Advancements in Chemiresistive and Electrochemical Sensing Materials for Detecting Volatile Organic Compounds in Potato and Tomato Plants
Abstract
:1. Introduction
Literature Survey Strategy and Analysis
- What are the specific VOCs emitted by potato and tomato plants under different stress conditions and how do their emission profiles vary between biotic and abiotic stressors?
- What recent advancements in sensing materials have improved the detection of VOCs in agricultural applications and how do different sensing mechanisms influence the performance of VOC sensors?
- How do different chemiresistive and electrochemical non-composite and hybrid sensing materials compare in terms of sensitivity, selectivity, limit of detection, response time, robustness, cost-effectiveness, biocompatibility, substrate, modifications, sensing mechanism, and detection resolution for VOC detection in agriculture? What criteria make a sensing material ideal for wearable plant sensors, particularly for monitoring VOCs in potato and tomato crops?
- What interdisciplinary opportunities exist between materials science, plant pathology, artificial intelligence, data science, and industrial manufacturing to enhance wearable plant sensor technologies?
- Elucidation and analysis of existing VOC emission profiles of different potato and tomato cultivars focusing on VOCs emitted due to pathogen-induced stress with corresponding insights for conducting future VOC emission analysis and studies.
- Comparative analysis of sensing materials following various performance metrics and recent advances that could offer valuable insights for selecting suitable materials for future development of sensors for agricultural applications.
- Development of a superstructure pinpointing the roles of various disciplines in advancing wearable plant sensor technologies that could facilitate a strategic approach for agricultural stakeholders. This highlights the need for interdisciplinary collaborations, with emphasis on the integration of artificial intelligence, the Internet of Things, and smart sensing technologies for data-driven agriculture.
2. Volatile Organic Compounds in Potato and Tomato Crops
2.1. Plant Volatile Organic Compounds
2.2. Tomato VOCs
2.3. Potato Volatile Organic Compounds
2.4. VOC Detection Techniques
3. Advances in Sensing Materials for VOC Detection
3.1. Polymeric Materials
3.2. Carbon-Based Nanomaterials
3.3. Metal Oxide Semiconductors
4. Comparative Analysis of Sensing Materials for VOC Detection
4.1. Conducting Polymer-Based Composites
4.2. Carbon Nanomaterial-Based Composites
4.3. Metal Oxide-Based Sensors
5. Future Directions and Research Trends
6. Conclusions and Recommendations
- The VOC emission profiles of different potato and tomato cultivars were analyzed with the identification of biomarkers; however, no universal VOC profile was identified, making it difficult to identify clear differences between VOCs from each type of stressor.
- Novel doping and functionalization techniques have enhanced the sensitivity and selectivity of various sensing materials, such as conducting polymers, carbon nanomaterials, and metal oxides, which can be combined into hybrid or composite materials that could further positively influence sensing performance.
- The most effective sensing materials are composite materials that can be put through processes such as doping or functionalization for detecting the target VOCs, with future research directions focusing on the identification of more efficient composite materials and treatment methods for detection of specific VOCs.
- The different interdisciplinary opportunities between materials science and agriculture can be summarized in three key priorities, which are anchored on sensitivity and flexibility, focusing more on the sensor design and manufacturing process innovations, and sustainability, focusing on minimizing negative environmental impact.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UAV | Unmanned aerial vehicle |
NDVI | Normalized Vegetation Index |
VOC | Volatile organic compound |
GLV | Green leaf volatile |
PA | Precision agriculture |
IoT | Internet of Things |
GPS | Global positioning system |
GIS | Geographic information system |
GC | Gas chromatography |
MS | Mass spectrometry |
LCA | Life cycle assessment |
SPME | Solid phase microextraction |
PTR | Proton transfer reaction |
SFE | Supercritical fluid extraction |
FAIMS | Field asymmetric ion mobility spectrometry |
PID | Photoionization detector |
LOD | Limit of detection |
PANI | Polyaniline |
PPy | Polypyrrole |
PT | Polythiophene |
CNT | Carbon nanotube |
SWCNT | Single-walled carbon nanotube |
MWCNT | Multi-walled carbon nanotube |
GO | Graphene Oxide |
rGO | Reduced graphene oxide |
CD | Carbon dot |
GQD | Graphene quantum dot |
