Straw Cover and Tire Model Effect on Soil Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Site of Study and Static Tire Test Unit (STTU) Details
2.2. Rigid Surface Tire Tests
2.3. Tires’ Performance Evaluation
2.4. Soil Bin Test
2.5. TASC Simulation Model
2.6. Statistical Analysis
3. Results and Discussion
3.1. Contact Area Test
3.2. Pressures Appllied
3.3. Straw Effect on Contact Area and Soil Penetration Resistance
3.4. Soil Stress Simulation
4. Conclusions
- (1)
- The rigid surface yielded the smallest contact areas, which resulted in increased wheel pressure.
- (2)
- The deformable surface increases the contact area by at least 4.7 times compared to the rigid surface, regardless of the tire.
- (3)
- On the deformable surface without vegetation cover (bare soil), the highest subsoil stresses were observed. Straw on the soil increases the tire’s contact area and reduces compaction.
- (4)
- All tire models had a significant impact on the topsoil, leading to the risk of compaction. However, the greatest pressure was imposed by the road truck tire (p1). On the other hand, the radial tire (p2) caused the lowest stress levels.
- (5)
- The addition of 15 Mg ha−1 of straw to bare soil improved the SPR by 18%. The increase from 15 to 30 Mg ha−1 improved SPR by 8%, indicating that there are limiting values for the effects of straw on soil protection.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schjønning, P.; Stettler, M.; Keller, T.; Lassen, P.; Lamandé, M. Predicted tyre–soil interface area and vertical stress distribution based on loading characteristics. Soil Tillage Res. 2015, 152, 52–66. [Google Scholar] [CrossRef]
- Alaoui, A.; Diserens, E. Mapping soil compaction—A review. Curr. Opin. Environ. Sci. Health 2018, 5, 60–66. [Google Scholar] [CrossRef]
- Keller, T.; Sandin, M.; Colombi, T.; Horn, R.; Or, D. Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning. Soil Tillage Res. 2019, 194, 104293. [Google Scholar] [CrossRef]
- Barbosa, L.C.; Tenelli, S.; Magalhães, P.S.; Bordonal, R.O.; Cherubin, M.R.; de Lima, R.P.; Carvalho, J.L.N. Linking soil physical quality to shoot and root biomass production in scenarios of sugarcane straw removal. Eur. J. Agron. 2024, 152, 127029. [Google Scholar] [CrossRef]
- Delmond, J.G.; Junnyor, W.D.S.G.; de Brito, M.F.; Rossoni, D.F.; Araujo-Junior, C.F.; da Costa Severiano, E.; Severiano, E.C. Which operation in mechanized sugarcane harvesting is most responsible for soil compaction? Geoderma 2024, 448, 116979. [Google Scholar] [CrossRef]
- Acquah, K.; Chen, Y. Discrete element modelling of soil pressure under varying number of tire passes. J. Terramechanics 2023, 107, 23–33. [Google Scholar] [CrossRef]
- Zhang, F.; Qiu, Y.; Teng, S.; Cui, X.; Wang, X.; Sun, H.; Fu, S. Design and Test of Tread-Pattern Structure of Biomimetic Goat-Sole Tires. Biomimetics 2022, 7, 236. [Google Scholar] [CrossRef]
- Marques Filho, A.C.; de Medeiros, S.D.S.; Martins, M.B.; dos Santos Moura, M.; Lanças, K.P. Can the Straw Remaining on the Ground Reduce the Wheelsets Impact on Sugarcane Crop? Sugar Tech 2022, 24, 1814–1820. [Google Scholar] [CrossRef]
- Diserens, E.; Chanet, M.; Marionneau, A. Machine Weight and Soil Compaction: TASC V2.0. xls-a Practical Tool for Decision-making in Farming 2010. Available online: https://www.tasc-application.ch/wp-content/themes/Divi-Child/downloads/6-REF239.pdf (accessed on 26 March 2025).
