Advancing Precision Agriculture Through Digital Twins and Smart Farming Technologies: A Review
Abstract
:1. Introduction
2. Literature Review: DTs in Agriculture
2.1. Definition of DTs
2.2. Fundamental Principle of DTs in Agriculture
3. Data and Methods
3.1. Design and Search Strategy
3.2. Selection Criteria and Quality Assessment
4. Digital Twin-Based Smart Farming Technologies
4.1. IoT Framework, UAVs, and DTs Smart Farming
4.2. Real-World Applications of DTs in Farming
4.2.1. Orchard Management Using UAVs
4.2.2. Biomass Management and Crop Growth Optimization
5. Conceptual Framework for DTs Modeling in Smart Farming
5.1. Integration of UAVs and DTs in Smart Farming
5.2. Key Features of the Digital Twin Framework
6. Discussions
6.1. Advancements Needed in DTs and Smart Farming Integration
6.2. Identifying Key Barriers to DTs Implementation and Exploring Solutions
6.3. Comprehensive Digital Twin Framework for Precision Agriculture
6.4. Future Research Directions and Policy Implications
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Costa, F.; Frecassetti, S.; Rossini, M.; Portioli-Staudacher, A. Industry 4.0 digital technologies enhancing sustainability: Applications and barriers from the agricultural industry in an emerging economy. J. Clean. Prod. 2023, 408, 137208. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Liu, W.; Shao, X.-F.; Wu, C.-H.; Qiao, P. A systematic literature review on applications of information and communication technologies and blockchain technologies for precision agriculture development. J. Clean. Prod. 2021, 298, 126763. [Google Scholar] [CrossRef]
- Ganesan, T.; Jayarajan, N.; Neelakrishnan, S.; Sureshkumar, P. IoT-Based Unmanned Aerial Vehicle (UAV) for Smart Farming. In Computing in Intelligent Transportation Systems; Springer: Berlin/Heidelberg, Germany, 2023; pp. 77–94. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Gao, H.; Zhangzhong, L.; Zheng, W.; Chen, G. How can agricultural water production be promoted? A review on machine learning for irrigation. J. Clean. Prod. 2023, 414, 137687. [Google Scholar] [CrossRef]
- Jiang, R.; Sanchez-Azofeifa, A.; Laakso, K.; Wang, P.; Xu, Y.; Zhou, Z.; Luo, X.; Lan, Y.; Zhao, G.; Chen, X. UAV-based partially sampling system for rapid NDVI mapping in the evaluation of rice nitrogen use efficiency. J. Clean. Prod. 2021, 289, 125705. [Google Scholar] [CrossRef]
- Lu, W.; Chen, J.; Fu, Y.; Pan, Y.; Ghansah, F.A. Digital twin-enabled human-robot collaborative teaming towards sustainable and healthy built environments. J. Clean. Prod. 2023, 412, 137412. [Google Scholar] [CrossRef]
- El Saddik, A. Digital twins: The convergence of multimedia technologies. IEEE Multimed. 2018, 25, 87–92. [Google Scholar] [CrossRef]
- Kamel Boulos, M.N.; Zhang, P. Digital twins: From personalised medicine to precision public health. J. Pers. Med. 2021, 11, 745. [Google Scholar] [CrossRef]
- Peng, M.; Han, W.; Li, C.; Yao, X.; Shao, G. Modeling the daytime net primary productivity of maize at the canopy scale based on UAV multispectral imagery and machine learning. J. Clean. Prod. 2022, 367, 133041. [Google Scholar] [CrossRef]
- Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Pap. 2014, 1, 1–7. [Google Scholar]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Myshko, A.; Checchinato, F.; Colapinto, C.; Finotto, V.; Mauracher, C. Towards twin transition in the agri-food sector? Framing the current debate on sustainability and digitalisation. J. Clean. Prod. 2024, 452, 142063. [Google Scholar] [CrossRef]
- Alves, R.G.; Souza, G.; Maia, R.F.; Tran, A.L.H.; Kamienski, C.; Soininen, J.-P.; Aquino, P.T.; Lima, F. A digital twin for smart farming. In Proceedings of the 2019 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 17–20 October 2019; pp. 1–4. [Google Scholar]
- Bellvert, J.; Marsal, J.; Girona, J.; Gonzalez-Dugo, V.; Fereres, E.; Ustin, S.L.; Zarco-Tejada, P.J. Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and Saturn peach orchards. Remote Sens. 2016, 8, 39. [Google Scholar] [CrossRef]
- Purcell, W.; Neubauer, T. Digital Twins in Agriculture: A State-of-the-art review. Smart Agric. Technol. 2023, 3, 100094. [Google Scholar] [CrossRef]
- Bellvert, J.; Zarco-Tejada, P.J.; Girona, J.; Fereres, E. Mapping crop water stress index in a ‘Pinot-noir’vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis. Agric. 2014, 15, 361–376. [Google Scholar] [CrossRef]
- Goldenits, G.; Mallinger, K.; Raubitzek, S.; Neubauer, T. Current applications and potential future directions of reinforcement learning-based Digital Twins in agriculture. Smart Agric. Technol. 2024, 8, 100512. [Google Scholar] [CrossRef]
- Bellvert, J.; Zarco-Tejada, P.J.; Marsal, J.; Girona, J.; González-Dugo, V.; Fereres, E. Vineyard irrigation scheduling based on airborne thermal imagery and water potential thresholds. Aust. J. Grape Wine Res. 2016, 22, 307–315. [Google Scholar] [CrossRef]
- Bökle, S.; Paraforos, D.S.; Reiser, D.; Griepentrog, H.W. Conceptual framework of a decentral digital farming system for resilient and safe data management. Smart Agric. Technol. 2022, 2, 100039. [Google Scholar] [CrossRef]
