Growth Curve Models and Clustering Techniques for Studying New Sugarcane Hybrids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Curve Model
2.2. Grouping Techniques
2.2.1. k-means
2.2.2. k-medoids
2.2.3. DBSCAN
2.3. Validation Indices
3. Results
3.1. Plant Cycle
Clustering Materials in the Plant Cycle
3.2. Ratoon Cycle
Clustering Materials in the Ratoon Cycle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Growth Curve Model
Appendix A.2. Variance Structure
Appendix A.2.1. Power Variance Model (varPower)
- : This is the common variance of the errors.
- : This represents the time at which the measurement is taken for hybrid i.
- : This is the parameter controlling the relationship between the errors and time. If is 0.5, the relationship is a square root in time, while if it is 1, the relationship is linear. With , the errors increase with time, but more gradually compared to higher values of .
Appendix A.2.2. Identity Variance Model (varIdent)
- : As in the previous model, this is the common variance of the errors.
- 1: This indicates that the variance of the errors is constant across all time points.
References
- Alejandre Rosas, J.A.; Galindo Tovar, M.E.; Lee Espinosa, H.E.; Alvarado Gómez, O.G. Variabilidad genética en 22 variedades híbridas de caña de azúcar (Saccharum spp. Híbrido). Phyton (Buenos Aires) 2010, 79, 87–94. Available online: https://revistaphyton.fund-romuloraggio.org.ar/vol79/Alejandre-Rosas.pdf (accessed on 23 May 2024).
- Arntzen, C.J.; Ritter, E.M. Encyclopedia of Agricultural Science Volume 2: EL, 1st ed.; Academic Press: San Diego, CA, USA, 1994; Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19951403738 (accessed on 4 January 2023).
- CONADESUCA. Nota Informativa Sobre Innovaciones en Materia de Productividad del sector. Nuevas Variedades de Caña de Azúcar; Sagarpa: Ciudad de México, México, 2016; Available online: https://www.gob.mx/cms/uploads/attachment/file/136406/NotaNuevasVariedadesd_Cana_deAzucar.compressed.pdf (accessed on 22 February 2023).
- Que, Y.; Wu, Q.; Zhang, H.; Luo, J.; Zhang, Y. Developing new sugarcane varieties suitable for mechanized production in China: Principles, strategies and prospects. Front. Plant Sci. 2024, 14, 1337144. [Google Scholar] [CrossRef] [PubMed]
- Sentíes-Herrera, H.E.; Valdez-Balero, A.; Loyo-Joachin, R.; Gómez-Merino, F.C. Fases experimentales en el mejoramiento genético de la caña de azúcar (Saccharum spp.) En México. AgroProductividad 2017, 10, 93–99. Available online: https://go.gale.com/ps/i.do?p=IFME&u=anon~3406d702&id=GALE|A530914354&v=2.1&it=r&sid=googleScholar&asid=76e56977 (accessed on 15 January 2024).
- García-Preciado, J.C. Evaluación de variables de calidad en híbridos de Saccharum Spp. En Difer. Ambient. Agroecol. De Jalisco, México. AgroProductividad 2017, 10. Available online: https://www.revista-agroproductividad.org/index.php/agroproductividad/article/view/55 (accessed on 16 April 2023).
- Rodríguez Gross, R.; Puchades Izaguirre, Y.; Abiche Maceo, W.; Rill Martínez, S.; Suarez, H.J.; Salmón Cuspineda, Y.; Gálvez, G. Estudio del rendimiento y modelación del período de madurez en nuevos cultivares de caña de azúcar. Cultiv. Trop. 2015, 36, 134–143. Available online: http://scielo.sld.cu/scielo.php?pid=S0258-59362015000400019&script=sci_arttext (accessed on 25 August 2023).
- Hernández, O.L.; García, S.S.; Nataren, E.H.; Espinoza, L.C.L.; Oliva, A.C.; Sanchez, S.C.; Romero, E.R.; Zossi, S. La espectroscopía de infrarrojo cercano (NIRS) en el seguimiento de la madurez del cultivo de la caña de azúcar (Saccharum spp.). Agro Product. 2019, 12, 107–113. [Google Scholar] [CrossRef]
- Larrahondo, J.E.; Cassalett, C.; Torres, J.; Issacs, C. El cultivo de la caña de azúcar en la zona azucarera de Colombia. In Centro de Investigación de la Caña de Azúcar de Colombia (Cenicaña); 1995; pp. 337–354. Available online: https://www.cenicana.org/pdf_privado/documentos_no_seriados/libro_el_cultivo_cana/libro_p3-394.pdf (accessed on 19 June 2023).