MOS | Metal oxide semiconductor |
QD | Quantum dot |
NW | Nanowire |
NF | Nanofiber |
IGZO | Indium gallium zinc oxide |
ZnO | Zinc oxide |
SnO2 | Tin dioxide |
SnO | Tin monoxide |
PtNP | Platinum nanoparticle |
MO | Metal oxide |
AuNP | Gold nanoparticle |
PET | Polyethylene terephthalate |
AI | Artificial intelligence |
References
- Samarakoon, S.M.A.B.K.; Rupasinghe, C.P.; Seneweera, S. Coconut Leaf Nitrogen Measurement Using Different Vegetative Indices and Multispectral Images. Smart Agric. Technol. 2025, 10, 100672. [Google Scholar] [CrossRef]
- Bukhamsin, A.; Kosel, J.; McCabe, M.F.; Blilou, I.; Salama, K.N. Early and High-Throughput Plant Diagnostics: Strategies for Disease Detection. Trends Plant Sci. 2024, 30, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.; Mangina, E.; Negrão, S. Advancements in Imaging Sensors and AI for Plant Stress Detection: A Systematic Literature Review. Plant Phenomics 2024, 6, 0153. [Google Scholar] [CrossRef] [PubMed]
- López-Gresa, M.P.; Lisón, P.; Campos, L.; Rodrigo, I.; Rambla, J.L.; Granell, A.; Conejero, V.; Bellés, J.M. A Non-Targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas Syringae. Front. Plant Sci. 2017, 8, 1188. [Google Scholar] [CrossRef]
- Wesoly, M.; Daulton, E.; Jenkins, S.; Van Amsterdam, S.; Clarkson, J.; Covington, J.A. Early Detection of Fusarium Basal Rot Infection in Onions and Shallots Based on VOC Profiles Analysis. J. Agric. Food Chem. 2024, 72, 3664–3672. [Google Scholar] [CrossRef]
- Sakurai, Y.; Ishizaki, S. Plant–Plant Communication in Camellia Japonica and C. Rusticana via Volatiles. Sci. Rep. 2024, 14, 6284. [Google Scholar] [CrossRef]
- Heil, M.; Silva Bueno, J.C. Within-Plant Signaling by Volatiles Leads to Induction and Priming of an Indirect Plant Defense in Nature. Proc. Natl. Acad. Sci. USA 2007, 104, 5467–5472. [Google Scholar] [CrossRef]
- Giron-Calva, P.S.; Li, T.; Blande, J.D. Volatile-Mediated Interactions between Cabbage Plants in the Field and the Impact of Ozone Pollution. J. Chem. Ecol. 2017, 43, 339–350. [Google Scholar] [CrossRef]
- Steglińska, A.; Pielech-Przybylska, K.; Janas, R.; Grzesik, M.; Borowski, S.; Kręgiel, D.; Gutarowska, B. Volatile Organic Compounds and Physiological Parameters as Markers of Potato (Solanum Tuberosum L.) Infection with Phytopathogens. Molecules 2022, 27, 3708. [Google Scholar] [CrossRef]
- Agho, C.A.; Runno-Paurson, E.; Tähtjärv, T.; Kaurilind, E.; Niinemets, Ü. Variation in Leaf Volatile Emissions in Potato (Solanum Tuberosum) Cultivars with Different Late Blight Resistance. Plants 2023, 12, 2100. [Google Scholar] [CrossRef]
- Selman, S.; Engelberth, M.; Engelberth, J. Organizing the Chaos: Novel Insights into the Regulation of Z-3-Hexenal Production in Damaged Maize Leaves. Plants 2024, 13, 2772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Niu, M.; Teixeira Da Silva, J.A.; Zhang, Y.; Yuan, Y.; Jia, Y.; Xiao, Y.; Li, Y.; Fang, L.; Zeng, S.; et al. Identification and Functional Characterization of Three New Terpene Synthase Genes Involved in Chemical Defense and Abiotic Stresses in Santalum Album. BMC Plant Biol. 2019, 19, 115. [Google Scholar] [CrossRef] [PubMed]
- Zabel, F.; Müller, C.; Elliott, J.; Minoli, S.; Jägermeyr, J.; Schneider, J.M.; Franke, J.A.; Moyer, E.; Dury, M.; Francois, L.; et al. Large Potential for Crop Production Adaptation Depends on Available Future Varieties. Glob. Change Biol. 2021, 27, 3870–3882. [Google Scholar] [CrossRef]
- Rodríguez-Román, E.; León, Y.; Perez, Y.; Amaya, P.; Mejías, A.; Montilla, J.O.; Ortega, R.; Zambrano, K.; Olivares, B.O.; Marys, E. Peppers under Siege: Revealing the Prevalence of Viruses and Discovery of a Novel Potyvirus Species in Venezuela. Sustainability 2023, 15, 14825. [Google Scholar] [CrossRef]
- Quinet, M.; Angosto, T.; Yuste-Lisbona, F.J.; Blanchard-Gros, R.; Bigot, S.; Martinez, J.-P.; Lutts, S. Tomato Fruit Development and Metabolism. Front. Plant Sci. 2019, 10, 1554. [Google Scholar] [CrossRef]
- Ştefan, F.M.; Chiru, S.C.; Iliev, P.; Ilieva, I.; Zhevora, S.V.; Oves, E.V.; Polgar, Z.; Balogh, S. Potato Production in Eastern Europe (Romania, Republic of Moldova, Russia and Hungary). In Potato Production Worldwide; Elsevier: Amsterdam, The Netherlands, 2023; pp. 381–395. ISBN 978-0-12-822925-5. [Google Scholar]
- Trivedi, N.K.; Gautam, V.; Anand, A.; Aljahdali, H.M.; Villar, S.G.; Anand, D.; Goyal, N.; Kadry, S. Early Detection and Classification of Tomato Leaf Disease Using High-Performance Deep Neural Network. Sensors 2021, 21, 7987. [Google Scholar] [CrossRef]
- Thole, V.; Vain, P.; Martin, C. Effect of Elevated Temperature on Tomato Post-Harvest Properties. Plants 2021, 10, 2359. [Google Scholar] [CrossRef]