- Minerva, R.; Lee, G.M.; Crespi, N. Digital twin in the IoT context: A survey on technical features, scenarios, and architectural models. Proc. IEEE 2020, 108, 1785–1824. [Google Scholar] [CrossRef]
- Murray, A.B. Contrasting the goals, strategies, and predictions associated with simplified numerical models and detailed simulations. Predict. Geomorphol. 2003, 135, 151–168. [Google Scholar]
- Solomatine, D.P.; Ostfeld, A. Data-driven modelling: Some past experiences and new approaches. J. Hydroinform. 2008, 10, 3–22. [Google Scholar] [CrossRef]
- Mekonnen, Y.; Namuduri, S.; Burton, L.; Sarwat, A.; Bhansali, S. Machine learning techniques in wireless sensor network based precision agriculture. J. Electrochem. Soc. 2019, 167, 037522. [Google Scholar] [CrossRef]
- Sahu, C.K. Boon of Hybrid Approaches Over the Bane of Model Based and Machine Learning Approaches in Modelling Cyber-Physical Systems. Master’s Thesis, State University of New York at Buffalo, Buffalo, NY, USA, 2020. [Google Scholar]
- Alcalá-Fdez, J.; Alonso, J. A survey of fuzzy systems software: Taxonomy, current research trends, and prospects. IEEE Trans. Fuzzy Syst. 2015, 24, 40–56. [Google Scholar] [CrossRef]
- Helal, M.E.; Zied, H.S.; Mahmoud, A.K.; Helal, M.; Takieldeen, A.E.; Abd-Alhalem, S.M. Digital twins approaches and methods review. In Proceedings of the 2023 International Telecommunications Conference (ITC-Egypt), Alexandria, Egypt, 18–20 July 2023; pp. 330–336. [Google Scholar]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- AboElHassan, A.; Sakr, A.H.; Yacout, S.J.C.; Engineering, I. General purpose digital twin framework using digital shadow and distributed system concepts. Comput. Ind. Eng. 2023, 183, 109534. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- He, Y.; Wen, Y.; Tao, R.; Zhu, Z.; Li, W.; Zhang, J.; Yue, S.; Duan, Q.; Lü, G.; Chen, M. Advancing river flood forecasting with a collaborative integrated modeling method. J. Environ. Manag. 2024, 373, 123677. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Postolache, S.; Sebastião, P.; Viegas, V.; Postolache, O.J.I.I.; Magazine, M. Instrumentation and Measurement Systems: Digital Twin for Horticulture Farm: Concept and Requirements. IEEE Instrum. Meas. Mag. 2025, 28, 14–22. [Google Scholar] [CrossRef]
- Rathee, G.; Saini, H.; Chakkravarthy, S.P.; Maheswar, R. An Intelligent and Trust-Enabled Farming Systems with Blockchain and Digital Twins on Mobile Edge Computing. Int. J. Netw. Manag. 2025, 35, e2299. [Google Scholar] [CrossRef]
- Kaur, H.; Bhatia, M. Digital twins: A scientometric investigation into current progress and future directions. Expert Syst. Appl. 2024, 265, 125917. [Google Scholar] [CrossRef]
- Pal, P.; Landivar-Bowles, J.; Landivar-Scott, J.; Duffield, N.; Nowka, K.; Jung, J.; Chang, A.; Lee, K.; Zhao, L.; Bhandari, M.J.C.; et al. Unmanned aerial system and machine learning driven Digital-Twin framework for in-season cotton growth forecasting. Comput. Electron. Agric. 2025, 228, 109589. [Google Scholar] [CrossRef]
- Ghazvini, A.; Sharef, N.M.; Balasundram, S.K.; Lee, L.S. A concentration prediction-based crop digital twin using nutrient Co-existence and composition in regression algorithms. Appl. Sci. 2024, 14, 3383. [Google Scholar] [CrossRef]
- Subahi, A.F. Advancing Sustainable Cyber-Physical System Development with a Digital Twins and Language Engineering Approach: Smart Greenhouse Applications. Technologies 2024, 12, 147. [Google Scholar] [CrossRef]
- Chen, T.; Zheng, H.; Chen, J.; Zhang, Z.; Huang, X.J.C.; Agriculture, E.I. Novel intelligent grazing strategy based on remote sensing, herd perception and UAVs monitoring. Comput. Electron. Agric. 2024, 219, 108807. [Google Scholar] [CrossRef]
- Liu, L.; Yang, F.; Liu, X.; Du, Y.; Li, X.; Li, G.; Chen, D.; Zhu, Z.; Song, Z. A review of the current status and common key technologies for agricultural field robots. Comput. Electron. Agric. 2024, 227, 109630. [Google Scholar] [CrossRef]
- Barriga, A.; Barriga, J.A.; Pérez-Toledano, M.A.; Clemente, P.J. Model-Driven Development Towards Distributed Intelligent Systems. ACM Trans. Internet Technol. 2024, 24, 1–28. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Navas, E.; Dworak, V.; Schütte, T.; Weltzien, C.; Cheein, F.A.A. Internet of robotic things with a local LoRa network for teleoperation of an agricultural mobile robot using a digital shadow. Discov. Appl. Sci. 2024, 6, 414. [Google Scholar] [CrossRef]
- Metcalfe, J.; Ellul, C.; Morley, J.; Stoter, J.J. Characterizing the role of geospatial science in digital twins. ISPRS Int. J. Geo-Inf. 2024, 13, 320. [Google Scholar] [CrossRef]
- Secci, D.; Saysel, A.K.; Uygur, İ.; Yoloğlu, O.C.; Zanini, A.; Copty, N.K. Modeling for sustainable groundwater management: Interdependence and potential complementarity of process-based, data-driven and system dynamics approaches. Sci. Total. Environ. 2024, 951, 175491. [Google Scholar] [CrossRef]
- Hazmy, A.I.; Hawbani, A.; Wang, X.; Al-Dubai, A.; Ghannami, A.; Yahya, A.A.; Zhao, L.; Alsamhi, S.H. Potential of satellite-airborne sensing technologies for agriculture 4.0 and climate-resilient: A review. IEEE Sensors J. 2023, 24, 4161–4180. [Google Scholar] [CrossRef]
