Ear Back Surface Temperature of Pigs as an Indicator of Comfort: Spatial Variability and Its Thermal Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Geographical Location and Facilities
2.2. Thermal Image Acquisition
2.3. Statistical and Geostatistical Analyses Procedures
3. Results
3.1. Micrometeorological Characterization
3.2. Results of Statistical and Geostatistical Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ABPA-Associação Brasileira de Proteína Animal Relatorio Anual. 2024. Available online: https://abpa-br.org/wp-content/uploads/2024/04/ABPA-Relatorio-Anual-2024_capa_frango.pdf (accessed on 4 March 2025).
- Galvão, A.T.; da Silva, A.D.S.L.; Pires, A.P.; de Morais, Á.F.F.; Mendonça Neto, J.S.N.; de Azevedo, H.H.F. Bem-Estar Animal na Suinocultura: Revisão. Pubvet 2019, 13, a289. [Google Scholar] [CrossRef]
- WOAH. Terrestrial Animal Health Code. Available online: https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/ (accessed on 28 March 2023).
- Damasceno, F.A.; Magela Soares, C.; Eduardo, C.; Oliveira, A.; Freire, L.; Damasceno, B.; Ferreira, P.; Ferraz, P. Evaluation of Behavior in Piglets Using Digital Image Processing. Energ. NA Agric. 2019, 34, 217–229. [Google Scholar] [CrossRef]
- Kumar, P.; Ahmed, M.A.; Abubakar, A.A.; Hayat, M.N.; Kaka, U.; Ajat, M.; Goh, Y.M.; Sazili, A.Q. Improving Animal Welfare Status and Meat Quality through Assessment of Stress Biomarkers: A Critical Review. Meat Sci. 2023, 197, 109048. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of Heat Stress on Animal Physiology, Metabolism, and Meat Quality: A Review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef] [PubMed]
- Godyń, D.; Herbut, P.; Angrecka, S.; Vieira, F.M.C. Use of Different Cooling Methods in Pig Facilities to Alleviate the Effects of Heat Stress—A Review. Animals 2020, 10, 1459. [Google Scholar] [CrossRef] [PubMed]
- Nääs, I.A.; Garcia, R.G.; Caldara, F.R. Infrared Thermal Image for Assessing Animal Health and Welfare. J. Anim. Behav. Biometeorol. 2020, 2, 66–72. [Google Scholar] [CrossRef]
- Ricci, G.D.; da Silva-Miranda, K.O.; Titto, C.G. Infrared Thermography as a Non-Invasive Method for the Evaluation of Heat Stress in Pigs Kept in Pens Free of Cages in the Maternity. Comput. Electron. Agric. 2019, 157, 403–409. [Google Scholar] [CrossRef]
- Süli, T.; Halas, M.; Benyeda, Z.; Boda, R.; Belák, S.; Martínez-Avilés, M.; Fernández-Carrión, E.; Sánchez-Vizcaíno, J.M. Body Temperature and Motion: Evaluation of an Online Monitoring System in Pigs Challenged with Porcine Reproductive & Respiratory Syndrome Virus. Res. Vet. Sci. 2017, 114, 482–488. [Google Scholar] [CrossRef]
- Ghezzi, M.D.; Napolitano, F.; Casas-Alvarado, A.; Hernández-Ávalos, I.; Domínguez-Oliva, A.; Olmos-Hernández, A.; Pereira, A.M.F. Utilization of Infrared Thermography in Assessing Thermal Responses of Farm Animals under Heat Stress. Animals 2024, 14, 616. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-De la Fuente, V.; Wang, D. Physiological and Behavioral Mechanisms of Thermoregulation in Mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef]
- Luzi, F.; Mitchell, M.; Nanni Costa, L.; Redaelli, V. Thermography: Current Status and Advances in Livestock Animals and in Veterinary Medicine; Fondazione Iniziative Zooprofilattiche e Zootecniche: Brescia, Italy, 2013; pp. 1–216. ISBN 978-88-97562-06-1. [Google Scholar]
