A.; Becce, L.; Amin, S.; Lugli, P.; Petti, L.; Mazzetto, F. Advancements in the Development of Resistive-Based Method Applied to Optical Tracers for Real-Time Estimation of Spray Drift Deposition. IEEE Trans. AgriFood Electron. 2024, 3, 18–25. [Google Scholar] [CrossRef]
- Altana, A.; Becce, L.; Avancini, E.; Lugli, P.; Petti, L.; Mazzetto, F. Cost-Effective Tracing Techniques for the Rapid Characterization of Spray Deposition and Drift through Electrical Conductivity and Fluorescence. In Proceedings of the 2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Perugia, Italy, 3–5 November 2022; IEEE: New York, NY, USA, 2022; pp. 164–168. [Google Scholar]
- Tan, Y.-L.; Chong, C.-E. Resistivity Measurement of a Small-Volume Sample Using Two Planar Disc Electrodes and a New Geometric Factor. IEEE Sens. J. 2008, 8, 516–521. [Google Scholar] [CrossRef]
- Becce, L.; Carabin, G.; Mazzetto, F. Agroforestry Innovations Lab Activities on Sprayer Performance and Certification. In AIIA 2022: Biosystems Engineering Towards the Green Deal; Ferro, V., Giordano, G., Orlando, S., Vallone, M., Cascone, G., Porto, S.M.C., Eds.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2023; Volume 337, pp. 305–313. ISBN 978-3-031-30328-9. [Google Scholar]
- Becce, L.; Mazzi, G.; Ali, A.; Bortolini, M.; Gregoris, E.; Feltracco, M.; Barbaro, E.; Contini, D.; Mazzetto, F.; Gambaro, A. Wind Tunnel Evaluation of Plant Protection Products Drift Using an Integrated Chemical–Physical Approach. Atmosphere 2024, 15, 656. [Google Scholar] [CrossRef]
- Mazzi, G.; Becce, L.; Ali, A.; Bortolini, M.; Gregoris, E.; Feltracco, M.; Barbaro, E.; Gronauer, A.; Gambaro, A.; Mazzetto, F. Methodological Advancements in Testing Agricultural Nozzles and Handling of Drop Size Distribution Data. AgriEngineering 2025, 7, 139. [Google Scholar] [CrossRef]
- ISO 22401:2015; Equipment for Crop Protection—Method for Measurement of Potential Spray Drift from Horizontal Boom Sprayers by the Use of a Test Bench. International Organization for Standardization (ISO): Geneva, Switzerland, 2015.
- Martin, D.E.; Perine, J.W.; Grant, S.; Abi-Akar, F.; Henry, J.L.; Latheef, M.A. Spray Deposition and Drift as Influenced by Wind Speed and Spray Nozzles from a Remotely Piloted Aerial Application System. Drones 2025, 9, 66. [Google Scholar] [CrossRef]
- De Cauwer, B.; De Meuter, I.; De Ryck, S.; Dekeyser, D.; Zwertvaegher, I.; Nuyttens, D. Performance of Drift-Reducing Nozzles in Controlling Small Weed Seedlings with Contact Herbicides. Agronomy 2023, 13, 1342. [Google Scholar] [CrossRef]
- Sun, C.; Qiu, W.; Ding, W.; Gu, J. Design and Experiment of a Real-Time Droplet Accumulating Mass Measurement System. Trans. ASABE 2017, 60, 615–624. [Google Scholar] [CrossRef]
- Salyani, M.; Serdynski, J. Development of a sensor for spray deposition assessment. Trans. ASAE 1990, 33, 1464. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Chen, L.; Yi, T.; Xu, G.; Xue, D.; Tang, Q.; Zhang, L.; John Hewitt, A.; An, Y.; et al. Development of Sensor System for Real-Time Measurement of Droplet Deposition of Agricultural Sprayers. Int. J. Agric. Biol. Eng. 2021, 14, 19–26. [Google Scholar] [CrossRef]