- Wang, W.; Yang, S.; Zhang, X.; Xia, X. Research on the Smart Broad Bean Harvesting System and the Self-Adaptive Control Method Based on CPS Technologies. Agronomy 2024, 14, 1405. [Google Scholar] [CrossRef]
- Awais, M.; Li, W.; Li, H.; Cheema, M.J.M.; Hussain, S.; Liu, C. Optimization of Intelligent Irrigation Systems for Smart Farming Using Multi-Spectral Unmanned Aerial Vehicle and Digital Twins Modeling. Environ. Sci. Proc. 2022, 23, 13. [Google Scholar] [CrossRef]
- Pop, S.; Cristea, L.; Luculescu, M.C.; Zamfira, S.C.; Boer, A.L. Vegetation Index Estimation in Precision Farming Using Custom Multispectral Camera Mounted on Unmanned Aerial Vehicle. In Cyber-Physical Systems and Digital Twins: Proceedings of the 16th International Conference on Remote Engineering and Virtual Instrumentation 16, Bangalore, India, 3–6 February 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 674–685. [Google Scholar]
- Jones, H.G.; Serraj, R.; Loveys, B.R.; Xiong, L.; Wheaton, A.; Price, A.H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009, 36, 978–989. [Google Scholar] [CrossRef]
- Wen, M.-C.; Kang, S.-C. Augmented reality and unmanned aerial vehicle assist in construction management. In Computing in Civil and Building Engineering; American Society of Civil Engineers: Reston, VA, USA, 2014; pp. 1570–1577. [Google Scholar]
- Yan, L.; Fukuda, T.; Yabuki, N. Intergrating UAV development technology with augmented reality toward landscape tele-simulation. In Proceedings of the Intelligent and Informed—24th International Conference on Computer-Aided Architectural Design Research in Asia, CAADRIA, Nanjing, China, 19–21 April 2007; pp. 423–432. [Google Scholar]
- To, A.; Liu, M.; Hazeeq Bin Muhammad Hairul, M.; Davis, J.G.; Lee, J.S.; Hesse, H.; Nguyen, H.D. Drone-based AI and 3D reconstruction for digital twin augmentation. In Social Computing and Social Media: Experience Design and Social Network Analysis, Proceedings of the International Conference on Human-Computer Interaction, Virtual, 24–29 July 2021; Springer: Cham, Switzerland, 2021; pp. 511–529. [Google Scholar]
- Wang, K.-C.; Gao, R.-J.; Tung, S.-H.; Chou, Y.-H. Improving Construction Demonstrations by Integrating BIM, UAV, and VR. In Proceedings of the ISARC—International Symposium on Automation and Robotics in Construction, Kitakyushu, Japan, 27–28 October 2020; pp. 1–7. [Google Scholar]
- Kim, S.; Irizarry, J.; Kanfer, R. Multilevel goal model for decision-making in UAS visual inspections in construction and infrastructure projects. J. Manag. Eng. 2020, 36, 04020036. [Google Scholar] [CrossRef]
- Bognot, J.R.; Candido, C.G.; Blanco, A.C.; Montelibano, J. Building construction progress monitoring using unmanned aerial system (UAS), low-cost photogrammetry, and geographic information system (GIS). ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2018, 4, 41–47. [Google Scholar] [CrossRef]
- Alizadehsalehi, S.; Yitmen, I.J.S.; Environment, S.B. Digital twin-based progress monitoring management model through reality capture to extended reality technologies (DRX). Smart Sustain. Built Environ. 2023, 12, 200–236. [Google Scholar] [CrossRef]
- Freimuth, H.; Müller, J.; König, M. Simulating and executing UAV-assisted inspections on construction sites. In Proceedings of the 34th International Symposium on Automation and Robotics in Construction (ISARC 2017), Taipei, Taiwan, 28 June–1 July 2017. [Google Scholar]
- Tian, J.; Luo, S.; Wang, X.; Hu, J.; Yin, J. Crane lifting optimization and construction monitoring in steel bridge construction project based on BIM and UAV. Adv. Civ. Eng. 2021, 2021, 5512229. [Google Scholar] [CrossRef]
- Pal, A.; Lin, J.J.; Hsieh, S.-H.; Golparvar-Fard, M. Automated vision-based construction progress monitoring in built environment through digital twin. Dev. Built Environ. 2023, 16, 100247. [Google Scholar] [CrossRef]
- Rezoug, M.; Picinbono, G.; Delval, T.; Fathy, Y.; TUM, A.B. D3. 1–Requirements Specification for Digital Twin-Supported Progress Monitoring and Quality Control; BIMTWIN: Prague, Czechia, 2021. [Google Scholar]
- Skobelev, P.; Simonova, E.; Tabachinskiy, A.; Kudryakov, E.; Strizhakov, A.; Goryanin, O.; Ermakov, V.; Chan, Y.-K.; Lee, T.-R.; Sung, Y. Concept and Development of a Multi-Agent Digital Twin of Plant Focused on Broccoli. In Proceedings of the 2023 7th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, Kuala Lumpur, Malaysia, 23–24 April 2023; pp. 132–138. [Google Scholar]
- Congress, S.S.C.; Puppala, A.J. Digital twinning approach for transportation infrastructure asset management using UAV data. In Proceedings of the International Conference on Transportation and Development 2021, Virtual, 8–10 June 2021; pp. 321–331. [Google Scholar]
- Khan, A.U.; Huang, L.; Onstein, E.; Liu, Y. Overview of emerging technologies for improving the performance of heavy-duty construction machines. IEEE Access 2022, 10, 103315–103336. [Google Scholar] [CrossRef]