- Ostengo, S.; Rueda Calderón, M.A.; Bruno, C.; Cuenya, M.I.; Balzarini, M. A protocol for identifying characteristic sucrose accumulation curves of sugarcane genotypes (Saccharum spp.). Sugar Tech 2021, 23, 519–523. [Google Scholar] [CrossRef]
- Palmito dos Santos, D.; Nascimento, M.; Ferreira, D.F.; Verardi, C.K. Optimal Designs in Plant Breeding Experiments: A Simulation Study Comparing Grid-Plot and Partially Replicated (p-Rep) Design. Sugar Tech 2024, 26, 387–395. [Google Scholar] [CrossRef]
- Crossa, J.; Pérez-Rodríguez, P.; Jarquin, D.; Cuevas, J.; Montesinos-López, O. Genome and Environment Based Prediction Models and Methods of Complex Traits Incorporating Genotype × Environment Interaction. In Genomic Prediction of Complex Traits; Ahmadi, N., Bartholomé, J., Eds.; Methods and Protocols; Humana: New York, NY, USA, 2022; pp. 245–283. [Google Scholar] [CrossRef]
- Smith, A.B.; Cullis, B.R.; Thompson, R. The analysis of crop cultivar breeding and evaluation trials: An overview of current mixed model approaches. J. Agric. Sci. 2005, 143, 449–462. [Google Scholar] [CrossRef]
- Jarquin, D.; Crossa, J.; Lacaze, X.; Cheyron, P.; Pérez-Rodríguez, P. A Reaction Norm Model for Genomic Selection Using High-Dimensional Genomic and Environmental Data. Theor. Appl. Genet. 2014, 127, 595–607. [Google Scholar] [CrossRef]
- Cuevas, J.; Crossa, J.; Montesinos-López, O.; Burgueño, J.; Pérez-Rodríguez, P.; de los Campos, G. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models. G3 Genes Genomes Genet. 2017, 7, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Burgueño, J.; Crossa, J.; Cotes, J.M.; Vicente, F.S.; Dasgupta, S. Genomic Prediction of Breeding Values When Modeling Genotype × Environment Interaction Using Pedigree and Dense Molecular Markers. Crop Sci. 2012, 52, 707–719. [Google Scholar] [CrossRef]
- Gilbert, R.A.; Shine, J.M., Jr.; Miller, J.D.; Rice, R.W. Sucrose accumulation and harvest schedule recommendations for CP sugarcane cultivars. Crop Manag. 2004, 3, 1–7. [Google Scholar] [CrossRef]
- Seta, P.T.; Hartomo, K.D. Mapping land suitability for sugar cane production using k-means algorithm with leaflets library to support food sovereignty in central java. Khazanah Inform. J. Ilmu Komput. Dan Inform. 2020, 6, 15–25. [Google Scholar] [CrossRef]
- Mbukwa, J.N.; Anjaneyulu, G.V.S.R. Application of K-Means and Partitioning Around Mediods (PAM) clustering techniques on Maize and Beans yield in Tanzania. KY Publ. 2016, pp. 146–158. Available online: http://bomsr.com/4.4.16/146-158%20JUSTINE%20NKUNDWE%20MBUKWA.pdf (accessed on 9 June 2024).
- Cervantes-Preciado, J.F.; Milanés-Ramos, N.; Castillo, M.A. Evaluation of 11 hybrids of sugar cane (Saccharum spp.) in the Central region of Veracruz, México. Agroproductividad 2019, 12, 69–73. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20203314828 (accessed on 25 August 2023). [CrossRef]
- Moreno Torres, V.M. Nuevas Variedades de Caña de Azúcar; Deschamps, L., Ed.; Deschamps & Escamilla: Colima, México, 2010; Fundación Produce Colima A.C., Instituto Interamericano de Cooperación para la Agricultura (IICA); pp. 1–59. [Google Scholar] [CrossRef]
- Villa Godoy, S.; De Teresa y Polignac, F. Manual Azucarero Mexicano, Edición 2024; Cía. Editora del Manual Azucarero, S.A. de C.V.: Ciudad de México, México, 2024; pp. 1–500. Available online: https://www.manualazucarero.com/_files/ugd/fc2095_b4e9661cd898438aadc336a83992d281.pdf (accessed on 12 November 2023).
- Fernandes, A.M.; de Queiroz, A.C.; Pereira, J.C.; Lana, R.d.P.; Barbosa, M.H.P.; da Fonseca, D.M.; Detmann, E.; Cabral, L.d.S.; Pereira, E.S.; Vittori, A. Composição químico-bromatológica de variedades de cana-de-açúcar (Saccharum spp L.) com diferentes ciclos de produção (precoce e intermediário) em três idades de corte. Rev. Bras. De Zootec. 2003, 32, 977–985. [Google Scholar] [CrossRef]
- McCulloch, C.E.; Searle, S.R. Generalized, Linear, and Mixed Models, 1st ed.; Wiley-Interscience: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Gałecki, A.; Burzykowski, T. Linear Mixed-Effects Models Using R, 1st ed.; Springer: New York, NY, USA, 2013; pp. 245–273. [Google Scholar] [CrossRef]
- Aguirre-Calderón, O.A. ¿Cómo corregir la heterocedasticidad y autocorrelación de residuales en modelos de ahusamiento y crecimiento en altura? Rev. Mex. De Cienc. For. 2018, 9, 28–59. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 18 July 2024).