| Parameters | Description |
|---|---|
| Nozzle Model | Albuz CVI 80 025 Lilac |
| No of nozzles | 8 |
| Pressure | 1 MPa |
| Measured flow rate | 1.6 L/min |
| Spraying time | 120 s |
| Fan speed | High |
| Tracers | Repetition | Temperature (°C) | Relative Humidity (%) | Wind Speed (m s−1) | |||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | Std | Mean | Min | max | Mean | Min | Max | ||
| FLU | 1 | 21.0 | 0.65 | 52.6 | 52.4 | 53.0 | 0.07 | 0 | 0.293 |
| 2 | 20.6 | 0.13 | 52.5 | 52.3 | 53.1 | 0.23 | 0 | 1.765 | |
| 3 | 21.2 | 0.29 | 59.7 | 53.6 | 64.1 | 0.68 | 0 | 2.025 | |
| FLU + KCl | 1 | 19.5 | 0.32 | 67.6 | 65.4 | 69.9 | 0.01 | 0 | 0.705 |
| 2 | 19.2 | 0.11 | 70.6 | 69.5 | 73.0 | 0.02 | 0 | 0.949 | |
| 3 | 19.4 | 0.17 | 69.5 | 63.4 | 79.4 | 0.10 | 0 | 1.846 | |
| Metric | Value |
|---|---|
| dV10 (µm) | 105.4 |
| dV50 (µm) | 227.3 |
| dV90 (µm) | 469.4 |
| S | 1.6 |
| Distance (m) | FLU | FLU + KCl | ||
|---|---|---|---|---|
| APECON (%) | APEGRA (%) | APECON (%) | APEGRA (%) | |
| 1 | 2.16 ± 2.30 | 3.56 ± 2.02 | 0.73 ± 1.03 | 9.70 ± 4.20 |
| 2 | 3.19 ± 2.71 | 7.31 ± 3.72 | 1.47 ± 1.21 | 9.33 ± 13.93 |
| 3 | 4.60 ± 4.31 | 4.50 ± 3.58 | 4.89 ± 3.30 | 10.07 ± 5.26 |
| 4 | 5.02 ± 0.52 | 4.86 ± 6.24 | 1.03 ± 0.73 | 18.67 ± 10.52 |
| 5 | 4.94 ± 4.13 | 4.00 ± 2.85 | 3.43 ± 3.39 | 17.52 ± 11.82 |
| 6 | 2.75 ± 2.30 | 7.26 ± 6.50 | 6.14 ± 4.70 | 13.76 ± 8.63 |
| 7 | 7.01 ± 4.47 | 7.29 ± 2.90 | 4.99 ± 3.83 | 14.97 ± 11.55 |
| 8 | 4.09 ± 5.09 | 4.35 ± 3.48 | 5.47 ± 1.69 | 12.67 ± 6.37 |
| 9 | 9.27 ± 5.18 | 9.19 ± 3.05 | 6.66 ± 3.16 | 6.45 ± 2.49 |
| 10 | 4.21 ± 4.74 | 17.95 ± 9.05 | 5.63 ± 2.49 | 10.33 ± 8.51 |
| 11 | 4.92 ± 2.78 | 17.28 ± 7.43 | 7.54 ± 3.94 | 11.62 ± 7.36 |
| 12 | 2.77 ± 3.16 | 9.40 ± 4.29 | 4.65 ± 2.75 | 11.50 ± 3.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ali, A.; Becce, L.; Gronauer, A.; Mazzetto, F. Methodological Advancement in Resistive-Based, Real-Time Spray Deposition Assessment with Multiplexed Acquisition. AgriEngineering 2026, 8, 3. https://doi.org/10.3390/agriengineering8010003
Ali A, Becce L, Gronauer A, Mazzetto F. Methodological Advancement in Resistive-Based, Real-Time Spray Deposition Assessment with Multiplexed Acquisition. AgriEngineering. 2026; 8(1):3. https://doi.org/10.3390/agriengineering8010003
Chicago/Turabian StyleAli, Ayesha, Lorenzo Becce, Andreas Gronauer, and Fabrizio Mazzetto. 2026. "Methodological Advancement in Resistive-Based, Real-Time Spray Deposition Assessment with Multiplexed Acquisition" AgriEngineering 8, no. 1: 3. https://doi.org/10.3390/agriengineering8010003
APA StyleAli, A., Becce, L., Gronauer, A., & Mazzetto, F. (2026). Methodological Advancement in Resistive-Based, Real-Time Spray Deposition Assessment with Multiplexed Acquisition. AgriEngineering, 8(1), 3. https://doi.org/10.3390/agriengineering8010003