- Jia, G.; Li, W.; Meng, J.; Tan, H.; Feng, Y. Non-Contact Evaluation of Pigs’ Body Temperature Incorporating Environmental Factors. Sensors 2020, 20, 4282. [Google Scholar] [CrossRef]
- Talukder, S.; Thomson, P.C.; Kerrisk, K.L.; Clark, C.E.F.; Celi, P. Evaluation of Infrared Thermography Body Temperature and Collar-Mounted Accelerometer and Acoustic Technology for Predicting Time of Ovulation of Cows in a Pasture-Based System. Theriogenology 2015, 83, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Soerensen, D.D.; Pedersen, L.J. Infrared Skin Temperature Measurements for Monitoring Health in Pigs: A Review. Acta Vet Scand 2015, 57, 5. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, G.; Willard, N.C.; Ellis, M.; Gates, R.S. Modeling Neonatal Piglet Rectal Temperature with Thermography and Machine Learning. J. ASABE 2023, 66, 193–204. [Google Scholar] [CrossRef]
- Lu, M.; He, J.; Chen, C.; Okinda, C.; Shen, M.; Liu, L.; Yao, W.; Norton, T.; Berckmans, D. An Automatic Ear Base Temperature Extraction Method for Top View Piglet Thermal Image. Comput. Electron. Agric. 2018, 155, 339–347. [Google Scholar] [CrossRef]
- McManus, C.; Tanure, C.B.; Peripolli, V.; Seixas, L.; Fischer, V.; Gabbi, A.M.; Menegassi, S.R.O.; Stumpf, M.T.; Kolling, G.J.; Dias, E.; et al. Infrared Thermography in Animal Production: An Overview. Comput. Electron. Agric. 2016, 123, 10–16. [Google Scholar] [CrossRef]
- Alves, M.d.F.A.; Pandorfi, H.; Montenegro, A.A.D.A.; Silva, R.A.B.D.; Gomes, N.F.; Santana, T.C.; Almeida, G.L.P.D.; Marinho, G.T.B.; Silva, M.V.D.; Silva, W.A.D.; et al. Evaluation of Body Surface Temperature in Pigs Using Geostatistics. AgriEngineering 2023, 5, 1090–1103. [Google Scholar] [CrossRef]
- Marques, S.d.F.; Pitombo, C.S. Intersecting Geostatistics with Transport Demand Modeling: A Bibliographic Survey. Rev. Bras. DE Cartogr. 2020, 72, 1004–1027. [Google Scholar] [CrossRef]
- Cressie, N. Statistics for Spatial Data; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Hoffmann, G.; Schmidt, M.; Ammon, C.; Rose-Meierhöfer, S.; Burfeind, O.; Heuwieser, W.; Berg, W. Monitoring the Body Temperature of Cows and Calves Using Video Recordings from an Infrared Thermography Camera. Vet. Res. Commun. 2013, 37, 91–99. [Google Scholar] [CrossRef]
- da Silva, T.G.F.; Primo, J.T.A.; de Mura, M.S.B.; e Silva, S.M.S.; de Morais, J.E.F.; de Caldas Pereira, P.; de Souza, C.A.A. Soil Water Dynamics and Evapotranspiration of Forage Cactus Clones under Rainfed Conditions. Pesqui. Agropecu. Bras. 2015, 50, 515–525. [Google Scholar] [CrossRef]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Baêta, F.C.; Souza, C. Ambiência em Edificações Rurais: Conforto Animal; UFV: Minas Gerais, Brazil, 2010; p. 246. [Google Scholar]
- Soerensen, D.D.; Clausen, S.; Mercer, J.B.; Pedersen, L.J. Determining the Emissivity of Pig Skin for Accurate Infrared Thermography. Comput. Electron. Agric. 2014, 109, 52–58. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Processamento Digital de Imagem; Prentice Hall: Hoboken, NJ, USA, 2010; Volume 10, pp. 11–27. [Google Scholar]
- Warrick, A.W.; Nielsen, D.R. Spatial Variability of Soil Physic Properties in the Field; Academic: New York, NY, USA, 1980; pp. 655–675. [Google Scholar]
- GS+-Geostatistics for the Environmental Sciences; Gamma Design Software: Plainwell, MI, USA, 2004.