- Pinheiro, J.; Bates, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models, R package version 3; R Foundation for Statistical Computing: Viena, Austria, 2023; pp. 1–163. Available online: https://CRAN.R-project.org/package=nlme (accessed on 3 February 2024).
- Zhang, L.; Lu, F.; Liu, A.; Guo, P.; Liu, C. Application of K-means clustering algorithm for classification of NBA guards. Int. J. Sci. Eng. Appl. 2016, 5, 1–6. Available online: https://ijsea.com/archive/volume5/volume5issue1.pdf (accessed on 13 October 2024). [CrossRef]
- Kaur, N.K.; Kaur, U.; Singh, D. K-Medoid clustering algorithm—A review. Int. J. Comput. Appl. Technol. 2014, 1, 42–45. [Google Scholar]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231. Available online: https://cdn.aaai.org/KDD/1996/KDD96-037.pdf?source=post_page (accessed on 30 November 2024).
- Zhang, C.; Huang, W.; Niu, T.; Liu, Z.; Li, G.; Cao, D. Review of Clustering Technology and Its Application in Coordinating Vehicle Subsystems. Automot. Innov. 2023, 6, 89–115. [Google Scholar] [CrossRef]
- Khan, M.M.R.; Siddique, M.A.B.; Arif, R.B.; Oishe, M.R. ADBSCAN: Adaptive density-based spatial clustering of applications with noise for identifying clusters with varying densities. In Proceedings of the 2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), Dhaka, Bangladesh, 13–15 September 2018; pp. 107–111. [Google Scholar] [CrossRef]
- Franco-Árcega, A.; Sobrevilla-Sólis, V.I.; Gutiérrez-Sánchez, M.J.; García-Islas, L.H.; Suárez-Navarrete, A.; Rueda-Soriano, E. Sistema de enseñanza para la técnica de agrupamiento k-means. Pädi Boletín Científico De Cienc. Básicas E Ing. Del ICBI 2021, 9, 53–58. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Q.; Xu, L.; Xu, X.; Liang, Z. Wheat Lodging Direction Detection for Combine Harvesters Based on Improved K-Means and Bag of Visual Words. Agronomy 2023, 13, 2227. [Google Scholar] [CrossRef]
- Gupta, M.K.; Chandra, P. Effects of similarity/distance metrics on k-means algorithm with respect to its applications in IoT and multimedia: A review. Multimed. Tools Appl. 2022, 81, 37007–37032. [Google Scholar] [CrossRef]
- Juliantho, D.A.; Hendrik, B. Komparasi Algoritma K-Means Dan K-Medoids Dalam Clustering Penyebaran Kasus Covid 19. J. Inf. Syst. Educ. Dev. 2023, 1, 30–32. Available online: https://journal.mwsfoundation.or.id/index.php/jised/article/view/12 (accessed on 7 December 2024).
- Ansari, Z. Discovery of web user session clusters using DBSCAN and leader clustering techniques. Int. J. Res. Appl. Sci. Eng. Technol. (iJRASET) 2014, 2, 209–217. [Google Scholar]
- Hahsler, M.; Piekenbrock, M. dbscan: Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Related Algorithms, R package version 1.2-0; R Foundation for Statistical Computing: Vienna, Austria, 2024. Available online: https://CRAN.R-project.org/package=dbscan (accessed on 30 October 2023).
- Ben Ncir, C.-E.; Hamza, A.; Bouaguel, W. Parallel and scalable Dunn Index for the validation of big data clusters. Parallel Comput. 2021, 102, 102751. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; illustrated, revised, reprint ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; Available online: https://books.google.es/books?hl=es&lr=&id=YeFQHiikNo0C&oi=fnd&pg=PR11&dq=Finding+groups+in+data:+an+introduction+to+cluster+analysis&ots=5CofD1KFAE&sig=CaZq_JCe5uV8RB_ymUHSuad8bKQ#v=onepage&q=Finding%20groups%20in%20data:%20an%20introduction%20to%20cluster%20analysis&f=false (accessed on 10 November 2024).
- Videla, M.E.; Bruno, C. Validación de agrupamientos para representar estructura genética poblacional. Agriscientia 2022, 39, 1–10. [Google Scholar] [CrossRef]
- Luna-Romera, J.M.; del Mar Martinez-Ballesteros, M.; Garcia-Gutierrez, J.; Riquelme-Santos, J.C. An approach to silhouette and dunn clustering indices applied to big data in spark. In Advances in Artificial Intelligence: 17th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2016, Salamanca, Spain, 14–16 September 2016; Proceedings 17; Springer: Cham, Switzerland, 2016; pp. 160–169. [Google Scholar] [CrossRef]
- Brock, G.; Pihur, V.; Datta, S.; Datta, S. clValid: An R Package for Cluster Validation. J. Stat. Softw. 2008, 25, 1–22. Available online: https://www.jstatsoft.org/v25/i04/. (accessed on 12 November 2024). [CrossRef]
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. cluster: Cluster Analysis Basics and Extensions; R package version 2.1.4; 2022. Available online: https://CRAN.R-project.org/package=cluster (accessed on 8 November 2024).