- Pirzada, T.; Affokpon, A.; Guenther, R.H.; Mathew, R.; Agate, S.; Blevins, A.; Byrd, M.V.; Sit, T.L.; Koenning, S.R.; Davis, E.L.; et al. Plant-Biomass-Based Hybrid Seed Wraps Mitigate Yield and Post-Harvest Losses among Smallholder Farmers in Sub-Saharan Africa. Nat. Food 2023, 4, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.; Singh, S.S.; Yadav, S.R.; Sircar, D. A Nondestructive Asymptomatic Early Disease Prediction Method Employing ROS-Induced Differential Volatile Emissions from Dry Rot-Infected Potatoes. Plant Physiol. Biochem. 2024, 208, 108532. [Google Scholar] [CrossRef]
- Spanò, R.; Mastrochirico, M.; Longobardi, F.; Cervellieri, S.; Lippolis, V.; Mascia, T. Characterization of Volatile Organic Compounds in Grafted Tomato Plants upon Potyvirus Necrotic Infection. J. Integr. Agric. 2023, 22, 2426–2440. [Google Scholar] [CrossRef]
- Singh, S.; Gautam, R.K.; Singh, D.R.; Sharma, T.V.R.S.; Sakthivel, K.; Roy, S.D. Genetic Approaches for Mitigating Losses Caused by Bacterial Wilt of Tomato in Tropical Islands. Eur. J. Plant Pathol. 2015, 143, 205–221. [Google Scholar] [CrossRef]
- Longwe, K.; Akiniwale, G.; Mwenye, O.J.; Van Vugt, D.; Chiipanthenga, M.; Phiri, A.T. Effects of Soil Amendments on Bacterial Wilt Incidences and Potato Tuber Yield across Different Environments in Malawi. Resour. Environ. Sustain. 2023, 13, 100116. [Google Scholar] [CrossRef]
- Hasan, H.A. Biology and Integrated Control of Tomato Wilt Caused by Fusarium Oxysporum Lycopersici: A Comprehensive Review under the Light of Recent Advancements. J. Bot. Res. 2020, 3, 84–99. [Google Scholar] [CrossRef]
- Osdaghi, E. Ralstonia Solanacearum (Bacterial Wilt of Potato); CABI Compendium: Oxfordshire, UK, 2022. [Google Scholar] [CrossRef]
- Xu, S.; Huang, X.; Liang, X.; Lu, H. Application of Wearable Sensors in Crop Phenotyping and Microenvironment Monitoring. Chem. Eng. J. 2025, 505, 159059. [Google Scholar] [CrossRef]
- Yin, S.; Dong, L. Plant Tattoo Sensor Array for Leaf Relative Water Content, Surface Temperature, and Bioelectric Potential Monitoring. Adv. Mater. Technol. 2024, 9, 2302073. [Google Scholar] [CrossRef]
- Li, Z.; Mao, H.; Li, L.; Wei, Y.; Yu, Y.; Zhao, M.; Liu, Z. A Flexible Wearable Sensor for In Situ Non-Destructive Detection of Plant Leaf Transpiration Information. Agriculture 2024, 14, 2174. [Google Scholar] [CrossRef]
- Yin, S.; Ibrahim, H.; Schnable, P.S.; Castellano, M.J.; Dong, L. A Field-Deployable, Wearable Leaf Sensor for Continuous Monitoring of Vapor-Pressure Deficit. Adv. Mater. Technol. 2021, 6, 2001246. [Google Scholar] [CrossRef]
- Ahmed, N.S.; Hsu, C.-Y.; Mahmoud, Z.H.; Sayadi, H.; Kianfar, E. A graphene oxide/polyaniline nanocomposite biosensor: Synthesis, characterization, and electrochemical detection of bilirubin. RSC Adv. 2023, 13, 36280–36292. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, X.; Liu, Y.; Tu, C.; Qu, M.; Kong, J.; Zhang, Y.; Zhang, C. Investigation of Interferences of Wearable Sensors with Plant Growth. Biosensors 2024, 14, 439. [Google Scholar] [CrossRef]
- Li, Y.; Xu, H.; Han, C.; Bai, Y.; Wang, Y.; Yu, H.; Song, W.; Sun, Z. Plant-Wearable Sensors for Intelligent Forestry Monitoring. Adv. Sustain. Syst. 2023, 7, 2200333. [Google Scholar] [CrossRef]
- Condò, I.; Pizziconi, B.; Cimini, S.; Trombetta, M.; De Gara, L.; Schena, E.; Giannitelli, S.M.; Presti, D.L. An Innovative Self-Adhesive Wearable Sensor Based on Fiber Bragg Grating Technology for Plant Growth Monitoring. IEEE Sens. J. 2025, 25, 2705–2713. [Google Scholar] [CrossRef]
- Foronda, J.R.F.; Aryaswara, L.G.; Santos, G.N.C.; Raghu, S.N.V.; Muflikhun, M.A. Broad-class volatile organic compounds (VOCs) detection via polyaniline/zinc oxide (PANI/ZnO) composite materials as gas sensor application. Heliyon 2023, 9, e13544. [Google Scholar] [CrossRef] [PubMed]
- Rossignatti, B.C.; Mulato, M.; Mello, H.J.N.P.D. Optimizing pH sensor performance with PANI/PMMA composite thin films: Impedimetric and capacitive transduction approaches. Synth. Met. 2024, 308, 117728. [Google Scholar] [CrossRef]
- Friščić, M.; Maleš, Ž.; Maleš, I.; Duka, I.; Radonić, A.; Mitić, B.; Hruševar, D.; Jurić, S.; Jerković, I. Gas Chromatography–Mass Spectrometry Analysis of Volatile Organic Compounds from Three Endemic Iris Taxa: Headspace Solid-Phase Microextraction vs. Hydrodistillation. Molecules 2024, 29, 4107. [Google Scholar] [CrossRef]
- Hernández-Aparicio, F.; Lisón, P.; Rodrigo, I.; Bellés, J.M.; López-Gresa, M.P. Signaling in the Tomato Immunity against Fusarium Oxysporum. Molecules 2021, 26, 1818. [Google Scholar] [CrossRef]
- Saunier, A.; Blande, J.D. The effect of elevated ozone on floral chemistry of Brassicaceae species. Environ. Pollut. 2019, 255, 113257. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, R.; Wang, X.; Liu, X.; Chen, F. Elevated CO2 altered rice vocs aggravate population occurrence of brown planthoppers by improving host selection ability. Biology 2022, 11, 882. [Google Scholar] [CrossRef]