- Ajayi, O.G.; Ajulo, J. Investigating the applicability of unmanned aerial vehicles (UAV) photogrammetry for the estimation of the volume of stockpiles. Quaest. Geogr. 2021, 40, 25–38. [Google Scholar] [CrossRef]
- Shirowzhan, S.; Tan, W.; Sepasgozar, S.M. Digital twin and CyberGIS for improving connectivity and measuring the impact of infrastructure construction planning in smart cities. ISPRS Int. J. Geo-Inf. 2020, 9, 240. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, R.; Yang, G.; Liu, K.; Gao, C.; Zhai, Y.; Chen, X.; Chen, B.M. Sim-in-real: Digital twin based uav inspection process. In Proceedings of the 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, 21–24 June 2022; pp. 784–801. [Google Scholar]
- Kangisser, S.; Irizarry, J.; Watt, K.; Borger, R.; Burger, A. Integrating Digital Twins in Construction Education Through Hands-on Experiential Learning. In Proceedings of the ISARC—International Symposium on Automation and Robotics in Construction, Bogota, Colombia, 12–15 July 2022; pp. 246–252. [Google Scholar]
- Han, X.; Yu, H.; You, W.; Huang, C.; Tan, B.; Zhou, X.; Xiong, N. Intelligent Campus System Design Based on Digital Twin. Electronics 2022, 11, 3437. [Google Scholar] [CrossRef]
- Bruno, S.; Scioti, A.; Pierucci, A.; Rubino, R.; Di Noia, T.; Fatiguso, F. Verbum—Virtual Enhanced Reality for Building Modelling (Virtual Technical Tour In Digital Twins For Building Conservation). J. Inf. Technol. Constr. 2022, 27, 20–47. [Google Scholar] [CrossRef]
- Kong, X.; Hucks, R.G. Preserving our heritage: A photogrammetry-based digital twin framework for monitoring deteriorations of historic structures. Autom. Constr. 2023, 152, 104928. [Google Scholar] [CrossRef]
- Wang, S.; Rodgers, C.; Zhai, G.; Matiki, T.N.; Welsh, B.; Najafi, A.; Wang, J.; Narazaki, Y.; Hoskere, V.; Spencer, B.F., Jr.; et al. A graphics-based digital twin framework for computer vision-based post-earthquake structural inspection and evaluation using unmanned aerial vehicles. J. Infrastruct. Intell. Resil. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Levine, N.M.; Spencer, B.F., Jr. Post-earthquake building evaluation using UAVs: A BIM-based digital twin framework. Sensors 2022, 22, 873. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, S.; Kye, S.; Kim, I.-H.; Jung, H.-J.; Spencer, B.F., Jr.; Optimization, M. Seismic fragility analysis of deteriorated bridge structures employing a UAV inspection-based updated digital twin. Struct. Multidiscip. Optim. 2022, 65, 346. [Google Scholar] [CrossRef]
- Levine, N.M.; Narazaki, Y.; Spencer, B.F., Jr.; Vibration, E. Development of a building information model-guided post-earthquake building inspection framework using 3D synthetic environments. Earthq. Eng. Eng. Vib. 2023, 22, 279–307. [Google Scholar] [CrossRef]
- Akanmu, A.A.; Anumba, C.J.; Ogunseiju, O.O. Towards next generation cyber-physical systems and digital twins for construction. J. Inf. Technol. Constr. 2021, 26, 505–525. [Google Scholar] [CrossRef]
- Rachmawati, T.S.N.; Kim, S. Unmanned Aerial Vehicles (UAV) integration with digital technologies toward construction 4.0: A systematic literature review. Sustainability 2022, 14, 5708. [Google Scholar] [CrossRef]
- Hu, W.; Lim, K.Y.H.; Cai, Y. Digital Twin and Industry 4.0 Enablers in Building and Construction: A Survey. Buildings 2022, 12, 2004. [Google Scholar] [CrossRef]
- Zarembo, I.; Kodors, S.; Apeināns, I.; Lācis, G.; Feldmane, D.; Rubauskis, E. Digital twin: Orchard management using UAV. Proc. Int. Sci. Pract. Conf. 2023, 1, 247–251. [Google Scholar] [CrossRef]
- Awais, M.; Li, W.; Cheema, M.J.M.; Hussain, S.; AlGarni, T.S.; Liu, C.; Ali, A. Remotely sensed identification of canopy characteristics using UAV-based imagery under unstable environmental conditions. Environ. Technol. Innov. 2021, 22, 101465. [Google Scholar] [CrossRef]
- Akande, O. Challenges and Opportunities in Machine Learning for Bioenergy Crop Yield Prediction: A Review. SSRN 2024. [Google Scholar] [CrossRef]
- Ghandar, A.; Ahmed, A.; Zulfiqar, S.; Hua, Z.; Hanai, M.; Theodoropoulos, G. A decision support system for urban agriculture using digital twin: A case study with aquaponics. IEEE Access 2021, 9, 35691–35708. [Google Scholar] [CrossRef]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital twins in smart farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- Dhal, S.; Wyatt, B.M.; Mahanta, S.; Bhattarai, N.; Sharma, S.; Rout, T.; Saud, P.; Acharya, B.S. Internet of Things (IoT) in digital agriculture: An overview. Agron. J. 2023, 116, 1144–1163. [Google Scholar] [CrossRef]
- De Raedt, L.; Nijssen, S.; O’Sullivan, B.; Van Hentenryck, P. Constraint programming meets machine learning and data mining (dagstuhl seminar 11201). Dagstuhl Rep. 2011, 1, 61–83. [Google Scholar]
- Peladarinos, N.; Piromalis, D.; Cheimaras, V.; Tserepas, E.; Munteanu, R.A.; Papageorgas, P. Enhancing smart agriculture by implementing digital twins: A comprehensive review. Sensors 2023, 23, 7128. [Google Scholar] [CrossRef]
