Cloud-Enabled Multi-Axis Soilless Clinostat for Earth-Based Simulation of Partial Gravity and Light Interaction in Seedling Tropisms
Abstract
1. Introduction
- (1)
- Development of an Earth-based simulated partial gravity platform with seamless wireless environmental data transmission and monitoring and integrated aeroponic and lighting systems to support crop growth;
- (2)
- Elucidation of gravitropic and phototropic responses of maize seedlings under partial gravity environment. This development helps in preparing food production systems and techniques for astronauts and improving technologies linked with bio-regenerative life support systems in space.
2. Materials and Methods
2.1. Designing and Rapid Prototyping of Clinostat
2.2. Automating of 3-Axis Clinostat Rotation
2.3. Automating Fertigation and Lighting Systems
2.4. Embedding of Cloud-Based IoT Network
2.5. Test Cultivation and Statistical Analysis
3. Results
3.1. Finite Element Analysis and Fabricated Clinostat
3.2. Clinorotation
3.3. Automated Aeroponic Fertigation and Lighting Systems and Cloud IoT System
3.4. Synthesis of Partial Gravity and Light Tropisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASR | active surface ratio |
AFP | air-filled porosity |
AA | ascorbate |
CNC | computer numerical control |
CR | Centrifuge Rotor |
CT | control treatment |
EMCS | European Modular Cultivation System |
FEA | Finite Element Analysis |
GA | gibberellic acid |
HI-SEAS | Hawaii Space Exploration Analog and Simulation |
HSP | heat shock protein |
IAA | indolic acetic acid |
ISS | International Space Station |
MDRS | Mars Desert Research Station |
MEERS | Mobile Extreme Environment Research Station |
PG | partial gravity |
PWM | Pulse Width Modulator |
RPMs | Random Positioning Machines |
RGR | relative growth rate |
WTT | water transport time |
TGI | Triangular Greenness Index |
References
- Paul, A.; Wheeler, R.M.; Levine, H.G.; Ferl, R.J. Fundamental plant biology enabled by the space shuttle. Am. J. Bot. 2013, 100, 226–234. [Google Scholar] [CrossRef]
- Perbal, G.; Driss-Ecole, D. Contributions of space experiments to the study of gravitropism. J. Plant Growth Regul. 2002, 21, 156–165. [Google Scholar] [CrossRef]
- Morita, M.T. Directional gravity sensing in gravitropism. Annu. Rev. Plant Biol. 2010, 61, 705–720. [Google Scholar] [CrossRef]
- Hughes, A.M.; Vandenbrink, J.P.; Kiss, J.Z. Efficacy of the random positioning machine as a terrestrial analogue to microgravity in studies of seedling phototropism. Microgravity Sci. Technol. 2023, 35, 43. [Google Scholar] [CrossRef]
- Kiss, J.Z.; Millar, K.D.L.; Edelmann, R.E. Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station. Planta 2012, 236, 635–645. [Google Scholar] [CrossRef]
- Romano, L.E.; Van Loon, J.J.W.A.; Izzo, L.G.; Iovane, M.; Aronne, G. Effects of altered gravity on growth and morphology in Wolffia globosa: Implications for bioregenerative life support systems and space-based agriculture. Sci. Rep. 2024, 14, 410. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Krause, L.; Görög, M.; Schüler, O.; Hauslage, J.; Hemmersbach, R.; Kircher, S.; Lasok, H.; Haser, T.; et al. 2-D clinostat for simulated microgravity experiments with Arabidopsis seedlings. Microgravity Sci. Technol. 2015, 28, 59–66. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, H.; Yang, D.; Park, J.; Park, R.; Namkoong, S.; Lee, J.I.; Choi, I.; Kim, H.-S.; Kim, H.; et al. An experimental and theoretical approach to optimize a three-dimensional clinostat for life science experiments. Microgravity Sci. Technol. 2016, 29, 97–106. [Google Scholar] [CrossRef]
- Vandenbrink, J.P.; Herranz, R.; Medina, F.J.; Edelmann, R.E.; Kiss, J.Z. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity. Planta 2016, 244, 1201–1215. [Google Scholar] [CrossRef] [PubMed]