- Fujita, K.; Saito, T.; Kaneko, M. Dynamic Characteristics of Rolling Agricultural Tire. Eng. Agric. Environ. Food 2021, 14, 1–12. [Google Scholar] [CrossRef]
- Farhadi, P.; Golmohammadi, A.; Malvajerdi, A.S.; Shahgholi, G. Finite element modeling of the interaction of a treaded tire with clay-loam soil. Comput. Electron. Agric. 2019, 162, 793–806. [Google Scholar] [CrossRef]
- Teimourlou, R.F.; Taghavifar, H. Determination of the super-elliptic shape of tire-soil contact area using image processing method. Cercet. Agron. Mold. 2015, 48, 5–14. Available online: https://repository.iuls.ro/xmlui/handle/20.500.12811/1519 (accessed on 1 April 2025). [CrossRef]
- Yue, L.; Wang, Y.; Wang, L.; Yao, S.; Cong, C.; Ren, L.; Zhang, B. Impacts of soil compaction and historical soybean variety growth on soil macropore structure. Soil Tillage Res. 2021, 214, 105166. [Google Scholar] [CrossRef]
- Esteban, D.A.A.; de Souza, Z.M.; Tormena, C.A.; dos Santos Gomes, M.G.; Parra, J.A.S.; Júnnyor, W.D.S.G.; de Moraes, M.T. Risk assessment of soil compaction due to machinery traffic used in infield transportation of sugarcane during mechanized harvesting. Soil Tillage Res. 2024, 244, 106206. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Franchi, M.R.A.; de Lima, R.P.; de Moraes, M.T.; da Luz, F.B. Sugarcane straw effects on soil compaction susceptibility. Soil Tillage Res. 2021, 212, 105066. [Google Scholar] [CrossRef]
- Cutini, M.; Costa, C.; Brambilla, M.; Bisaglia, C. Relationship between the 3D footprint of an agricultural tire and drawbar pull using an artificial neural network. Appl. Eng. Agric. 2022, 38, 293–301. [Google Scholar] [CrossRef]
- Yadav, R.; Raheman, H. Development of an artificial neural network model with graphical user interface for predicting contact area of bias-ply tractor tyres on firm Surface. J. Terramechanics 2023, 107, 1–11. [Google Scholar] [CrossRef]
- de Oliveira Bordonal, R.; Tenelli, S.; da Silva Oliveira, D.M.; Chagas, M.F.; Cherubin, M.R.; Weiler, D.A.; Carvalho, J.L.N. Carbon savings from sugarcane straw-derived bioenergy: Insights from a life cycle perspective including soil carbon changes. Sci. Total Environ. 2024, 947, 174670. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, C.Z.; Zhang, L.; Lin, Z.J.; Dang, Y.P.; Zhao, X.; Zhang, H.L. The competitive effects of crop straw return and nitrogen fertilization on soil acidification. Agric. Ecosyst. Environ. 2025, 388, 109638. [Google Scholar] [CrossRef]
- Alapa. Associação Latino-Americana dos Fabricantes de Pneus, Aros e Rodas. Man. De Segurança Agrícola E Off Road 2019. Available online: https://alapa.org.br/manuais-e-publicacoes/ (accessed on 1 November 2024).
- USDA Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; United States Department of Agriculture: Washington, DC, USA, 2004.
