Evaluating the Impact of Various Drying Processes on the Comprehensive Properties of Thyme Powder (Thymus vulgaris) for Retention of Its Bioactive Properties
Abstract
:1. Introduction
2. Material and Methods
2.1. Drying Techniques
2.2. Proximate Analysis
2.3. Ascorbic Acid
2.4. Total Chlorophyll Content
2.5. Bioactive Compound Analysis of Thyme
2.5.1. Preparation of Extract
2.5.2. Total Phenolic Content of Thyme
2.5.3. Total Flavonoids Content of Thyme
2.5.4. Total Tocopherol Content
2.5.5. Tannin Content
2.5.6. 2,2′ Diphenyl-1-picrylhydrazyl (DPPH) Free Radical Scavenging Assay
2.6. Functional Properties of Powder
2.6.1. Volume Expansion Ratio
2.6.2. Swelling Power (SP)
2.6.3. Dispersibility
2.6.4. Emulsion Capacity
2.6.5. Foam Capacity
2.6.6. Foam Stability
2.7. Color Analysis
2.8. Statistical Analysis
3. Result and Discussion
3.1. Proximate Analysis
3.2. Ascorbic Acid
3.3. Total Chlorophyll Content
3.4. Bioactive Compounds of Thyme
3.4.1. Estimation of Total Phenolic Content
3.4.2. Estimation of Flavonoids Content
3.4.3. Estimation of Total Tocopherol Content
3.4.4. Estimation of Tannins in Thyme
3.4.5. Evaluation of Antioxidant Activity
3.5. Powder Properties of Dried Thyme
3.5.1. Volume Expansion Ratio
3.5.2. Swelling Power (SP)
3.5.3. Dispersibility
3.5.4. Emulsion Capacity
3.5.5. Foam Capacity
3.5.6. Foam Stability
3.6. Color Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Soleimani, M.; Arzani, A.; Arzani, V.; Roberts, T.H. Phenolic compounds and antimicrobial properties of mint and thyme. J. Herbal Med. 2022, 36, 100604. [Google Scholar] [CrossRef]
- Dong, Y.; Wei, Z.; Yang, R.; Zhang, Y.; Sun, M.; Bai, H.; Shi, L. Chemical compositions of essential oil extracted from eight thyme species and potential biological functions. Plants 2023, 12, 4164. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, A.; Purkiewicz, A.; Jakuć, P.; Wiśniewski, P.; Sawicki, T.; Chajęcka-Wierzchowska, W.; Tańska, M. Effectiveness of various solvent-produced thyme (Thymus vulgaris) extracts in inhibiting the growth of Listeria monocytogenes in frozen vegetables. NFS J. 2022, 29, 26–34. [Google Scholar] [CrossRef]
- Iftikhar, T.; Majeed, H.; Zahra, S.S.; Waheed, M.; Niaz, M.; Bano, N. Thyme. In Essentials of Medicinal and Aromatic Crops; Springer International Publishing: Cham, Switzerland, 2023; pp. 399–429. [Google Scholar]
- Etri, K.; Pluhár, Z. Exploring Chemical Variability in the Essential Oils of the Thymus Genus. Plants 2024, 13, 1375. [Google Scholar] [CrossRef]
- Xing, Y.; Lei, H.; Wang, J.; Wang, Y.; Wang, J.; Xu, H. Effects of different drying methods on the total phenolic, rosmarinic acid and essential oil of purple perilla leaves. J. Ess. Oil Bear. Plants 2017, 20, 1594–1606. [Google Scholar] [CrossRef]
- Bharadvaja, N. Aromatic plants: A multifaceted asset. Braz. J. Bot. 2023, 46, 241–254. [Google Scholar]
- Nazari, D.; Badi, H.N.; Mehrafarin, A.; Taj-abadi, F.; Soltanipour, M. Expression of the changes in essential oil components of Shirazi thyme (Zataria multiflora Boiss.) as affected by various drying methods. Ind. Crops Prod. 2024, 220, 119222. [Google Scholar] [CrossRef]
- Yilmaz, A.; Alibas, I.; Asik, B.B. The effect of drying methods on the color, chlorophyll, total phenolic, flavonoids, and macro and micronutrients of thyme plant. J. Food Process. Preserv. 2021, 45, e15915. [Google Scholar] [CrossRef]
- Jayasuriya, H.; Pathare, P.B.; Al-Attabi, Z.; Al-Hamdani, A. Drying kinetics and quality analysis of coriander leaves dried in an indirect, stand-alone solar dryer. Processes 2023, 11, 1596. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists Inc.: Arlington, VA, USA, 2000. [Google Scholar]
- Ghosh, P.; Das, P.; Mukherjee, R.; Banik, S.; Karmakar, S.; Chatterjee, S. Extraction and quantification of pigments from Indian traditional medicinal plants: A comparative study between tree, shrub, and herb. Int. J. Pharm. Sci. Res. 2018, 9, 3052–3059. [Google Scholar]