- Janssen, S.J.; Porter, C.H.; Moore, A.D.; Athanasiadis, I.N.; Foster, I.; Jones, J.W.; Antle, J. Towards a new generation of agricultural system data, models and knowledge products: Information and communication technology. Agric. Syst. 2017, 155, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Dihan, M.S.; Akash, A.I.; Tasneem, Z.; Das, P.; Das, S.K.; Islam, M.R.; Islam, M.M.; Badal, F.R.; Ali, M.F.; Ahamed, H. Digital twin: Data exploration, architecture, implementation and future. Heliyon 2024, 10, e26503. [Google Scholar] [CrossRef] [PubMed]
- Manivasagam, V. From Bytes to Farm: Transferability of Industrial Digital Twins in Agricultural Systems. J. Biosyst. Eng. 2025, 50, 130–144. [Google Scholar] [CrossRef]
- Wu, D.; Zheng, A.; Yu, W.; Cao, H.; Ling, Q.; Liu, J.; Zhou, D. Digital Twin Technology in Transportation Infrastructure: A Comprehensive Survey of Current Applications, Challenges, and Future Directions. Appl. Sci. 2025, 15, 1911. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Z.; Guo, S.; Dai, M.; Luan, T.H.; Liu, Y. A survey on digital twins: Architecture, enabling technologies, security and privacy, and future prospects. IEEE Internet Things J. 2023, 10, 14965–14987. [Google Scholar] [CrossRef]
- Friha, O.; Ferrag, M.A.; Maglaras, L.; Shu, L. Digital agriculture security: Aspects, threats, mitigation strategies, and future trends. IEEE Internet Things Mag. 2022, 5, 82–90. [Google Scholar] [CrossRef]
- Alhumam, N.; Rahman, M.H.; Aljughaiman, A. A Comprehensive Review on Cybersecurity of Digital Twins Issues, Challenges, and Future Research Directions. IEEE Access 2025, 13, 45106–45124. [Google Scholar] [CrossRef]
- Abdullahi, S.M.; Zare, A.; Lazarova-Molnar, S. Cybersecurity in Distributed Industrial Digital Twins: Threats, Defenses, and Key Takeaways. In DiDit 2024; CEUR Workshop Proceedings: Aachen, Germany, 2024; p. 2. [Google Scholar]
- Hakiri, A.; Gokhale, A.; Yahia, S.B.; Mellouli, N. A comprehensive survey on digital twin for future networks and emerging Internet of Things industry. Comput. Netw. 2024, 244, 110350. [Google Scholar] [CrossRef]
- Hamid, N.A.W.A.; Singh, B. High-performance computing based operating systems, software dependencies and IoT integration. In High Performance Computing in Biomimetics: Modeling, Architecture and Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 175–204. [Google Scholar]
- Soni, D.; Kumar, N.J.J.o.N.; Applications, C. Machine learning techniques in emerging cloud computing integrated paradigms: A survey and taxonomy. J. Netw. Comput. Appl. 2022, 205, 103419. [Google Scholar] [CrossRef]
- Arif, M.; Maya, J.A.; Anandan, N.; Pérez, D.A.; Tonello, A.; Zangl, H.; Rinner, B. Resource-Efficient Ubiquitous Sensor Networks for Smart Agriculture: A Survey. IEEE Access 2024, 12, 193332–193364. [Google Scholar] [CrossRef]
- Li, S.; Wu, W.; Wang, Y.; Zhang, N.; Sun, F.; Jiang, F.; Wei, X. Production Data Management of Smart Farming Based on Shili Theory. Agriculture 2023, 13, 751. [Google Scholar] [CrossRef]
- Wu, Y.; Duan, K.; Zhang, W. The impact of internet use on farmers’ land transfer under the framework of transaction costs. Land 2023, 12, 1855. [Google Scholar] [CrossRef]
- Agelli, M.; Corona, N.; Maggio, F.; Moi, P.V. Unmanned Ground Vehicles for Continuous Crop Monitoring in Agriculture: Assessing the Readiness of Current ICT Technology. Machines 2024, 12, 750. [Google Scholar] [CrossRef]
- Kalyani, Y.; Vorster, L.; Whetton, R.; Collier, R. Application scenarios of digital twins for smart crop farming through cloud–fog–edge infrastructure. Future Internet 2024, 16, 100. [Google Scholar] [CrossRef]
- Darwish, D. Emerging Trends in Cloud Computing Analytics, Scalability, and Service Models; IGI Global Scientific Publishing: Hershey, PA, USA, 2024. [Google Scholar]
- Gore, S. Blockchain-based digital twin management architecture for Internet of Medical Things Networks. In Blockchain and Digital Twin for Smart Hospitals; Elsevier: Amsterdam, The Netherlands, 2025; pp. 313–335. [Google Scholar]
- Carvalho, A.; Riordan, D.; Walsh, J. A Novel Edge Platform Streamlining Connectivity between Modern Edge Devices and the Cloud. Future Internet 2024, 16, 111. [Google Scholar] [CrossRef]
- Šestak, M.; Copot, D. Towards trusted data sharing and exchange in agro-food supply chains: Design principles for agricultural data spaces. Sustainability 2023, 15, 13746. [Google Scholar] [CrossRef]
- Escamilla-Ambrosio, P.; Rodríguez-Mota, A.; Aguirre-Anaya, E.; Acosta-Bermejo, R.; Salinas-Rosales, M. Distributing computing in the internet of things: Cloud, fog and edge computing overview. In Proceedings of the NEO 2016: Results of the Numerical and Evolutionary Optimization Workshop NEO 2016 and the NEO Cities 2016 Workshop, Tlalnepantla, Mexico, 20–24 September 2016; pp. 87–115. [Google Scholar]
- Fakeye, I.A.; Maas, E.D.v.L.; Harris, P.; Oulaid, B.; Baker, C. Towards A Framework For Farm Scale Digital Twin. In Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, Linz, Austria, 22–27 September 2024; pp. 486–491. [Google Scholar]
- Dlamini, T.; Maseko, L.; Nkosi, S.; Khumalo, Z.; Ndlovu, J.; Smith, A.; Tshabalala, A. Evaluation of Collaborative Data Sharing Mechanisms for Comprehensive Cyber Threat Mitigation in National Security Crises. Int. J. Appl. Soc. Anal. 2024, 9, 1–22. [Google Scholar]