- Zhao, Y.; Liu, J.; Huang, H.; Zan, F.; Zhao, P.; Zhao, J.; Deng, J.; Wu, C. Genetic improvement of sugarcane (Saccharum spp.) contributed to high sucrose content in China based on an analysis of newly developed varieties. Agriculture 2022, 12, 1789. [Google Scholar] [CrossRef]
- Cheavegatti-Gianotto, A.; De Abreu, H.M.C.; Arruda, P.; Bespalhok Filho, J.C.; Burnquist, W.L.; Creste, S.; di Ciero, L.; Ferro, J.A.; de Oliveira Figueira, A.V.; de Sousa Filgueiras, T.; et al. Sugarcane (Saccharum X officinarum): A reference study for the regulation of genetically modified cultivars in Brazil. Trop. Plant Biol. 2011, 4, 62–89. [Google Scholar] [CrossRef]
- Marcano, M.; Manrique, U.; Garcia, M.; Salcedo, F. Prueba de ocho variedades de caña de azúcar (Saccharum sp.) bajo condiciones de secano en un suelo de sabana del estado Monagas, Venezuela. Rev. Científica UDO Agrícola 2005, 5, 54–61. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=2221593 (accessed on 14 September 2023).
- Vasantha, S.; Kumar, R.A.; Tayade, A.S.; Krishnapriya, V.; Ram, B.; Solomon, S. Physiology of sucrose productivity and implications of ripeners in sugarcane. Sugar Tech 2022, 24, 715–731. [Google Scholar] [CrossRef]
- García, S.S.; Escobar, R.N.; Alanis, L.B. Determinación de la dosis óptima económica de fertilización en caña de azúcar. Terra Latinoam. 2003, 21, 267–272. Available online: http://www.redalyc.org/articulo.oa?id=57315595012 (accessed on 6 April 2023).
- Gómez-Merino, F.C. Manual para la identificación varietal de caña de azúcar, 1st ed.; Colegio de Postgraduados: Texcoco, México, 2015; pp. 5–7. Available online: https://www.researchgate.net/profile/Fernando-Gomez-Merino/publication/271647569_Manual_para_la_Identificacion_Varietal_de_Cana_de_Azucar/links/54f483720cf2eed5d734bf55/Manual-para-la-Identificacion-Varietal-de-Cana-de-Azucar.pdf (accessed on 6 April 2023).
- Mei, H.; Mao, L.; Zhang, Y.; Chen, M. BDT-ADBSCAN: Adaptive Density-Based Spatial Clustering of Applications with Noise Based on Bayesian Decision Theory for Identifying Clusters with Multi-Densities. In Proceedings of the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 17–19 June 2022; pp. 1510–1516. [Google Scholar] [CrossRef]
- Jackson, P.A. Breeding for improved sugar content in sugarcane. Field Crops Res. 2005, 92, 277–290. [Google Scholar] [CrossRef]
- Delgado Mora, I.; Jorge Suarez, H.; Vera, A.; Cornide Hernández, M.T.; Díaz Mujica, F.R.; Gómez Pérez, J.R.; Suárez Sanchez, O.; Puchades Isaguirre, Y. Influencia de la edad y cultivar de caña de azúcar en el momento de la cosecha. Cent. Agrícola 2016, 43, 59–65. Available online: http://scielo.sld.cu/scielo.php?pid=S0253-57852016000200008&script=sci_arttext (accessed on 3 July 2024).
- Espinoza, J.G. Maduración de la caña de azúcar y floración de la caña de azúcar y su manejo. Cengicaña. 2012, pp. 262–281. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=5149559 (accessed on 3 July 2024).
- Mendoza Batista, Y.; Cruz Sarmiento, R.; Vaillant Cáceres, Y.; Luis Martínez, O.; Céspedes Argota, M. Comportamiento de los cultivares de caña de azúcar C97-445 y C95-416 en localidades de la provincia Holguín. Cent. Agrícola 2019, 46, 49–53. Available online: http://scielo.sld.cu/scielo.php?pid=S0253-57852019000100049&script=sci_arttext&tlng=en (accessed on 6 July 2023).