- Portillo-Estrada, M.; Okereke, C.N.; Jiang, Y.; Talts, E.; Kaurilind, E.; Niinemets, Ü. Wounding-Induced VOC Emissions in Five Tropical Agricultural Species. Molecules 2021, 26, 2602. [Google Scholar] [CrossRef]
- Tietel, Z.; Melamed, S.; Lebiush, S.; Voet, H.; Namdar, D.; Eltzov, E.; Tsror, L. Characterization of Volatile Signatures of Pectobacterium and Dickeya Spp. as Biomarkers for Early Detection and Identification—A Major Tool in Potato Blackleg and Tuber Soft Rot Management. LWT 2021, 144, 111236. [Google Scholar] [CrossRef]
- Munawar, A.; Zhang, Y.; Zhong, J.; Ge, Y.; Abou El-Ela, A.S.; Mao, Z.; Ntiri, E.S.; Mao, L.; Zhu, Z.; Zhou, W. Heat Stress Affects Potato’s Volatile Emissions That Mediate Agronomically Important Trophic Interactions. Plant Cell Environ. 2022, 45, 3036–3051. [Google Scholar] [CrossRef]
- Tatli, S.; Mirzaee-Ghaleh, E.; Rabbani, H.; Karami, H.; Wilson, A.D. Rapid detection of urea fertilizer effects on VOC emissions from cucumber fruits using a MOS E-nose sensor array. Agronomy 2021, 12, 35. [Google Scholar] [CrossRef]
- Li, N.; Alfiky, A.; Wang, W.; Islam, M.; Nourollahi, K.; Liu, X.; Kang, S. Volatile Compound-Mediated Recognition and Inhibition Between Trichoderma Biocontrol Agents and Fusarium Oxysporum. Front. Microbiol. 2018, 9, 2614. [Google Scholar] [CrossRef] [PubMed]
- Nordström, I.; Sherwood, P.; Bohman, B.; Woodward, S.; Peterson, D.L.; Niño-Sánchez, J.; Sánchez-Gómez, T.; Díez, J.J.; Cleary, M. Utilizing Volatile Organic Compounds for Early Detection of Fusarium Circinatum. Sci. Rep. 2022, 12, 21661. [Google Scholar] [CrossRef]
- Shi, H.; Li, W.; Zhou, Y.; Wang, J.; Shen, S. Can We Control Potato Fungal and Bacterial Diseases?—Microbial Regulation. Heliyon 2023, 9, e22390. [Google Scholar] [CrossRef] [PubMed]
- Stinson, J.A.; Persaud, K.C.; Bryning, G. Generic System for the Detection of Statutory Potato Pathogens. Sens. Actuators B Chem. 2006, 116, 100–106. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, M.; Wu, M.; Li, X.; Liu, H.; Niu, N.; Li, S.; Chen, L. Volatile Organic Compounds (VOCs) from Plants: From Release to Detection. TrAC Trends Anal. Chem. 2023, 158, 116872. [Google Scholar] [CrossRef]
- Han, B.; Rupam, T.H.; Chakraborty, A.; Saha, B.B. A Comprehensive Review on VOCs Sensing Using Different Functional Materials: Mechanisms, Modifications, Challenges and Opportunities. Renew. Sustain. Energy Rev. 2024, 196, 114365. [Google Scholar] [CrossRef]
- Pramod, S.K.; Navnath, K.A.; Pramod, S.M. A Review on Gas Chromatography-Mass Spectrometry. World J. Pharm. Res. 2021, 10, 741–763. [Google Scholar] [CrossRef]
- Majchrzak, T.; Wojnowski, W.; Lubinska-Szczygeł, M.; Różańska, A.; Namieśnik, J.; Dymerski, T. PTR-MS and GC-MS as Complementary Techniques for Analysis of Volatiles: A Tutorial Review. Anal. Chim. Acta 2018, 1035, 1–13. [Google Scholar] [CrossRef]
- Sinha, R.K.; Khot, L.R.; Schroeder, B.K.; Si, Y. Rapid and Non–Destructive Detection of Pectobacterium carotovorum Causing Soft Rot in Stored Potatoes through Volatile Biomarkers Sensing. Crop Prot. 2017, 93, 122–131. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, J.; Wang, J.; Wang, X.; Du, D. Recent Development of HS-GC-IMS Technology in Rapid and Non-Destructive Detection of Quality and Contamination in Agri-Food Products. TrAC Trends Anal. Chem. 2021, 144, 116435. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, L.; Li, X.; Tan, X.; Zhu, Y.; Li, X.; Wang, D.; Ren, X.; Kong, Q. Early Identification and Monitoring of Soft Rot Contamination in Postharvest Kiwifruit Based on Volatile Fingerprints Using Headspace-Gas Chromatography-Ion Mobility Spectrometry. Food Chem. 2025, 474, 143195. [Google Scholar] [CrossRef]
- Pang, X.; Nan, H.; Zhong, J.; Ye, D.; Shaw, M.D.; Lewis, A.C. Low-Cost Photoionization Sensors as Detectors in GC × GC Systems Designed for Ambient VOC Measurements. Sci. Total Environ. 2019, 664, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Oliva, G.; Manin, L.; Valić, S.; Islam, S.K.; Fiorillo, A.S.; Pullano, S.A. Zeolite 5 a Mediated Palmitic Acid Detection in Tomato Seed Oil by Photoionization Detector. Sens. Actuators B Chem. 2025, 431, 137428. [Google Scholar] [CrossRef]
- Valencia-Ortiz, M.; Sankaran, S. Development of a Semi-Automated Volatile Organic Compounds (VOCs) Sampling System for Field Asymmetric Ion Mobility Spectrometry (FAIMS) Analysis. HardwareX 2022, 12, e00344. [Google Scholar] [CrossRef]
- Shahab, H.; Naeem, M.; Iqbal, M.; Aqeel, M.; Ullah, S.S. IoT-driven smart agricultural technology for real-time soil and crop optimization. Smart Agric. Technol. 2025, 10, 100847. [Google Scholar] [CrossRef]
- Kohzuma, K.; Miyamoto, K. Analysis of plant physiological responses based on leaf color changes through the development and application of a wireless plant sensor. Sens. Bio-Sens. Res. 2024, 46, 100688. [Google Scholar] [CrossRef]