- Santos, H.G.; Jacomine, P.K.T.; dos Anjos, L.H.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Cunha, J.F.; Oliveira, J.B. Sistema Brasileiro de Classificação de Solos, 5th ed.; EMBRAPA: Brasília, DF, Brazil, 2018. [Google Scholar]
- Leal, M.R.L.; Galdos, M.V.; Scarpare, F.V.; Seabra, J.E.; Walter, A.; Oliveira, C.O. Sugarcane straw availability, quality, recovery and energy use: A literature review. Biomass Bioenergy 2013, 53, 11–19. [Google Scholar] [CrossRef]
- Diserens, E.; Battiato, A.; Sartori, L. Soil compaction, soil shearing and fuel consumption, TASC V3.0–a practical tool for decision-making in farming. In Proceedings of the International Conference of Agricultural Engineering, Zürich, Switzerland, 6–10 July 2014. [Google Scholar]
- Kučera, M.; Helexa, M.; Čedík, J. Link between static radial tire stiffness and the size of its contact surface and contact pressure. Agron. Res. 2016, 14, 1361–1371. [Google Scholar]
- Pytka, J.; Śliczniak, T.; Kasprzak, P.; Gnapowski, E. Tyre-Soil Interface Determination by Photogrammetric Method. In: IOP Conference Series: Materials Science and Engineering. IOP Publ. 2018, 421, 022–030. [Google Scholar]
- Silva, R.B.D.; Iori, P.; Souza, Z.M.D.; Pereira, D.D.M.G.; Vischi Filho, O.J.; Silva, F.A.D.M. Pressões de contato e o impacto de conjuntos motomecanizados em Latossolo com presença e ausência de palhada de cana-de-açúcar. Ciência Agrotecnologia 2016, 40, 265–278. [Google Scholar] [CrossRef]
- Thorpe, D.D.F.; Rolim, M.M.; Pedrosa, E.M.R.; Simões, D.E.; Cavalcanti, R.Q.; Lima, R.P.D. Impacts of bulk density and water content on the tire-soil contact area of agricultural field vehicles. Acta Sci. Agron. 2024, 46, e67906. [Google Scholar] [CrossRef]
- Pegram, M.S.; Botha, T.R.; Els, P.S. Full-field and point strain measurement via the inner surface of a rolling large lug tyre. J. Terramechanics 2021, 96, 11–22. [Google Scholar] [CrossRef]
- Nagaoka, A.K.; Marques Filho, A.C.; Lanças, K.P. Agricultural Tire Test: Straw Cover Effect on Reducing Soil Compaction by Cargo Vehicles. AgriEngineering 2024, 6, 3. [Google Scholar] [CrossRef]
- Tamirat, T.W.; Pedersen, S.M.; Farquharson, R.J.; de Bruin, S.; Forristal, P.D.; Sørensen, C.G.; Nuyttens, D.; Pedersen, H.H.; Thomsen, M.N. Controlled traffic farming and field traffic management: Perceptions of farmers groups from Northern and Western European countries. Soil Tillage Res. 2022, 217, 105288. [Google Scholar] [CrossRef]
- Becker, C.; Els, S. Effect of surface roughness on tyre characteristics. J. Terramechanics 2022, 102, 27–48. [Google Scholar] [CrossRef]
- Karelina, M.; Balabina, T.; Mamaev, A. Wheel Rolling on a Deformable Support Surface. In Proceedings of the 2022 International Conference on Engineering Management of Communication and Technology (EMCTECH), Vienna, Austria, 20–22 October 2022; Volume 1, pp. 1–4. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Z.; Shen, H.; Gong, J.; Xiao, Z. A comprehensive review on non-pneumatic tyre research. Mater. Des. 2023, 1, 111742. [Google Scholar] [CrossRef]
- Araujo-Junior, C.F.; Dias Junior, M.S.; Leite, F.P.; Gaudereto, G.S. Determination of Applied Pressure on the Soil by Forest Machines Using a Simple Equipment for Measurements. Física de Suelos Clave Para el Manejo Sostenible de los Recursos Agua y Suelos; X Escuela Latinoamericana de Física de Suelos: Lavras, Brasil, 2009. [Google Scholar]