- Da Silveira, F.; Da Silva, S.L.C.; Machado, F.M.; Barbedo, J.G.A.; Amaral, F.G. Farmers’ perception of the barriers that hinder the implementation of agriculture 4.0. Agric. Syst. 2023, 208, 103656. [Google Scholar] [CrossRef]
- Drewry, J.L.; Shutske, J.M.; Trechter, D.; Luck, B.D. Assessment of digital technology adoption and access barriers among agricultural service providers and agricultural extension professionals. J. Asabe 2022, 65, 1049–1059. [Google Scholar] [CrossRef]
- Michailidis, A.; Charatsari, C.; Bournaris, T.; Loizou, E.; Paltaki, A.; Lazaridou, D.; Lioutas, E.D. A First View on the Competencies and Training Needs of Farmers Working with and Researchers Working on Precision Agriculture Technologies. Agriculture 2024, 14, 99. [Google Scholar] [CrossRef]
- Rani, L.P.; Karthick, V.; Manjula, L.; Joshi, N.; Ashok, P.; Krishnakumar, K. DT Based Digitization & Preservation of Knowledge. In Proceedings of the 2024 1st International Conference on Sustainable Computing and Integrated Communication in Changing Landscape of AI (ICSCAI), Greater Noida, India, 4–6 July 2024; pp. 1–8. [Google Scholar]
- Ametefe, D.S.; Hussin, N.; John, D.; Dzorgbenya Ametefe, G.; Adozuka Aliu, A.; Abdi Ali, Z. Revolutionising agriculture for food security and environmental sustainability: A perspective on the role of digital twin technology. CAB Rev. Perspect. Agric. Veter Sci. Nutr. Nat. Resour. 2024, 15, 45–60. [Google Scholar] [CrossRef]
- Senoo, E.E.K.; Anggraini, L.; Kumi, J.A.; Luna, B.K.; Akansah, E.; Sulyman, H.A.; Mendonça, I.; Aritsugi, M. IoT solutions with artificial intelligence technologies for precision agriculture: Definitions, applications, challenges, and opportunities. Electronics 2024, 13, 1894. [Google Scholar] [CrossRef]
- Goudarzi, S.; Kama, N.; Anisi, M.H.; Zeadally, S.; Mumtaz, S.J.C.; Engineering, E. Data collection using unmanned aerial vehicles for Internet of Things platforms. Comput. Electr. Eng. 2019, 75, 1–15. [Google Scholar] [CrossRef]
- Messina, G.; Modica, G. Applications of UAV thermal imagery in precision agriculture: State of the art and future research outlook. Remote. Sens. 2020, 12, 1491. [Google Scholar] [CrossRef]
- Saha, S.; Shekhar, S.; Sadhukhan, S.; Das, P. An analytics dashboard visualization for flood decision support system. J. Vis. 2018, 21, 295–307. [Google Scholar] [CrossRef]
- Tantalaki, N.; Souravlas, S.; Roumeliotis, M. Data-driven decision making in precision agriculture: The rise of big data in agricultural systems. J. Agric. Food Information 2019, 20, 344–380. [Google Scholar] [CrossRef]
- Tan, Y.R.; Hofmeister, M.; Phua, S.Z.; Brownbridge, G.; Rustagi, K.; Akroyd, J.; Mosbach, S.; Bhave, A.; Kraft, M. Beyond Connected Digital Twins-from GIS to the World Avatar. SSRN 2024. [Google Scholar]
- Vetrivel, S.; Arun, V. Smart Farming and Precision Agriculture Using AI Technologies. In Real-World Applications of AI Innovation; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 85–106. [Google Scholar]
- Maraveas, C. Incorporating artificial intelligence technology in smart greenhouses: Current State of the Art. Appl. Sci. 2022, 13, 14. [Google Scholar] [CrossRef]
- Attaran, M.; Attaran, S.; Celik, B.G. Revolutionizing agriculture through digital twins. In Encyclopedia of information Science and Technology, 6th ed.; IGI Global: Hershey, PA, USA, 2025; pp. 1–14. [Google Scholar]
- Cesco, S.; Sambo, P.; Borin, M.; Basso, B.; Orzes, G.; Mazzetto, F. Smart agriculture and digital twins: Applications and challenges in a vision of sustainability. Eur. J. Agron. 2023, 146, 126809. [Google Scholar] [CrossRef]
- Mowla, M.N.; Mowla, N.; Shah, A.S.; Rabie, K.M.; Shongwe, T. Internet of Things and wireless sensor networks for smart agriculture applications: A survey. IEEE Access 2023, 11, 145813–145852. [Google Scholar] [CrossRef]
- Saha, H.N.; Roy, R.; Chakraborty, M.; Sarkar, C. IoT-enabled agricultural system application, challenges and security issues. Agric. Inform. 2021, 223–247. [Google Scholar] [CrossRef]
- Joshi, R.; Pandey, K. IoT-Enabled UAV: A Comprehensive Review of Technological Change in Indian Farming. Unmanned Aircr. Syst. 2024, 93–135. [Google Scholar]
- Kumari, K.; Nafchi, A.M. Sustainable Agriculture with AI, Machine Learning, Deep Learning, and IoT for Future Farming. In Proceedings of the 2024 ASABE Annual International Meeting, Toronto, ON, Canada, 28–31 July 2024; p. 1. [Google Scholar] [CrossRef]
- Paul, K.; Chatterjee, S.S.; Pai, P.; Varshney, A.; Juikar, S.; Prasad, V.; Bhadra, B.; Dasgupta, S. Viable smart sensors and their application in data driven agriculture. Comput. Electron. Agric. 2022, 198, 107096. [Google Scholar] [CrossRef]
- Edan, Y.; Adamides, G.; Oberti, R. Agriculture Automation; Springer Handbooks: Berlin/Heidelberg, Germany, 2023; pp. 1055–1078. [Google Scholar] [CrossRef]
- Suprem, A.; Mahalik, N.; Kim, K. A review on application of technology systems, standards and interfaces for agriculture and food sector. Comput. Stand. Interfaces 2013, 35, 355–364. [Google Scholar] [CrossRef]