- Hai, T.; Zhang, N.; Lu, X.; Xu, J.; Wang, X.; Hu, J.; Ji, M.; Zhao, Z.; Wang, J.; Dong, M. Implementation and Evaluation of Attention Aggregation Technique for Pear Disease Detection. Agriculture 2024, 14, 1146. [Google Scholar] [CrossRef]
- Koike, M.; Onuma, R.; Adachi, R.; Mineno, H. Transformer-Based Water Stress Estimation Using Leaf Wilting Computed from Leaf Images and Unsupervised Domain Adaptation for Tomato Crops. Technologies 2024, 12, 94. [Google Scholar] [CrossRef]
- Gan, Z.; Zhou, Q.; Zheng, C.; Wang, J. Challenges and Applications of Volatile Organic Compounds Monitoring Technology in Plant Disease Diagnosis. Biosens. Bioelectron. 2023, 237, 115540. [Google Scholar] [CrossRef]
- Andre, R.S.; Sanfelice, R.C.; Pavinatto, A.; Mattoso, L.H.C.; Correa, D.S. Hybrid Nanomaterials Designed for Volatile Organic Compounds Sensors: A Review. Mater. Des. 2018, 156, 154–166. [Google Scholar] [CrossRef]
- Gideon, O.; Samuel, H.S.; Okino, I.A. Biocompatible Materials for Next-Generation Biosensors. In Discover Chemistry; Springer Nature: Berlin/Heidelberg, Germany, 2024; Volume 1. [Google Scholar] [CrossRef]
- Tomić, M.; Šetka, M.; Vojkůvka, L.; Vallejos, S. VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials. Nanomaterials 2021, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- Assem, H.D.; Agyei, M.S.; Tamakloe, R.Y.; Nkum, R.K. A Review of Conductivity of Conductive Polymers; Polyaniline (Pani) and Its Nanocomposites. Eur. J. Appl. Sci. 2024, 12, 241–270. [Google Scholar] [CrossRef]
- Prasutiyo, Y.J.; Manaf, A.; Hafizah, M.A.E. Synthesis of Polyaniline by Chemical Oxidative Polymerization and Characteristic of Conductivity and Reflection for Various Strong Acid Dopants. J. Phys. Conf. Ser. 2020, 1442, 012003. [Google Scholar] [CrossRef]
- Abel, S.B.; Frontera, E.; Acevedo, D.; Barbero, C.A. Functionalization of Conductive Polymers through Covalent Postmodification. Polymers 2022, 15, 205. [Google Scholar] [CrossRef]
- Speranza, G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials 2021, 11, 967. [Google Scholar] [CrossRef]
- Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. [Google Scholar] [CrossRef]
- Norizan, M.N.; Moklis, M.H.; Demon, S.Z.N.; Halim, N.A.; Samsuri, A.; Mohamad, I.S.; Knight, V.F.; Abdullah, N. Carbon Nanotubes: Functionalisation and Their Application in Chemical Sensors. RSC Adv. 2020, 10, 43704–43732. [Google Scholar] [CrossRef]
- Pitroda, J.; Jethwa, B.; Dave, S. A Critical Review on Carbon Nanotubes. Int. J. Constr. Res. Civ. Eng. 2016, 2, 36–42. [Google Scholar] [CrossRef]
- Liu, J.; Bao, S.; Wang, X. Applications of Graphene-Based Materials in Sensors: A Review. Micromachines 2022, 13, 184. [Google Scholar] [CrossRef]
- Xu, D.; Lin, Q.; Chang, H. Recent Advances and Sensing Applications of Carbon Dots. Small Methods 2020, 4, 1900387. [Google Scholar] [CrossRef]
- Hossein-Babaei, F.; Rahbarpour, S. Separate Assessment of Chemoresistivity and Schottky-Type Gas Sensitivity in M–Metal Oxide–M′ Structures. Sens. Actuators B Chem. 2011, 160, 174–180. [Google Scholar] [CrossRef]
- Mathew, M.; Preetha, K.C. An Exploration into the Quantum Confinement of CTS/Natural Dye Core- Shell Quantum Dots. Phys. B Condens. Matter 2020, 579, 411913. [Google Scholar] [CrossRef]
- Ahn, S.; Chun, K.W.; Park, C. Long-Term Stability Test for Femtosecond Laser-Irradiated SnO2-Nanowire Gas Sensor for C7H8 Gas Sensing. Photonics 2024, 11, 550. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, B.; Tang, Q.; Tong, Y.; Liu, Y. One-Dimensional Nanostructure Field-Effect Sensors for Gas Detection. Sensors 2014, 14, 13999–14020. [Google Scholar] [CrossRef]
- Kwon, J.; Cho, H.; Jung, J.; Lee, H.; Hong, S.; Yeo, J.; Han, S.; Ko, S.H. ZnO/CuO/M (M = Ag, Au) Hierarchical Nanostructure by Successive Photoreduction Process for Solar Hydrogen Generation. Nanomaterials 2018, 8, 323. [Google Scholar] [CrossRef] [PubMed]
- Liustrovaite, V.; Karoblis, D.; Brasiunas, B.; Popov, A.; Katelnikovas, A.; Kareiva, A.; Ramanavicius, A.; Viter, R.; Giardi, M.T.; Erts, D.; et al. Electrochemical Immunosensor for the Determination of Antibodies against Prostate-Specific Antigen Based on ZnO Nanostructures. Int. J. Mol. Sci. 2023, 24, 5803. [Google Scholar] [CrossRef]
- Chang, J.-H.; Kumar, M.; Nayak, A.K. (Eds.) Nanostructured Materials for Photoelectrochemical Water Splitting; IOP Publishing: Bristol, UK, 2021; ISBN 978-0-7503-3699-4. [Google Scholar]
- Kozhushner, M.A.; Lidskii, B.V.; Oleynik, I.I.; Posvyanskii, V.S.; Trakhtenberg, L.I. Inhomogeneous Charge Distribution in Semiconductor Nanoparticles. J. Phys. Chem. C 2015, 119, 16286–16292. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, W.; Wang, Z. Assembly of 2D Nanosheets into 3D Flower-like NiO: Synthesis and the Influence of Petal Thickness on Gas-Sensing Properties. Ceram. Int. 2016, 42, 4567–4573. [Google Scholar] [CrossRef]