ID | Material | Origin | Type | ID | Material | Origin | Type |
---|---|---|---|---|---|---|---|
1 | COSTA JAL | Mexican | N | 21 | ITSAMEX 07-7259 | Mexican | N |
2 | RB 85-5035 | Foreign | N | 22 | ITSAMEX 06-6395 | Mexican | N |
3 | ITV 92-1424 | Foreign | C | 23 | ITSAMEX 06-4863 | Mexican | N |
4 | RB 85-5113 | Foreign | C | 24 | ITSAMEX 07-4954 | Mexican | N |
5 | LAICA 92-13 | Foreign | N | 25 | ITSAMEX 07-4387 | Mexican | N |
6 | CP 72-2086 | Foreign | C | 26 | ITSAMEX 07-121115 | Mexican | N |
7 | COLMEX 94-8 | Mexican | C | 27 | ITSAMEX 07-246 | Mexican | N |
8 | ATEMEX 99-48 | Mexican | N | 28 | ITSAMEX 07-12116 | Mexican | N |
9 | ATEMEX 99-1 | Mexican | N | 29 | ITSAMEX 07-12113 | Mexican | N |
10 | ATEMEX 99-61 | Mexican | N | 30 | ITSAMEX 07-2963 | Mexican | N |
11 | MEX 70-486 | Mexican | N | 31 | ITSAMEX 07-99711 | Mexican | N |
12 | TCP 89-3505 | Foreign | N | 32 | ITSAMEX 07-9886 | Mexican | N |
13 | MEX 80-1521 | Mexican | N | 33 | ITSAMEX 07-86810 | Mexican | N |
14 | MEX 69-290 | Mexican | C | 34 | ITSAMEX 07-12119 | Mexican | N |
15 | ITSAMEX 07-44814 | Mexican | N | 35 | ITSAMEX 07-1903 | Mexican | N |
16 | ITSAMEX 06-3049 | Mexican | N | 36 | ITSAMEX 07-44813 | Mexican | N |
17 | ITSAMEX 07-8681 | Mexican | N | 37 | ITSAMEX 07-12118 | Mexican | N |
18 | ITSAMEX 07-20810 | Mexican | N | 38 | CP 85-1382 | Foreign | N |
19 | ITSAMEX 07-7501 | Mexican | N | 39 | COLMEX 95-27 | Mexican | C |
20 | ITSAMEX 07-1107 | Mexican | N |
Dates | |||||
---|---|---|---|---|---|
Cycle | Period | D1 | D2 | D3 | D4 |
Planting | |||||
Plant | 03-04-2011 | 10-08-2011 | 11-08-2011 | 12-08-2011 | 01-11-2012 |
Elapsed days | |||||
Harvest | |||||
Ratoon | 05-21-2012 | 11-16-2012 | 12-19-2012 | 01-22-2013 | 02-25-2013 |
Elapsed days |
Conditions | ||||
---|---|---|---|---|
Commercial Variety | Type of Maturity | Temperature | Altitude masl | Soil |
CP 72-2086 | early | 19.5–35.4 | 0–1300 | FAR, AR, ARL |
ITV 92-1424 | early | 19.5–35.4 | 30–1200 | FAR, AR, ARL |
COLMEX 95-27 | early | 19.5–35.4 | 0–1300 | FAR, AR, ARL |
COLMEX 94-8 | early–intermediate | 19.5–35.4 | 50–1200 | FAR, AR, ARL |
RB 85-5113 | early–intermediate | 15.0–29.5 | F, FAR, FLI | |
MEX 69-290 | intermediate–late | 19.5–35.4 | 0–1300 | FAR, AR, ARL |
Fixed Effects | Random Effects | ||||
---|---|---|---|---|---|
Parameter | CI | Parameter | CI | Parameter | CI |
ID | Material | Type | ID | Material | Type | ||||
---|---|---|---|---|---|---|---|---|---|
26 | ITSAMEX 07-121115 | N | 3.01 | 2.14 | 32 | ITSAMEX 07-9886 | N | 6.65 | 1.41 |
19 | ITSAMEX 07-7501 | N | 3.03 | 2.17 | 35 | ITSAMEX 07-1903 | N | 6.78 | 1.39 |
24 | ITSAMEX 07-4954 | N | 3.62 | 1.81 | 1 | COSTA JAL | N | 7.04 | 1.43 |
27 | ITSAMEX 07-246 | N | 3.70 | 2.00 | 2 | RB 85-5035 | N | 7.05 | 1.34 |
12 | TCP 89-3505 | N | 3.79 | 1.85 | 5 | LAICA 92-13 | N | 7.11 | 1.24 |
21 | ITSAMEX 07-7259 | N | 4.07 | 2.00 | 39 | COLMEX 95-27 | C | 7.56 | 1.31 |
18 | ITSAMEX 07-20810 | N | 4.21 | 1.66 | 36 | ITSAMEX 07-44813 | N | 7.56 | 1.37 |
33 | ITSAMEX 07-86810 | N | 4.21 | 1.88 | 13 | MEX 80-1521 | N | 7.79 | 1.19 |
25 | ITSAMEX 07-4387 | N | 4.68 | 1.76 | 15 | ITSAMEX 07-44814 | N | 7.80 | 1.06 |
29 | ITSAMEX 07-12113 | N | 5.01 | 1.68 | 6 | CP 72-2086 | C | 7.92 | 1.28 |