- Porterfield, D.M. The biophysical limitations in physiological transport and exchange in plants grown in microgravity. J. Plant Growth Regul. 2002, 21, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.G.; Aronne, G. Root tropisms: New insights leading the growth direction of the hidden half. Plants 2021, 10, 220. [Google Scholar] [CrossRef]
- Shen, Y.; Guo, S.; Zhao, P.; Wang, L.; Wang, X.; Li, J.; Bian, Q. Research on lettuce growth technology onboard Chinese Tiangong II Spacelab. Acta Astronaut. 2018, 144, 97–102. [Google Scholar] [CrossRef]
- Hołtra, A.; Zamorska-Wojdyła, D. Assessment of the physiological condition of Salvinia natans L. exposed to copper(II) ions. Environ. Prot. Eng. 2015, 41, 147–158. [Google Scholar] [CrossRef]
- Romano, L.E.; Iovane, M.; Izzo, L.G.; Aronne, G. A machine-learning method to assess growth patterns in plants of the family Lemnaceae. Plants 2022, 11, 1910. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Jeong, A.J.; Kim, M.; Lee, C.; Ye, S.K.; Kim, S. Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostat. Biomed. Eng. Online 2017, 16, 48. [Google Scholar] [CrossRef] [PubMed]
- Kuya, N.; Nishijima, R.; Kitomi, Y.; Kawakatsu, T.; Uga, Y. Transcriptome profiles of rice roots under simulated microgravity conditions and following gravistimulation. Front. Plant Sci. 2023, 14, 1193042. [Google Scholar] [CrossRef]
- Concepcion II, R.; Relano, R.J.; Janairo, A.G.; Francisco, K.; Garcia, L.; Montanvert, H. Effects of optimized interaction of short-term hypergravity stimulation and nitrate-deficient cultivation in maize root using genetic-immunological algorithms. Plant Stress 2024, 14, 100702. [Google Scholar] [CrossRef]
- Attuluri, S.; Suman, S.; Srilatha, D.; Avasthi, V.; Singh, R. Monitoring and detecting plant diseases using cloud-based Internet of Things. J. Electr. Syst. 2024, 20, 183–194. [Google Scholar] [CrossRef]
- Concepcion, R.; Ramirez, T.J.; Alejandrino, J.; Janairo, A.G.; Baun, J.J.; Francisco, K.; Relano, R.J.; Enriquez, M.L.; Bautista, M.G.; Vicerra, R.R.; et al. A look at the near future: Industry 5.0 boosts the potential of sustainable space agriculture. In Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Baguio, Philippines, 1 December 2022. [Google Scholar]
- Relano, R.-J.S.; Francisco, K.G.; Concepcion, R.S.; Ducut, J.D.D.; Enriquez, M.L.C.; Vicerra, R.R.P.; Bandala, A.A.; Dadios, E.P. Tuber root growth in silico phenotyping using adaptive Neuro-Fuzzy Capacitive Resistivity Imaging system. In Proceedings of the 2022 7th International Conference on Business and Industrial Research (ICBIR), Bangkok, Thailand, 18 May 2023. [Google Scholar]
- Dawson, S.J.; Roesch, J.E.; Solignac, A. Human factors studies for a Mars expedition. Sci. Technol. Ser. 2004, 107, 403–409. [Google Scholar]
- Heinicke, C.; Poulet, L.; Dunn, J.; Meier, A. Crew self-organization and group-living habits during three autonomous, long-duration Mars analog missions. Acta Astronaut. 2021, 182, 160–178. [Google Scholar] [CrossRef]
- Crotti, S.; Foing, B.; Pascual, J.; Puriene, V.; Zanchi, M. ExoSpaceHab-X: A transportable Moon base for analog missions & outreach. In Proceedings of the International Astronautical Congress(IAC), Baku, Azerbaijan, 2–6 October 2023. [Google Scholar]
- Disher, T.J.; Anania, E.C.; Anglin, K.M.; Kring, J.P. Development of the mobile extreme environment research station (MEERS) analogue for usability and field testing of space technology. In Proceedings of the 29th Space Simulation Conference—"Fifty Years of Advancing the Testing Boundaries", Annapolis, MD, USA, 14–17 November 2016. [Google Scholar]