- Leidinger, M.; Sauerwald, T.; Conrad, T.; Reimringer, W.; Ventura, G.; Schütze, A. Selective Detection of Hazardous Indoor VOCs Using Metal Oxide Gas Sensors. Procedia Eng. 2014, 87, 1449–1452. [Google Scholar] [CrossRef]
- Han, Z.; Ahmad, W.; Rong, Y.; Chen, X.; Zhao, S.; Yu, J.; Zheng, P.; Huang, C.; Li, H. A Gas Sensors Detection System for Real-Time Monitoring of Changes in Volatile Organic Compounds during Oolong Tea Processing. Foods 2024, 13, 1721. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, C. Oxygen Vacancy Engineering on Cerium Oxide Nanowires for Room-Temperature Linalool Detection in Rice Aging. J. Adv. Ceram. 2022, 11, 1559–1570. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Chen, M.; Xiang, M.; Gao, G.; Cui, D.; Li, Q. A Breathable, Waterproof and Battery-Free Wearable e-Nose with High Flexibility Based on MEMS Gas Sensors for Accurate Identification of Volatile Aromatic Hydrocarbons. Appl. Mater. Today 2025, 42, 102527. [Google Scholar] [CrossRef]
- Ibrahim, H.; Moru, S.; Schnable, P.; Dong, L. Wearable Plant Sensor for in Situ Monitoring of Volatile Organic Compound Emissions from Crops. ACS Sens. 2022, 7, 2293–2302. [Google Scholar] [CrossRef]
- Bai, S.; Tian, Y.; Cui, M.; Sun, J.; Tian, Y.; Luo, R.; Chen, A.; Li, D. Polyaniline@SnO2 Heterojunction Loading on Flexible PET Thin Film for Detection of NH3 at Room Temperature. Sens. Actuators B Chem. 2016, 226, 540–547. [Google Scholar] [CrossRef]
- Abdulla, S.; Mathew, T.L.; Pullithadathil, B. Highly Sensitive, Room Temperature Gas Sensor Based on Polyaniline-Multiwalled Carbon Nanotubes (PANI/MWCNTs) Nanocomposite for Trace-Level Ammonia Detection. Sens. Actuators B Chem. 2015, 221, 1523–1534. [Google Scholar] [CrossRef]
- Tran, T.-T.; Clark, K.; Ma, W.; Mulchandani, A. Detection of a Secreted Protein Biomarker for Citrus Huanglongbing Using a Single-Walled Carbon Nanotubes-Based Chemiresistive Biosensor. Biosens. Bioelectron. 2020, 147, 111766. [Google Scholar] [CrossRef]
- Greenshields, M.; Cunha, B.; Coville, N.; Pimentel, I.; Zawadneak, M.; Dobrovolski, S.; Souza, M.; Ivo, A.H. Fungi Active Microbial Metabolism Detection of Rhizopus Sp. and Aspergillus Sp. Section Nigri on Strawberry Using a Set of Chemical Sensors Based on Carbon Nanostructures. Chemosensors 2016, 4, 19. [Google Scholar] [CrossRef]
- Liu, S.F.; Moh, L.C.H.; Swager, T.M. Single-Walled Carbon Nanotube–Metalloporphyrin Chemiresistive Gas Sensor Arrays for Volatile Organic Compounds. Chem. Mater. 2015, 27, 3560–3563. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Hossain, O.; Paul, R.; Yao, S.; Wu, S.; Ristaino, J.B.; Zhu, Y.; Wei, Q. Real-Time Monitoring of Plant Stresses via Chemiresistive Profiling of Leaf Volatiles by a Wearable Sensor. Matter 2021, 4, 2553–2570. [Google Scholar] [CrossRef]
- Zito, C.A.; Perfecto, T.M.; Volanti, D.P. Impact of Reduced Graphene Oxide on the Ethanol Sensing Performance of Hollow SnO2 Nanoparticles under Humid Atmosphere. Sens. Actuators B Chem. 2017, 244, 466–474. [Google Scholar] [CrossRef]
- Fang, Y.; Umasankar, Y.; Ramasamy, R.P. Electrochemical Detection of P-Ethylguaiacol, a Fungi Infected Fruit Volatile Using Metal Oxide Nanoparticles. Analyst 2014, 139, 3804–3810. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Han, N.; Zhou, X.; Gong, S.; Yang, J.; Hu, P.; Chen, Y. Highly Sensitive and Selective Ethanol and Acetone Gas Sensors Based on Modified ZnO Nanomaterials. Mater. Des. 2017, 121, 69–76. [Google Scholar] [CrossRef]
- Khater, M.; de la Escosura-Muñiz, A.; Quesada-González, D.; Merkoçi, A. Electrochemical Detection of Plant Virus Using Gold Nanoparticle-Modified Electrodes. Anal. Chim. Acta 2019, 1046, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Gao, S.; Hassan, M.A.; Huang, Z.; Rasheed, A.; Hearne, S.; Prasanna, B.; Li, X.; Li, H. Artificial Intelligence in Plant Breeding. Trends Genet. 2024, 40, 891–908. [Google Scholar] [CrossRef]
- Zhang, C.; Kong, J.; Wu, D.-D.; Guan, Z.; Ding, B.; Chen, F. Wearable Sensor: An Emerging Data Collection Tool for Plant Phenotyping. Plant Phenomics 2023, 5, 0051. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.H.; Zhang, X.; Xu, K.; Wang, Y.; Wang, Q.; Luo, G.; Xing, M.; Zhong, W. Self-Powered and Plant-Wearable Hydrogel as LED Power Supply and Sensor for Promoting and Monitoring Plant Growth in Smart Farming. Chem. Eng. J. 2021, 422, 129499. [Google Scholar] [CrossRef]
- Hasan, S.; Kouzani, A.Z.; Adams, S.; Long, J.; Mahmud, M.A.P. Recent Progress in Hydrogel-Based Sensors and Energy Harvesters. Sens. Actuators A Phys. 2022, 335, 113382. [Google Scholar] [CrossRef]