- Júnnyor, W.D.S.G.; Diserens, E.; De Maria, I.C.; Araujo-Junior, C.F.; Farhate, C.V.V.; de Souza, Z.M. Prediction of soil stresses and compaction due to agricultural machines in sugarcane cultivation systems with and without crop rotation. Sci. Total Environ. 2019, 681, 424–434. [Google Scholar] [CrossRef]
- Soane, B.D.; Blackwell, P.S.; Dickson, J.W.; Painter, D.J. Compaction by agricultural vehicles. A review. II—Compaction under tyres and other running gear. Soil Tillage Res. 1981, 1, 373–400. [Google Scholar] [CrossRef]
- Marques Filho, A.C.; Martins, M.B.; Santana, L.S.; Lopes, A.G.C.; Sobrinho, R.L.; Souza, E.F.; Alaraidh, I.A. Effect of Soil Compaction Caused by Manual and Mechanized Harvesting Management on Sugarcane Yield. Sugar Tech 2025, 27, 1351–1361. [Google Scholar] [CrossRef]
- Martins, M.B.; Filho, A.C.M.; Santana, L.S.; Júnnyor, W.D.S.G.; Bortolheiro, F.P.D.A.P.; Vendruscolo, E.P.; da Silva, K.G.P. Productivity and quality sugarcane broth at different soil management. Agronomy 2023, 13, 170. [Google Scholar] [CrossRef]
- Martins, M.B.; Marques Filho, A.C.; Seron, C.D.C.; Guimarães Júnnyor, W.D.S.; Vendruscolo, E.P.; Bortolheiro, F.P.D.A.P.; Santana, L.S. Controlled Traffic Farm: Fuel Demand and Carbon Emissions in Soybean Sowing. AgriEngineering 2024, 6, 1794–1806. [Google Scholar] [CrossRef]
- Kukharets, S.; Zabrodskyi, A.; Sheludchenko, B.; Jasinskas, A.; Domeika, R.; Šarauskis, E. Assessment of changes in soil contact stress depending on tractor tire parameters. Sci. Rep. 2025, 15, 172. [Google Scholar] [CrossRef]
- Vieira, D.; Orjuela, R.; Spisser, M.; Basset, M. An adapted Burckhardt tire model for off-road vehicle applications. J. Terramechanics 2022, 104, 15–24. [Google Scholar] [CrossRef]
Type | Tire | Width (mm) | Diameter (mm) | Static Radio (mm) | Cargo Index | Inflation Pressure (kPa) * |
---|---|---|---|---|---|---|
275/80R22.5 (double) | p1 | 275 | 1029 | 515 | 149 K | 717 |
600/50R22.5 | p2 | 616 | 1181 | 510 | 165 A8 | 283 |
600/50-22.5 | p3 | 600 | 1172 | 572 | 165 A8 | 283 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques Filho, A.C.; Santana, L.S.; Martins, M.B.; Guimarães Júnnyor, W.d.S.; Medeiros, S.D.S.d.; Lanças, K.P. Straw Cover and Tire Model Effect on Soil Stress. AgriEngineering 2025, 7, 263. https://doi.org/10.3390/agriengineering7080263
Marques Filho AC, Santana LS, Martins MB, Guimarães Júnnyor WdS, Medeiros SDSd, Lanças KP. Straw Cover and Tire Model Effect on Soil Stress. AgriEngineering. 2025; 7(8):263. https://doi.org/10.3390/agriengineering7080263
Chicago/Turabian StyleMarques Filho, Aldir Carpes, Lucas Santos Santana, Murilo Battistuzzi Martins, Wellingthon da Silva Guimarães Júnnyor, Simone Daniela Sartório de Medeiros, and Kléber Pereira Lanças. 2025. "Straw Cover and Tire Model Effect on Soil Stress" AgriEngineering 7, no. 8: 263. https://doi.org/10.3390/agriengineering7080263
APA StyleMarques Filho, A. C., Santana, L. S., Martins, M. B., Guimarães Júnnyor, W. d. S., Medeiros, S. D. S. d., & Lanças, K. P. (2025). Straw Cover and Tire Model Effect on Soil Stress. AgriEngineering, 7(8), 263. https://doi.org/10.3390/agriengineering7080263