- Mavridou, E.; Vrochidou, E.; Papakostas, G.A.; Pachidis, T.; Kaburlasos, V.G. Machine vision systems in precision agriculture for crop farming. J. Imaging 2019, 5, 89. [Google Scholar] [CrossRef]
- Karunathilake, E.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Shah, F.; Wu, W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Ali, A.; Hussain, T.; Tantashutikun, N.; Hussain, N.; Cocetta, G. Application of smart techniques, internet of things and data mining for resource use efficient and sustainable crop production. Agriculture 2023, 13, 397. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef]
- Henriksen, H.J.; Schneider, R.; Koch, J.; Ondracek, M.; Troldborg, L.; Seidenfaden, I.K.; Kragh, S.J.; Bøgh, E.; Stisen, S. A new digital twin for climate change adaptation, water management, and disaster risk reduction (HIP digital twin). Water 2022, 15, 25. [Google Scholar] [CrossRef]
- Galanakis, C.M. The future of food. Foods 2024, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Tagarakis, A.C.; Benos, L.; Kyriakarakos, G.; Pearson, S.; Sørensen, C.G.; Bochtis, D. Digital twins in agriculture and forestry: A review. Sensors 2024, 24, 3117. [Google Scholar] [CrossRef] [PubMed]
- Tzachor, A.; Sabri, S.; Richards, C.E.; Rajabifard, A.; Acuto, M. Potential and limitations of digital twins to achieve the sustainable development goals. Nat. Sustain. 2022, 5, 822–829. [Google Scholar] [CrossRef]
- Pamungkas, L.S.; Widjaja, A.W. Accelerator-Driven Technology for Controlled Environment Agriculture: Case in Digital Transformation of Agri-Tech Startup. FIRM J. Manag. Stud. 2024, 9, 14–35. [Google Scholar]
- Vilas-Boas, J.L.; Rodrigues, J.J.; Alberti, A.M. Convergence of Distributed Ledger Technologies with Digital Twins, IoT, and AI for fresh food logistics: Challenges and opportunities. J. Ind. Inf. Integr. 2023, 31, 100393. [Google Scholar] [CrossRef]
- Shen, M.-D.; Chen, S.-b.; Ding, X.-D. The effectiveness of digital twins in promoting precision health across the entire population: A systematic review. Npj Digit. Med. 2024, 7, 145. [Google Scholar] [CrossRef]
- Villalonga, A.; Negri, E.; Biscardo, G.; Castano, F.; Haber, R.E.; Fumagalli, L.; Macchi, M. A decision-making framework for dynamic scheduling of cyber-physical production systems based on digital twins. Annu. Rev. Control. 2021, 51, 357–373. [Google Scholar] [CrossRef]
- Ramos, H.M.; Kuriqi, A.; Besharat, M.; Creaco, E.; Tasca, E.; Coronado-Hernández, O.E.; Pienika, R.; Iglesias-Rey, P. Smart water grids and digital twin for the management of system efficiency in water distribution networks. Water 2023, 15, 1129. [Google Scholar] [CrossRef]
Integration Level | Definition | Key Characteristics | References |
---|---|---|---|
Model (Digital Model) | A static digital representation without real-time data flow. |
|
|
Partially Integrated (Digital Shadow) | A digital representation with one-way data flow from the physical system to the digital. |
| |
Fully Integrated (Digital Twin) | A real-time, bidirectional link between physical and virtual entities. |
|
Title | Year | Key Findings/Contributions | References |
---|---|---|---|
Instrumentation and Measurement Systems: Digital Twin for Horticulture Farm: Concept and Requirements | 2025 | The study confirmed that using sensors and digital models in a Digital Twin system can improve monitoring and decision-making on horticulture farms | Postolache et al. (2025) [34] |
An Intelligent and Trust-Enabled Farming System with Blockchain and DTs on Mobile Edge Computing | 2025 | The study confirmed that combining Digital Twins with blockchain and mobile edge computing can improve trust, security, and efficiency in smart farming systems | Rathee G et al. (2025) [35] |
DTs: A scientometric investigation into current progress and future directions | 2022 | The study confirmed growing interest in Digital Twins research and identified key trends and gaps, helping to guide future studies in agriculture and other fields | Kaur H et al. (2025) [36] |
Unmanned aerial system and machine learning-driven Digital-Twin framework for in-season cotton growth forecasting | 2025 | The study confirmed that combining UAV data with machine learning in a Digital Twin framework can accurately forecast cotton growth during the season | Pal P et al. (2025) [37] |
A Concentration Prediction-Based Crop Digital Twin Using Nutrient Co-Existence and Composition in Regression Algorithms | 2024 | The study confirmed that using regression algorithms based on nutrient co-existence can improve the accuracy of crop Digital Twin models for nutrient concentration prediction | Ghazvini A et al. (2024) [38] |
Advancing Sustainable Cyber-Physical System Development with a DTs and Language Engineering Approach: Smart Greenhouse Applications | 2024 | The study confirmed that using Digital Twins with cyber-physical systems and language engineering improves automation and sustainability in smart greenhouse management | Subahi AF et al. (2024) [39] |