- Cui, Y.; Luo, H.; Yang, T.; Qin, W.; Jing, X. Bio-Inspired Structures for Energy Harvesting Self-Powered Sensing and Smart Monitoring. Mech. Syst. Signal Process. 2025, 228, 112459. [Google Scholar] [CrossRef]
- Saha, L.; Kumar, V.; Tiwari, J.; Rawat, S.; Singh, J.; Bauddh, K. Electronic Waste and Their Leachates Impact on Human Health and Environment: Global Ecological Threat and Management. Environ. Technol. Innov. 2021, 24, 102049. [Google Scholar] [CrossRef]
- Silva-Neto, H.A.; Rocha, D.S.; Souza, L.K.A.; Coltro, W.K.T. Biodegradable and Sustainable Sensors: Materials and Applications. In Nature-Derived Sensors; Elsevier: Amsterdam, The Netherlands, 2025; pp. 201–222. [Google Scholar] [CrossRef]
- Meshram, S.M.M.; Adla, S.; Jourdin, L.; Pande, S. Review of Low-Cost, Off-Grid, Biodegradable in Situ Autonomous Soil Moisture Sensing Systems: Is There a Perfect Solution? Comput. Electron. Agric. 2024, 225, 109289. [Google Scholar] [CrossRef]
- Bathaei, M.J.; Singh, R.; Istif, E.; Beker, L. Biodegradable Sensor Platforms. In Fundamentals of Sensor Technology; Woodhead Publishing: Cambridge, UK, 2023; pp. 775–801. [Google Scholar] [CrossRef]
- Teixeira, S.C.; Gomes, N.O.; Calegaro, M.L.; Machado, S.A.S.; de Oliveira, T.S.; Soares, N.d.F.F.; Raymundo-Pereira, P.A. Sustainable Plant-Wearable Sensors for On-Site, Rapid Decentralized Detection of Pesticides toward Precision Agriculture and Food Safety. Biomater. Adv. 2023, 155, 213676. [Google Scholar] [CrossRef] [PubMed]
- Kuruppuarachchi, C.; Kulsoom, F.; Ibrahim, H.; Khan, H.; Zahid, A.; Sher, M. Advancements in Plant Wearable Sensors. Comput. Electron. Agric. 2024, 229, 109778. [Google Scholar] [CrossRef]
- Faqir, Y.; Qayoom, A.; Erasmus, E.; Schutte-Smith, M.; Visser, H.G. A Review on the Application of Advanced Soil and Plant Sensors in the Agriculture Sector. Comput. Electron. Agric. 2024, 226, 109385. [Google Scholar] [CrossRef]
- Parrilla, M.; Sena-Torralba, A.; Steijlen, A.; Morais, S.; Maquieira, Á.; De Wael, K. A 3D-Printed Hollow Microneedle-Based Electrochemical Sensing Device for in Situ Plant Health Monitoring. Biosens. Bioelectron. 2024, 251, 116131. [Google Scholar] [CrossRef]
Tomato Cultivar | Pathogen | VOC | VOC Source | Stressor Type | Reference |
---|---|---|---|---|---|
Momor, UC82 & UC82 grafted on Manduria Rio Grande | F. oxysporum f. sp. lycopersici, Potato Virus Y, Pseudomonas syringae | Methyl salicylate | Leaves | Fungus, virus, bacterium | [4,21,37] |
Momor | F. oxysporum f. sp. lycopersici | Ethyl salicylate, 2-nonenal, 2-hexanone, 2-heptanone, 3-heptanone, 3-buten-2-one, 2-pentanone, butanal, 2-butanone | Leaves | Fungus | [37] |
Rio Grande | Pseudomonas syringae | Sesquiterpene (unidentified), Salicyl aldehyde, α-pinene, α-phellandrene, β-phellandrene, limonene, Isoprenoid chloride | Leaves | Bacterium | [4] |
UC82 and UC82 grafted on Manduria | Potato Virus Y | 2-ethyl-Furan, 3-Pentanol, 1-Penten-3-ol, α-Terpinene, (E)-2-Hexenal, 2-pentyl-Furan, Cymene, 4-Hexen-1-yl acetate, (Z)-2-Penten-1-ol, 6-methyl-5-Hepten-2-one, 1-Hexanol, (E)-3-Hexen-1-ol, (E)-2-Hexen-1-ol, p-Cymenene, 2-ethyl-1-Hexanol, Methyl nonanoate, Linalool, Terpene 4 | Leaves | Virus | [21] |
Potato Cultivar | Pathogen | VOC | VOC Source | Stressor Type | Reference |
---|---|---|---|---|---|
Kufry Pukhraj | F. sambucinum | Naphthalene 1-butanol-3-methyl 2-undecanone γ-muurolene | Tubers | Fungus | [20] |
Maris Peer, Marfona, Estima, Pentland, Dell, Wilja | R. solanacearum | 2-propanone 2-propanol 2-butanol 2-pentanol | Tubers | Bacteria | [47] |
1681-11 | No pathogen | Δ3-carene α-terpinene | Leaves | None | [10] |
Reet | No pathogen | α-pinene | |||
Ando | No pathogen | acetaldehyde | |||
Anti | No pathogen | α-muurolene | |||
Sarme | No pathogen | β-bourbonene | |||
Kuras | No pathogen | β -pinene | |||
Alouette | No pathogen | α-bergamotene | |||
Jogeva Kollane | No pathogen | 6-methyl-5-hepten-2-one | |||
Teele | No pathogen | limonene |
VOC Detection Technique | Advantages | Limitations | Reference |
---|---|---|---|
GC-MS | High accuracy; high sensitivity; high reproducibility; able to determine composition of unknown organic compounds; | High investment costs; need for specialized personnel; lack of real-time analysis capabilities; requires a large quantity of VOC samples; equipment and power consumption; vapor pressure; less efficient in quantitative analysis | [41,48,49,50,51] |
PTR-MS | Quick sampling time; high sensitivity; low detection limit; field portable; capable of real-time analysis; | Cannot identify certain compounds (isomeric, etc.); limited to compounds with a certain level of proton affinity | [48,51] |
FAIMS | field portable; customizable; lower costs; suitable for agricultural products; capable of real-time analysis | Cannot identify specific compounds; relatively new technology with limited sampling techniques; | [52,57] |