34 | ITSAMEX 07-12119 | N | 5.04 | 1.79 | 11 | MEX 70-486 | N | 7.97 | 1.34 |
20 | ITSAMEX 07-1107 | N | 5.13 | 1.56 | 9 | ATEMEX 99-1 | N | 8.08 | 1.01 |
28 | ITSAMEX 07-12116 | N | 5.45 | 1.64 | 4 | RB 85-5113 | C | 8.23 | 1.23 |
23 | ITSAMEX 06-4863 | N | 5.51 | 1.73 | 3 | ITV 92-1424 | C | 8.39 | 1.21 |
37 | ITSAMEX 07-12118 | N | 5.52 | 1.84 | 7 | COLMEX 94-8 | C | 8.97 | 1.22 |
16 | ITSAMEX 06-3049 | N | 5.60 | 1.70 | 22 | ITSAMEX 06-6395 | N | 9.19 | 0.98 |
30 | ITSAMEX 07-2963 | N | 5.67 | 1.59 | 10 | ATEMEX 99-61 | N | 9.48 | 0.94 |
14 | MEX 69-290 | C | 5.67 | 1.82 | 8 | ATEMEX 99-48 | N | 9.79 | 0.98 |
17 | ITSAMEX 07-8681 | N | 5.92 | 1.61 | 38 | CP 85-1382 | N | 9.86 | 0.92 |
31 | ITSAMEX 07-99711 | N | 6.43 | 1.42 |
Groups | |||||
---|---|---|---|---|---|
ID | Material | Type | k-means | k-medoids | DBSCAN |
3 | ITV 92-1424 | C | Early | Early | Early |
4 | RB 85-5113 | C | Early | Early | Early |
6 | CP 72-2086 | C | Early | Early | Early |
9 | ATEMEX 99-1 | N | Early | Early | Early |
11 | MEX 70-486 | N | Early | Early | Early |
13 | MEX 80-1521 | N | Early | Early | Early |
15 | ITSAMEX 07-44814 | N | Early | Early | Early |
1 | COSTA JAL | N | Early | Early–Intermediate | Early |
2 | RB 85-5035 | N | Early | Early–Intermediate | Early |
5 | LAICA 92-13 | N | Early | Early–Intermediate | Early |
32 | ITSAMEX 07-9886 | N | Early | Early–Intermediate | Early |
35 | ITSAMEX 07-1903 | N | Early | Early–Intermediate | Early |
36 | ITSAMEX 07-44813 | N | Early | Early–Intermediate | Early |
39 | COLMEX 95-27 | C | Early | Early–Intermediate | Early |
7 | COLMEX 94-8 | C | Early–Intermediate | Early | Early–Intermediate |
8 | ATEMEX 99-48 | N | Early–Intermediate | Early | Early–Intermediate |
10 | ATEMEX 99-61 | N | Early–Intermediate | Early | Early–Intermediate |
22 | ITSAMEX 06-6395 | N | Early–Intermediate | Early | Early–Intermediate |
38 | CP 85-1382 | N | Early–Intermediate | Early | Early–Intermediate |
31 | ITSAMEX 07-99711 | N | Intermediate–Late | Early–Intermediate | Early |
14 | MEX 69-290 | C | Intermediate–Late | Intermediate–Late | Intermediate–Late |
16 | ITSAMEX 06-3049 | N | Intermediate–Late | Intermediate–Late | Intermediate–Late |
17 | ITSAMEX 07-8681 | N | Intermediate–Late | Intermediate–Late | Intermediate–Late |
20 | ITSAMEX 07-1107 | N | Intermediate–Late | Intermediate–Late | Intermediate–Late |
23 | ITSAMEX 06-4863 | N | Intermediate–Late | Intermediate–Late | Intermediate–Late |
25 | ITSAMEX 07-4387 | N | Intermediate–Late | Intermediate–Late | Intermediate–Late |
28 | ITSAMEX 07-12116 | N | Intermediate–Late | Intermediate–Late | Intermediate–Late |
29 | ITSAMEX 07-12113 | N | Intermediate–Late | Intermediate–Late | Intermediate–Late |
30 | ITSAMEX 07-2963 | N | Intermediate–Late | Intermediate–Late | Intermediate–Late |
34 | ITSAMEX 07-12119 | N | Intermediate–Late | Intermediate–Late | Intermediate–Late |
37 | ITSAMEX 07-12118 | N | Intermediate–Late | Intermediate–Late | Intermediate–Late |
12 | TCP 89-3505 | N | Late | Late | Intermediate–Late |
18 | ITSAMEX 07-20810 | N | Late | Late | Intermediate–Late |
21 | ITSAMEX 07-7259 | N | Late | Late | Intermediate–Late |
24 | ITSAMEX 07-4954 | N | Late | Late | Intermediate–Late |