Novel intelligent grazing strategy based on remote sensing, herd perception, and UAVs monitoring | 2024 | The study confirmed that integrating UAVs, remote sensing, and herd perception into a Digital Twins system can optimize grazing strategies and livestock management | Chen T et al. (2024) [40] |
A review of the current status and common key technologies for agricultural field robots | 2024 | The study confirmed that technologies like GPS, sensors, AI, and Digital Twins are key to improving the performance and autonomy of agricultural field robots | Liu L et al. (2024) [41] |
Model-Driven Development Towards Distributed Intelligent Systems | 2024 | The study confirmed that model-driven development supports building scalable and intelligent Digital Twin systems for agriculture and other distributed environments | A Barriga (2024) [42] |
Internet of robotic things with a local LoRa network for teleoperation of an agricultural mobile robot using a digital shadow | 2024 | The study confirmed that using a local LoRa network with a digital shadow improves real-time teleoperation and connectivity of agricultural robots in remote areas | Shamshiri RR et al. (2024) [43] |
Characterizing the Role of Geospatial Science in DTs | 2024 | The study confirmed that geospatial science plays a key role in Digital Twins by enabling accurate mapping, monitoring, and spatial analysis in agricultural systems | Metcalfe J et al. (2024) [44] |
Modeling for sustainable groundwater management: Interdependence and potential complementarity of process-based, data-driven and system dynamics approaches | 2024 | The study confirmed that combining process-based, data-driven, and system dynamics models can improve Digital Twin frameworks for sustainable groundwater management | Secci D et al. (2024) [45] |
Potential of Satellite-Airborne Sensing Technologies for Agriculture 4.0 and Climate-Resilient: A Review | 2024 | The study confirmed that integrating satellite and airborne sensing technologies supports Climate-Resilient Agriculture and strengthens Digital Twin applications in Agriculture 4.0 | Hazmy AL et al. (2024) [46] |
Research on the Smart Broad Bean Harvesting System and the Self-Adaptive Control Method Based on CPS Technologies | 2024 | The study confirmed that using cyber-physical systems with self-adaptive control improves efficiency and precision in smart broad bean harvesting | Wang W et al. (2024) [47] |
Application Area | Example from Articles | References |
---|---|---|
Data management | Collecting real-time data | [51,52,53,54,55] |
Streaming Real-time video | ||
Tracking progress | Monitoring | [56,57,58,59,60,61] |
Tracking material on construction sites | ||
Transportation operations | Earthwork volume computation | [62,63,64,65,66] |
Planning for heavy equipment | ||
Construction programs | Virtual site visit | [67,68,69,70,71] |
Inspection training simulation | ||
Structural inspection | Building inspection | [72,73,74,75] |
Post-earthquake inspection | ||
Bridge inspection | ||
Construction Safety | Identification of potential hazards Construction safety inspection | [73,75,76,77,78] |
Type | Weight (kg) | Function | Capacity |
---|---|---|---|
Large | More than 150 | These drones are well-suited for pesticide application. | Covers more than 100 acres of farmland. |
Medium | 25 < weight < 150 | Drones can carry thermal cameras, higher-resolution RGB cameras, LiDAR sensors, and multi-spectral sensors for comprehensive data collection | These drones operate at a flight altitude of 50 m and can cover up to 100 acres |
Minor | 2.< weight < 25 | Drones equipped with high-resolution RGB cameras, thermal cameras, hyperspectral cameras, and multi-spectral sensors are valuable for diverse agricultural tasks. | It mostly depends on flight height and covers up to 10–20 acres. |
Micro | 0.20 < weight < 2 | These drones are designed with lightweight multi-spectral cameras, small RGB cameras, and LiDAR sensors for more specialized uses. | When flying at an altitude lower than 100 m, they can cover approximately 5–6 acres. |
Sonic | below 0.20 kg by weight | Until now, these drones have not found application in agriculture. | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awais, M.; Wang, X.; Hussain, S.; Aziz, F.; Mahmood, M.Q. Advancing Precision Agriculture Through Digital Twins and Smart Farming Technologies: A Review. AgriEngineering 2025, 7, 137. https://doi.org/10.3390/agriengineering7050137
Awais M, Wang X, Hussain S, Aziz F, Mahmood MQ. Advancing Precision Agriculture Through Digital Twins and Smart Farming Technologies: A Review. AgriEngineering. 2025; 7(5):137. https://doi.org/10.3390/agriengineering7050137
Chicago/Turabian StyleAwais, Muhammad, Xiuquan Wang, Sajjad Hussain, Farhan Aziz, and Muhammad Qasim Mahmood. 2025. "Advancing Precision Agriculture Through Digital Twins and Smart Farming Technologies: A Review" AgriEngineering 7, no. 5: 137. https://doi.org/10.3390/agriengineering7050137
APA StyleAwais, M., Wang, X., Hussain, S., Aziz, F., & Mahmood, M. Q. (2025). Advancing Precision Agriculture Through Digital Twins and Smart Farming Technologies: A Review. AgriEngineering, 7(5), 137. https://doi.org/10.3390/agriengineering7050137