Development and Validation of a Low-Cost DAQ for the Detection of Soil Bulk Electrical Conductivity and Encoding of Visual Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. EM38 Sensor Description and Proprietary DAQ
2.3. Reverse Engineering Approach for DAQ System Design
2.4. Proprietary System Used for the Comparison
2.5. Statistical Analysis
3. Results
3.1. Design and Development of the Low-Cost Data Acquisition System
3.2. Computing and Software for the DAQ’s Management
3.3. Field Test and LC-DAQ Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doolittle, J.A.; Brevik, E.C. The use of electromagnetic induction techniques in soils studies. Geoderma 2014, 223, 33–45. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Drummond, S.T.; Kitchen, N.R. Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Comput. Electron. Agric. 2001, 31, 239–264. [Google Scholar] [CrossRef]
- Bennett, D.L.; George, R.; Ryder, A. Soil Salinity Assessment Using the EM38: Field Operating Instructions and Data Interpretation; Report 4/95; Department of Primary Industries and Regional Development: Perth, Australia, 1995. [Google Scholar]
- Daniel, K.F.; Peter, J.G. Open-Source Hardware Is a Low-Cost Alternative for Scientific Instrumentation and Research. Mod. Instrum. 2012, 1, 8–20. [Google Scholar] [CrossRef]
- Baker, E. Open-source data logger for low-cost environmental monitoring. Biodivers. Data J. 2014, 2, e1059. [Google Scholar] [CrossRef] [PubMed]
- Limited, G. EM38 Ground Conductivity Meter Operating Manual. Mississangua, Ontario, Canada. 1998. Available online: https://www.geonics.com/ (accessed on 25 November 2023).
- Geonics, E.M. EM38 Ground Conductivity Meter Operating Manual; Geonics Limited Ontario: Mississauga, ON, Canada, 2002; p. 32. [Google Scholar]
- Allegro CE or CX Field Computer (Juniper Systems, North Logan, UT, USA). Available online: https://junipersystems.filecamp.com/s/i/OuUJ3JoVV9kBQqDR/s/g5jzxTokemawDh1H (accessed on 26 February 2024).
- Geomar’s Trackmaker 38 Software (Geomar Software, Inc., Mississauga, Ontario, Canada). Available online: https://www.geomar.com/ (accessed on 23 June 2023).
- Garmin GPS Map-76 Receiver (Garmin International, Inc., Olathe, KS, USA). Available online: https://www.garmin.com/it-IT/p/169#overview (accessed on 23 June 2023).
- CR1000 Measurement and Control System, Campbell Scientific, Inc. 2013. Available online: https://s.campbellsci.com/documents/br/manuals/cr1000.pdf (accessed on 12 April 2023).
- Halfacree, G. The Official Raspberry Pi Beginner’s Guide; John Wiley & Sons: Hoboken, NJ, USA, 2020; Available online: https://magazines-attachments.raspberrypi.org/books/full_pdfs/000/000/038/original/BeginnersGuide-4thEd-Eng_v2.pdf (accessed on 12 April 2023).
- Lawrence, I. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar]
- Fortin, M.J.; Dale, M.R.T. Spatial Analysis: A Guide for Ecologists; Cambridge University Press: Cambridge, UK, 2005; pp. 1–30. [Google Scholar]
- Clement, R.; Fargier, Y.; Dubois, V.; Gance, J.; Gros, E.; Forquet, N. OhmPi: An open source data logger for dedicated applications of electrical resistivity imaging at the small and laboratory scale. HardwareX 2020, 8, e00122. [Google Scholar] [CrossRef] [PubMed]
- Joice, A.; Tufaique, T.; Tazeen, H.; Igathinathane, C.; Zhang, Z.; Whippo, C.; Hendrickson, J.; Archer, D. Applications of Raspberry Pi for Precision Agriculture—A Systematic Review. Agriculture 2025, 15, 227. [Google Scholar] [CrossRef]
- Forin-Wiart, M.A.; Hubert, P.; Sirguey, P.; Poulle, M.L.; Sueur, C. Performance and Accuracy of Lightweight and Low-Cost GPS Data Loggers According to Antenna Positions, Fix Intervals, Habitats and Animal Movements. PLoS ONE 2015, 10, e0129271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamouda, F.; Puig-Sirera, À.; Bonzi, L.; Remorini, D.; Massai, R.; Rallo, G. Design and validation of a soil moisture-based wireless sensors network for the smart irrigation of a pear orchard. Agric. Water Manag. 2024, 305, 109138. [Google Scholar] [CrossRef]
- Esteves, C.; Fangueiro, D.; Braga, R.P.; Martins, M.; Botelho, M.; Ribeiro, H. Assessing the Contribution of ECa and NDVI in the Delineation of Management Zones in a Vineyard. Agronomy 2022, 12, 1331. [Google Scholar] [CrossRef]
Carmen | Williams | Conference | |
---|---|---|---|
Area (m2) | 13,398 | 26,165 | 25,321 |
Planting year | 2011 | 2011 | 2012 |
Training system | Bibaum® | ||
Planting distance | 3.3 × 1 m | ||
Rootstock | Sydo | BA 29 | Sydo |
Sensor | Description | Distributor/Manufacturer | Cost (EUR) |
---|---|---|---|
Raspberry Pi Model B | Single-board computer | Raspberry Pi Ltd (Wales, UK) | 35 |
ADS 1256 | Converter A/D | Texas Instruments (Dallas, Texas, US) | 20 |
GPS NEO7 | Global positioning system | u-blox (Reigate, UK) | 8 |
LCD 20x4 | Screen/display | Display Vision (Munich, Germany) | 10 |
RTC DS 1307 | Real-time clock SD | Seeed Studio (Shenzhen, China) | 8 |
AMS1117 | Step down | UMW (Shenzhen, China) | 0.65 |
PIC12F1571 | Microcontrollers | Microchip Technology (Chandler, Arizona, US) | 0.68 |
SUM110P06-07L | Switch | Vishay (Malvern, PA, US) | 4 |
Seat structure and wiring | Cables and pinboard | various | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamouda, F.; Bonzi, L.; Carrara, M.; Puig-Sirera, À.; Rallo, G. Development and Validation of a Low-Cost DAQ for the Detection of Soil Bulk Electrical Conductivity and Encoding of Visual Data. AgriEngineering 2025, 7, 279. https://doi.org/10.3390/agriengineering7090279
Hamouda F, Bonzi L, Carrara M, Puig-Sirera À, Rallo G. Development and Validation of a Low-Cost DAQ for the Detection of Soil Bulk Electrical Conductivity and Encoding of Visual Data. AgriEngineering. 2025; 7(9):279. https://doi.org/10.3390/agriengineering7090279
Chicago/Turabian StyleHamouda, Fatma, Lorenzo Bonzi, Marco Carrara, Àngela Puig-Sirera, and Giovanni Rallo. 2025. "Development and Validation of a Low-Cost DAQ for the Detection of Soil Bulk Electrical Conductivity and Encoding of Visual Data" AgriEngineering 7, no. 9: 279. https://doi.org/10.3390/agriengineering7090279
APA StyleHamouda, F., Bonzi, L., Carrara, M., Puig-Sirera, À., & Rallo, G. (2025). Development and Validation of a Low-Cost DAQ for the Detection of Soil Bulk Electrical Conductivity and Encoding of Visual Data. AgriEngineering, 7(9), 279. https://doi.org/10.3390/agriengineering7090279