27 | ITSAMEX 07-246 | N | Late | Late | Intermediate–Late |
33 | ITSAMEX 07-86810 | N | Late | Late | Intermediate–Late |
19 | ITSAMEX 07-7501 | N | Late | Late | Late |
26 | ITSAMEX 07-121115 | N | Late | Late | Late |
Method | Connectivity | Dunn | Silhouette |
---|---|---|---|
k-means | 13.41 | 0.12 | 0.65 |
k-medoids | 13.85 | 0.12 | 0.55 |
DBSCAN | 12.36 | 0.24 | 0.64 |
Fixed Effects | Random Effects | ||
---|---|---|---|
Parameter | CI | Parameter | CI |
ID | Material | Type | ID | Material | Type | ||||
---|---|---|---|---|---|---|---|---|---|
24 | ITSAMEX 07-4954 | N | 4.48 | 1.95 | 23 | ITSAMEX 06-4863 | N | 7.33 | 1.95 |
25 | ITSAMEX 07-4387 | N | 5.80 | 1.95 | 13 | MEX 80-1521 | N | 7.37 | 1.95 |
5 | LAICA 92-13 | N | 6.03 | 1.95 | 9 | ATEMEX 99-1 | N | 7.40 | 1.95 |
12 | TCP 89-3505 | N | 6.19 | 1.95 | 15 | ITSAMEX 07-44814 | N | 7.44 | 1.95 |
2 | RB 85-5035 | N | 6.23 | 1.95 | 32 | ITSAMEX 07-9886 | N | 7.57 | 1.95 |
28 | ITSAMEX 07-12116 | N | 6.36 | 1.95 | 31 | ITSAMEX 07-99711 | N | 7.82 | 1.95 |
27 | ITSAMEX 07-246 | N | 6.45 | 1.95 | 34 | ITSAMEX 07-12119 | N | 7.83 | 1.95 |
36 | ITSAMEX 07-44813 | N | 6.46 | 1.95 | 38 | CP 85-1382 | N | 7.87 | 1.95 |
29 | ITSAMEX 07-12113 | N | 6.51 | 1.95 | 33 | ITSAMEX 07-86810 | N | 8.03 | 1.95 |
17 | ITSAMEX 07-8681 | N | 6.51 | 1.95 | 22 | ITSAMEX 06-6395 | N | 8.22 | 1.95 |
18 | ITSAMEX 07-20810 | N | 6.53 | 1.95 | 10 | ATEMEX 99-61 | N | 8.23 | 1.95 |
20 | ITSAMEX 07-1107 | N | 6.62 | 1.95 | 3 | ITV 92-1424 | C | 8.30 | 1.95 |
16 | ITSAMEX 06-3049 | N | 6.71 | 1.95 | 4 | RB 85-5113 | C | 8.30 | 1.95 |
26 | ITSAMEX 07-121115 | N | 6.73 | 1.95 | 35 | ITSAMEX 07-1903 | N | 8.69 | 1.95 |
21 | ITSAMEX 07-7259 | N | 6.78 | 1.95 | 11 | MEX 70-486 | N | 8.83 | 1.95 |
1 | COSTA JAL | N | 7.00 | 1.95 | 7 | COLMEX 94-8 | C | 9.20 | 1.95 |
19 | ITSAMEX 07-7501 | N | 7.00 | 1.95 | 8 | ATEMEX 99-48 | N | 9.20 | 1.95 |
30 | ITSAMEX 07-2963 | N | 7.11 | 1.95 | 6 | CP 72-2086 | C | 9.35 | 1.95 |
14 | MEX 69-290 | C | 7.16 | 1.95 | 39 | COLMEX 95-27 | C | 9.37 | 1.95 |
37 | ITSAMEX 07-12118 | N | 7.26 | 1.95 |
Groups | |||||
---|---|---|---|---|---|
ID | Material | Type | k-means | k-medoids | DBSCAN |
3 | ITV 92-1424 | C | Early | Early | Early |
4 | RB 85-5113 | C | Early | Early | Early |
10 | ATEMEX 99-61 | N | Early | Early | Early |
22 | ITSAMEX 06-6395 | N | Early | Early | Early |
6 | CP 72-2086 | C | Early | Early–Intermediate | Early–Intermediate |
7 | COLMEX 94-8 | C | Early | Early–Intermediate | Early–Intermediate |
8 | ATEMEX 99-48 | N | Early | Early–Intermediate | Early–Intermediate |
39 | COLMEX 95-27 | C | Early | Early–Intermediate | Early–Intermediate |
35 | ITSAMEX 07-1903 | N | Early | Early–Intermediate | Late |
11 | MEX 70-486 | N | Early | Early–Intermediate | Late |
31 | ITSAMEX 07-99711 | N | Early–Intermediate | Early | Early |
33 | ITSAMEX 07-86810 | N | Early–Intermediate | Early | Early |
34 | ITSAMEX 07-12119 | N | Early–Intermediate | Early | Early |
38 | CP 85-1382 | N | Early–Intermediate | Early | Early |
1 | COSTA JAL | N | Early–Intermediate | Intermediate–Late | Intermediate–Late |
9 | ATEMEX 99-1 | N | Early–Intermediate | Intermediate–Late | Intermediate–Late |
13 | MEX 80-1521 | N | Early–Intermediate | Intermediate–Late | Intermediate–Late |