GC-IMS | High sensitivity; relatively high accuracy; cost-efficient; automatable | poor resolution; limited dynamic range; limited ability to identify unknown compounds; limited compound database; | [53,54] |
GC-PID | Portable; capable of real-time analysis | low selectivity; ionization energy may not match that of target VOC; | [55,56] |
Material Type | Sensitivity | Selectivity | LOD | Response Time | Material Cost | Biocompatibility | Reference |
---|---|---|---|---|---|---|---|
Conducting polymer | High | High (tunable by functionalization) | ppb to ppm | seconds | Low | Variable | [64,65] |
Carbon nanotubes | Very High | High (dependent on functionalization) | sub-ppb | seconds | High | Variable | [64,65] |
Graphene derivatives | High | High (dependent on functionalization) | sub-ppb | seconds | Moderate | Variable | [64,65] |
Carbon dots | High | High | sub-ppb to ppm | seconds | Low | High | [64,65] |
Metal oxide semiconductors | Very High | Variable | low ppm | seconds | Low | Low | [64,65] |
VOC/Target Compound | Nanomaterial | Material Type | Modification | Sensing Mechanism | LOD | Environment | Stability | Pathogen | Application | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Methanol | poly (ATD) (2-amino-1,3,4-thiadiazole) & PtNPs | Polymer and metal oxide-based | none | Current | <1 ppm | Field-tested | 60 °C working temperature, 100% relative humidity | none | Agricultural | [88] |
Ammonia | PANI and SnO2 | Polymer and metal oxide-based | none | Resistance | ≥1.8 ppm | Controlled | room temperature | none | Environmental | [89] |
Ammonia | PANI and MWCNT | Polymer and carbon nanomaterial-based | none | Resistance | 2 ppm | Controlled | room temperature | none | Environmental | [90] |
SDE1 Biomarker | SWCNT and SiO2 | Carbon and metal oxide-based | Functionalization with (3-aminopropyl) triethoxysilane &PBASE, Blocking with BSA & Tween-20 | Resistance | <1 nm | Controlled | none | Citrus greening (huanglongbing) | Agricultural | [91] |
VOCs from Aspergillus and Rhizopus | MWCNT | Carbon-based | Boron & Nitrogen Doping | Conductance | none | Controlled | 28 °C working temp., 70% relative humidity | Aspergillus and Rhizopu | Agricultural | [92] |
Acetone, Hexane, Methanol, Benzene, Diisopropanolamine | SWCNT and Metalloporphyrin | Carbon nanomaterial-based | Metalloporphyrin | Current | varying | None | none | none | Environmental | [93] |
Various VOCs | rGO and AuNPs | Carbon nanomaterial and metal oxide-based | Functionalization with AuNps & thiourea | Resistance | varying | Field-tested | 25 °C working temp., 50% relative humidity | Phytophora infestans | Agricultural | [94] |
Ethanol | rGO and SnO2 | Carbon nanomaterial and metal oxide- based | none | Resistance | 5–500 ppm | Controlled | 300 °C working temp., 98% relative humidity | none | Environmental | [95] |
p-ethylguaiacol | SnO2 and TiO2 NPs | Metal oxide-based | none | Current | 82 nM | Controlled | none | Phytophora cactorum | Agricultural | [96] |
Ethanol and acetone | Mn-doped ZnO | Metal oxide-based | CdO modification | Resistance | 5 ppm | Controlled | 240 °C working temp. | none | Environmental | [97] |
Plant virus (ssDNA) | AuNPs | Metal oxide-based | Thiolated ssDNA probes | Resistance | 100 nM | Ambient conditions | none | Citrus tristeza | Agricultural | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baba, T.; Janairo, L.G.; Maging, N.; Tañedo, H.S.; Concepcion, R., II; Magdaong, J.J.; Bantang, J.P.; Del-amen, J.; Culaba, A. Advancements in Chemiresistive and Electrochemical Sensing Materials for Detecting Volatile Organic Compounds in Potato and Tomato Plants. AgriEngineering 2025, 7, 166. https://doi.org/10.3390/agriengineering7060166
Baba T, Janairo LG, Maging N, Tañedo HS, Concepcion R II, Magdaong JJ, Bantang JP, Del-amen J, Culaba A. Advancements in Chemiresistive and Electrochemical Sensing Materials for Detecting Volatile Organic Compounds in Potato and Tomato Plants. AgriEngineering. 2025; 7(6):166. https://doi.org/10.3390/agriengineering7060166
Chicago/Turabian StyleBaba, Toshiou, Lorenzo Gabriel Janairo, Novelyn Maging, Hoshea Sophia Tañedo, Ronnie Concepcion, II, Jeremy Jay Magdaong, Jose Paolo Bantang, Jesson Del-amen, and Alvin Culaba. 2025. "Advancements in Chemiresistive and Electrochemical Sensing Materials for Detecting Volatile Organic Compounds in Potato and Tomato Plants" AgriEngineering 7, no. 6: 166. https://doi.org/10.3390/agriengineering7060166
APA StyleBaba, T., Janairo, L. G., Maging, N., Tañedo, H. S., Concepcion, R., II, Magdaong, J. J., Bantang, J. P., Del-amen, J., & Culaba, A. (2025). Advancements in Chemiresistive and Electrochemical Sensing Materials for Detecting Volatile Organic Compounds in Potato and Tomato Plants. AgriEngineering, 7(6), 166. https://doi.org/10.3390/agriengineering7060166