- Vauclin, M.; Vieira, S.R.; Vachaud, G.; Nielsen, D.R. The Use of Cokriging with Limited Field Soil Observations. Soil Sci. Soc. Am. J. 1983, 47, 175–184. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Gomes, N.F.; Pandorfi, H.; Barnabé, J.M.C.; Guiselini, C.; de Almeida, G.L.P.; de Holanda, M.C.R.; de Holanda, M.A.C.; da Silva, M.V. Behavior of Pigs Subjected to Climate Control System in the Semiarid Region of Pernambuco, Brazil. Dyna 2021, 88, 34–38. [Google Scholar] [CrossRef]
- Journel, A.G.; Huijbregts, C.J. Mining Geostatistics; Academic Press: London, UK, 1978; Volume 17, pp. 1–15. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geoestatistics. J. Glob. Optim. 1989, 23, 345–383. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: Oxford, UK, 1997; ISBN 9780195115383. [Google Scholar]
- Ross, J.W.; Hale, B.J.; Gabler, N.K.; Rhoads, R.P.; Keating, A.F.; Baumgard, L.H. Physiological Consequences of Heat Stress in Pigs. Anim. Prod. Sci. 2015, 55, 1381–1390. [Google Scholar] [CrossRef]
- Oliveira, A.C.d.F.d.; Vanelli, K.; Sotomaior, C.S.; Weber, S.H.; Costa, L.B. Impacts on Performance of Growing-Finishing Pigs under Heat Stress Conditions: A Meta-Analysis. Vet. Res. Commun. 2019, 43, 37–43. [Google Scholar] [CrossRef]
- Bracke, M.B.M.; Herskin, M.S.; Marahrens, M.; Gerritzen, M.A.; Spoolder, H.A.M. Review of Climate Control and Space Allowance during Transport of Pigs; EURCAW-Pigs: Grange, Ireland, 2020. [Google Scholar]
- Bleizgys, R.; Čėsna, J.; Kukharets, S.; Medvedskyi, O.; Strelkauskaitė-Buivydienė, I.; Knoknerienė, I. Adiabatic Cooling System Working Process Investigation. Processes 2023, 11, 767. [Google Scholar] [CrossRef]
- Quiniou, N.; Dubois, S.; Noblet, J. Voluntary Feed Intake and Feeding Behaviour of Group-Housed Growing Pigs are Affected by Ambient Temperature and Body Weight. Livest. Prod. Sci. 2000, 63, 245–253. [Google Scholar] [CrossRef]
- Batista, P.H.D.; de Almeida, G.L.P.; Pandorfi, H.; da Silva, M.V.; da Silva, R.A.B.; da Silva, J.L.B.; Santana, T.C.; Rodrigues, J.A.d.M. Thermal Images to Predict the Thermal Comfort Index for Girolando Heifers in the Brazilian Semiarid Region. Livest. Sci. 2021, 251, 104667. [Google Scholar] [CrossRef]
- Rossi, R.E.; Mulla, D.J.; Journel, A.G.; Franz, E.H. Geostatistical Tools for Modeling and Interpreting Ecological Spatial Dependence. Ecol. Monogr. 1992, 62, 277–314. [Google Scholar] [CrossRef]
- Renaudeau, D.; Gourdine, J.L.; St-Pierre, N.R. A Meta-Analysis of the Effects of High Ambient Temperature on Growth Performance of Growing-Finishing Pigs. J. Anim. Sci. 2011, 89, 2220–2230. [Google Scholar] [CrossRef] [PubMed]
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to Hot Climate and Strategies to Alleviate Heat Stress in Livestock Production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [PubMed]
- Brown-Brandl, T.M. Understanding Heat Stress in Beef Cattle. Rev. Bras. DE Zootec. 2018, 47, e20160414. [Google Scholar] [CrossRef]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef]
- Gómez-Prado, J.; Pereira, A.M.F.; Wang, D.; Villanueva-García, D.; Domínguez-Oliva, A.; Mora-Medina, P.; Hernández-Avalos, I.; Martínez-Burnes, J.; Casas-Alvarado, A.; Olmos-Hernández, A.; et al. Thermoregulation Mechanisms and Perspectives for Validating Thermal Windows in Pigs with Hypothermia and Hyperthermia: An Overview. Front. Vet Sci. 2022, 9, 1023294. [Google Scholar] [CrossRef]