- Nakano, T. The development of the International Space Station centrifuge. Biol. Sci. Space 2004, 18, 89–90. [Google Scholar]
- Dionela, M.J.; Alaan, M.; Lato, J.R.; Reyes, J.; Tan, J.M.; Concepcion II, R.; Relano, R.J. Custom-Built Earth-Based Hypergravity Platform to Study Gravity and Light Tropisms on Soil-Grown Seedlings. Appl. Sci. Eng. Prog. 2025, 18, 1–15. [Google Scholar] [CrossRef]
- Ikhajiagbe, B.; Anoliefo, G.O.; Orukpe, A.O.; Ibrahim, M.S. Effects of Selected Plant Growth Stimulators on Enhancing Germinability and Germination Parameters of Zea mays L. Under Microgravity Conditions Simulated by a Two-Dimensional Clinostat. Int. J. Hortic. Sci. Technol. 2023, 10, 1–10. [Google Scholar] [CrossRef]
- Valbuena, M.A.; Mazano, A.; Vandenbrink, J.P.; Pereda-Loth, V.; Carnero-Diaz, E.; Edelmann, R.E.; Kiss, J.Z.; Herranz, R.; Medina, F.J. The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells. Planta 2018, 248, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Medina, F.J.; Manzano, A.; Villacampa, A.; Ciska, M.; Herranz, R. Understanding Reduced Gravity Effects on Early Plant Development Before Attempting Life-Support Farming in the Moon and Mars. Front. Astron. Space Sci. 2021, 8, 729154. [Google Scholar] [CrossRef]
- Romano, L.E.; van Loon, J.J.W.A.; Vincent-Bonnieu, S.; Aronne, G. Wolffia globosa, a novel crop species for protein production in space agriculture. Sci. Rep. 2024, 14, 27979. [Google Scholar] [CrossRef]
Platform/ Technology | Simulated Gravity (g) | No. of Rotating Axis | Grow Media | Wireless Connectivity | Type of Cultivation System | Crop of Interest | Root Zone Temperature (°C) | Light Spectrum | Ref. |
---|---|---|---|---|---|---|---|---|---|
Microgravity | 0.02 | 2 | Gel | None | Petri dish | Arabidopsis thaliana | 22 | Green | [8] |
Partial gravity | 0–0.9 | 2 | Water | None | Petri dish | Wolffia globosa | Not specified | White | [6] |
Partial gravity | 0.17 | 3 | Agar | None | Not specified | Arabidopsis thaliana | Not specified | White, red | [29] |
Hypergravity | 4 | 3 | Agar | None | Well plates | Wolffia globosa | 30.44 ± 1.24 | 340–820 nm | [30] |
Hypergravity | 5 | 1 | Soil | IoT | Drip irrigation | Zea mays L. | 21–31 | RGB | [26] |
Partial gravity | 0.35–0.4 | 3 | Foam | Cloud IoT | Aeroponic | Zea mays L. | 23–29 | RGB | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacayurin, C.R.; De Chavez, J.C.; Lansangan, M.C.; Lucas, C.; Villanueva, J.J.; Relano, R.-J.; Romano, L.E.; Concepcion, R., II. Cloud-Enabled Multi-Axis Soilless Clinostat for Earth-Based Simulation of Partial Gravity and Light Interaction in Seedling Tropisms. AgriEngineering 2025, 7, 261. https://doi.org/10.3390/agriengineering7080261
Cacayurin CR, De Chavez JC, Lansangan MC, Lucas C, Villanueva JJ, Relano R-J, Romano LE, Concepcion R II. Cloud-Enabled Multi-Axis Soilless Clinostat for Earth-Based Simulation of Partial Gravity and Light Interaction in Seedling Tropisms. AgriEngineering. 2025; 7(8):261. https://doi.org/10.3390/agriengineering7080261
Chicago/Turabian StyleCacayurin, Christian Rae, Juan Carlos De Chavez, Mariah Christa Lansangan, Chrischell Lucas, Justine Joseph Villanueva, R-Jay Relano, Leone Ermes Romano, and Ronnie Concepcion, II. 2025. "Cloud-Enabled Multi-Axis Soilless Clinostat for Earth-Based Simulation of Partial Gravity and Light Interaction in Seedling Tropisms" AgriEngineering 7, no. 8: 261. https://doi.org/10.3390/agriengineering7080261
APA StyleCacayurin, C. R., De Chavez, J. C., Lansangan, M. C., Lucas, C., Villanueva, J. J., Relano, R.-J., Romano, L. E., & Concepcion, R., II. (2025). Cloud-Enabled Multi-Axis Soilless Clinostat for Earth-Based Simulation of Partial Gravity and Light Interaction in Seedling Tropisms. AgriEngineering, 7(8), 261. https://doi.org/10.3390/agriengineering7080261