14 | MEX 69-290 | C | Early–Intermediate | Intermediate–Late | Intermediate–Late |
15 | ITSAMEX 07-44814 | N | Early–Intermediate | Intermediate–Late | Intermediate–Late |
19 | ITSAMEX 07-7501 | N | Early–Intermediate | Intermediate–Late | Intermediate–Late |
23 | ITSAMEX 06-4863 | N | Early–Intermediate | Intermediate–Late | Intermediate–Late |
30 | ITSAMEX 07-2963 | N | Early–Intermediate | Intermediate–Late | Intermediate–Late |
32 | ITSAMEX 07-9886 | N | Early–Intermediate | Intermediate–Late | Intermediate–Late |
37 | ITSAMEX 07-12118 | N | Early–Intermediate | Intermediate–Late | Intermediate–Late |
2 | RB 85-5035 | N | Intermediate–Late | Intermediate–Late | Intermediate–Late |
5 | LAICA 92-13 | N | Intermediate–Late | Late | Intermediate–Late |
12 | TCP 89-3505 | N | Intermediate–Late | Late | Intermediate–Late |
16 | ITSAMEX 06-3049 | N | Intermediate–Late | Late | Intermediate–Late |
17 | ITSAMEX 07-8681 | N | Intermediate–Late | Late | Intermediate–Late |
18 | ITSAMEX 07-20810 | N | Intermediate–Late | Late | Intermediate–Late |
20 | ITSAMEX 07-1107 | N | Intermediate–Late | Late | Intermediate–Late |
21 | ITSAMEX 07-7259 | N | Intermediate–Late | Late | Intermediate–Late |
25 | ITSAMEX 07-4387 | N | Intermediate–Late | Late | Intermediate–Late |
26 | ITSAMEX 07-121115 | N | Intermediate–Late | Late | Intermediate–Late |
27 | ITSAMEX 07-246 | N | Intermediate–Late | Late | Intermediate–Late |
28 | ITSAMEX 07-12116 | N | Intermediate–Late | Late | Intermediate–Late |
29 | ITSAMEX 07-12113 | N | Intermediate–Late | Late | Intermediate–Late |
36 | ITSAMEX 07-44813 | N | Intermediate–Late | Late | Intermediate–Late |
24 | ITSAMEX 07-4954 | N | Late | Late | Not classified |
Method | Connectivity | Dunn | Silhouette |
---|---|---|---|
k-means | 12.08 | 0.16 | 0.56 |
k-medoids | 13.68 | 0.06 | 0.59 |
DBSCAN | 16.11 | 0.14 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carretillo Moctezuma, C.D.; Guzmán Martínez, M.; Godínez-Jaimes, F.; García-Preciado, J.C.; Reyes Carreto, R.; Terrones Salgado, J.; Pérez Arriaga, E. Growth Curve Models and Clustering Techniques for Studying New Sugarcane Hybrids. AgriEngineering 2025, 7, 114. https://doi.org/10.3390/agriengineering7040114
Carretillo Moctezuma CD, Guzmán Martínez M, Godínez-Jaimes F, García-Preciado JC, Reyes Carreto R, Terrones Salgado J, Pérez Arriaga E. Growth Curve Models and Clustering Techniques for Studying New Sugarcane Hybrids. AgriEngineering. 2025; 7(4):114. https://doi.org/10.3390/agriengineering7040114
Chicago/Turabian StyleCarretillo Moctezuma, Carlos David, María Guzmán Martínez, Flaviano Godínez-Jaimes, José C. García-Preciado, Ramón Reyes Carreto, José Terrones Salgado, and Edgar Pérez Arriaga. 2025. "Growth Curve Models and Clustering Techniques for Studying New Sugarcane Hybrids" AgriEngineering 7, no. 4: 114. https://doi.org/10.3390/agriengineering7040114
APA StyleCarretillo Moctezuma, C. D., Guzmán Martínez, M., Godínez-Jaimes, F., García-Preciado, J. C., Reyes Carreto, R., Terrones Salgado, J., & Pérez Arriaga, E. (2025). Growth Curve Models and Clustering Techniques for Studying New Sugarcane Hybrids. AgriEngineering, 7(4), 114. https://doi.org/10.3390/agriengineering7040114