- Bjerg, B.; Brandt, P.; Pedersen, P.; Zhang, G. Sows’ Responses to Increased Heat Load—A Review. J. Therm. Biol. 2020, 94, 102758. [Google Scholar] [CrossRef]
- Berckmans, D. Advances in Precision Livestock Farming; Burleigh Dodds Science Publishing: Cambridge, UK, 2022; p. 418. ISBN 9781003180661. [Google Scholar]
Class | Range |
---|---|
Cold stress | THI ≤ 58 |
Comfort | 61 < THI ≤ 78 |
Alert | 78 < THI ≤ 80 |
Emergency | THI > 80 |
BTEST | BECS | |||
---|---|---|---|---|
Time | 1Tair (°C) | 2RH (%) | Tair (°C) | RH (%) |
08:00 | 24.0 | 71.7 | 23.1 | 76.6 |
12:00 | 31.4 | 58.8 | 26.9 | 83.2 |
16:00 | 29.0 | 66.0 | 26.0 | 88.9 |
Treatment | Time | Mean | Median | Minimum | Maximum | SD * | CV(%) |
---|---|---|---|---|---|---|---|
BTEST | 08:00 AM | 34.4 | 34.9 | 34.0 | 39.0 | 1.6 | 4.7 |
12:00 PM | 37.4 | 37.2 | 36.4 | 37.3 | 0.2 | 0.5 | |
16:00 PM | 37.8 | 37.7 | 37.3 | 39.2 | 0.3 | 0.8 | |
BECS | 08:00 AM | 33.7 | 34.0 | 28.2 | 36.4 | 1.0 | 3.0 |
12:00 PM | 36.1 | 37.4 | 32.0 | 38.1 | 0.3 | 0.8 | |
16:00 PM | 36.4 | 36.4 | 34.5 | 38.6 | 0.4 | 1.1 |
Treatment | Variables | Model | 1C0 | 2C0 + C | 3A | 4R2 | 6DSD | 10J-K | ||
---|---|---|---|---|---|---|---|---|---|---|
7M | 8DP | |||||||||
TSO (08h00) | 9Gaus | 0.012 | 0.14 | 74.82 | 0.93 | 0.08 | 8.72 | −0.01 | 0.86 | |
BTEST | TSO (12h00) | Gaus | 0.015 | 0.02 | 55.07 | 0.96 | 0.22 | 22.63 | −0.01 | 0.83 |
TSO (16h00) | Gaus | 0.029 | 0.08 | 72.57 | 0.91 | 0.23 | 22.89 | −0.01 | 0.87 | |
TSO (8h00) | Gaus | 0.020 | 0.06 | 96.64 | 0.97 | 0.31 | 31.21 | −0.03 | 0.82 | |
BECS | TSO (12h00) | Gaus | 0.018 | 0.06 | 78.50 | 0.90 | 0.28 | 28.32 | 0.01 | 0.88 |
TSO (16h00) | Gaus | 0.015 | 0.05 | 95.76 | 0.95 | 0.31 | 31.31 | 0.01 | 1.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana, T.C.; Guiselini, C.; Pandorfi, H.; Vigoderis, R.B.; Barbosa Filho, J.A.D.; Soares, R.G.F.; Alves, M.d.F.A.; Silva, M.A.; Dias de Lima, L.; Sales, J.J.d.M. Ear Back Surface Temperature of Pigs as an Indicator of Comfort: Spatial Variability and Its Thermal Implications. AgriEngineering 2025, 7, 266. https://doi.org/10.3390/agriengineering7080266
Santana TC, Guiselini C, Pandorfi H, Vigoderis RB, Barbosa Filho JAD, Soares RGF, Alves MdFA, Silva MA, Dias de Lima L, Sales JJdM. Ear Back Surface Temperature of Pigs as an Indicator of Comfort: Spatial Variability and Its Thermal Implications. AgriEngineering. 2025; 7(8):266. https://doi.org/10.3390/agriengineering7080266
Chicago/Turabian StyleSantana, Taize Calvacante, Cristiane Guiselini, Héliton Pandorfi, Ricardo Brauer Vigoderis, José Antônio Delfino Barbosa Filho, Rodrigo Gabriel Ferreira Soares, Maria de Fátima Araújo Alves, Marco Antonio Silva, Leandro Dias de Lima, and João José de Mesquita Sales. 2025. "Ear Back Surface Temperature of Pigs as an Indicator of Comfort: Spatial Variability and Its Thermal Implications" AgriEngineering 7, no. 8: 266. https://doi.org/10.3390/agriengineering7080266
APA StyleSantana, T. C., Guiselini, C., Pandorfi, H., Vigoderis, R. B., Barbosa Filho, J. A. D., Soares, R. G. F., Alves, M. d. F. A., Silva, M. A., Dias de Lima, L., & Sales, J. J. d. M. (2025). Ear Back Surface Temperature of Pigs as an Indicator of Comfort: Spatial Variability and Its Thermal Implications. AgriEngineering, 7(8), 266. https://doi.org/10.3390/agriengineering7080266