- Krakowska-Sieprawska, A.; Kiełbasa, A.; Rafińska, K.; Ligor, M.; Buszewski, B. Modern methods of pre-treatment of plant material for the extraction of bioactive compounds. Molecules 2022, 27, 730. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.B.; Chen, G.L.; Guo, M.Q. Antioxidant and anti-inflammatory activities of the crude extracts of Moringa oleifera from Kenya and their correlations with flavonoids. Antioxidants 2019, 8, 296. [Google Scholar] [CrossRef] [PubMed]
- Mwamatope, B.; Tembo, D.; Chikowe, I.; Kampira, E.; Nyirenda, C. Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. Sci. Afr. 2020, 9, e00481. [Google Scholar] [CrossRef]
- Lahare, R.P.; Yadav, H.S.; Bisen, Y.K.; Dashahre, A.K. Estimation of total phenol, flavonoid, tannin and alkaloid content in different extracts of Catharanthus roseus from Durg district, Chhattisgarh, India. Sch. Bull. 2021, 7, 1–6. [Google Scholar] [CrossRef]
- Baliyan, S.; Mukherjee, R.; Priyadarshini, A.; Vibhuti, A.; Gupta, A.; Pandey, R.P.; Chang, C.M. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef]
- Boluda-Aguilar, M.; Taboada-Rodrıguez, A.; Lopez Gomez, A.; Marın-Iniesta, F.; Barbosa-Canovas, G.V. Quick Cooking Rice by High Hydrostatic Pressure Processing. LWT Food Sci. Technol. 2013, 51, 196–204. [Google Scholar] [CrossRef]
- Lai, K.M.; Cheng, Y.Y.; Tsai, T.H. Integrated LC-MS/MS analytical systems and physical inspection for the analysis of a botanical herbal preparation. Molecules 2015, 20, 10641–10656. [Google Scholar] [CrossRef]
- Nisha, N.; Singh, R.; Sharma, N.; Mohite, A.M. Studies on Different Drying Techniques to Utilized it for Powder Properties for Dried Dill (Anethum graveolens). Bull. Transilv. Univ. Brasov. Ser. II For. Wood Ind. Agric. Food Eng. 2024, 17, 189–202. [Google Scholar] [CrossRef]
- Kumar, V.; Gupta, A.K.; Naik, B.; Makroo, H.A. Effect of high γ-irradiation dosage on physico-chemical, functional and emulsion properties of almond gum powder. Int. J. Bio. Macromol. 2023, 235, 123898. [Google Scholar] [CrossRef]
- Darniadi, S.; Ho, P.; Murray, B.S. Comparison of blueberry powder produced via foam-mat freeze-drying versus spray-drying: Evaluation of foam and powder properties. J. Sci. Food Agric. 2018, 98, 2002–2010. [Google Scholar] [CrossRef]
- Kassegn, H.H.; Mekelle, E.P. Determination Proximate Composition of the Wild Abyssinian Thyme Herb (Thyme schimperi L.) Grown in High Lands of Southern Tigray, North Ethiopia. Food Sci. Qual. Manag. 2016, 50, 1–3. [Google Scholar]
- Murcia, M.A.; López-Ayerra, B.; Martinez-Tomé, M.; Vera, A.M.; García-Carmona, F. Evolution of ascorbic acid and peroxidase during industrial processing of broccoli. J. Sci. Food Agric. 2000, 80, 1882–1886. [Google Scholar] [CrossRef]
- Bahçeci, K.S.; Serpen, A.; Gökmen, V.; Acar, J. Study of lipoxygenase and peroxidase as indicator enzymes in green beans: Change of enzyme activity, ascorbic acid and chlorophylls during frozen storage. J. Food Eng. 2005, 66, 187–192. [Google Scholar] [CrossRef]
- De Oliveira, A.M.F.; Pinheiro, L.S.; Pereira, C.K.S.; Matias, W.N.; Gomes, R.A.; Chaves, O.S.; de Assis, T.S. Total phenolic content and antioxidant activity of some Malvaceae family species. Antioxidants 2012, 1, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Periche, A.; Castelló, M.L.; Heredia, A.; Escriche, I. Effect of different drying methods on the phenolic, flavonoid and volatile compounds of Stevia rebaudiana leaves. Flavour Fragr. J. 2016, 31, 173–177. [Google Scholar] [CrossRef]
- Mohd Zainol, M.K.; Abdul-Hamid, A.; Abu Bakar, F.; Pak Dek, S. Effect of different drying methods on the degradation of selected flavonoids in Centella asiatica. Int. Food Res. J. 2009, 16, 531–537. [Google Scholar]
- Laoretani, D.; Fernández, M.; Crapiste, G.; Nolasco, S. Effect of drying operating conditions on canola oil tocopherol content. Antioxidants 2014, 3, 190–199. [Google Scholar] [CrossRef]
- Aggarwal, S.; Mohite, A.M.; Sharma, N. The maturity and ripeness phenomenon with regard to the physiology of fruits and vegetables: A review. Bull. Transilv. Univ. Brasov. Ser. II For. Wood Ind. Agric. Food Eng. 2018, 11, 77–88. [Google Scholar]
- Julkunen-Tiitto, R.; Sorsa, S. Testing the effects of drying methods on willow flavonoids, tannins, and salicylates. J. Chem. Ecol. 2001, 27, 779–789. [Google Scholar] [CrossRef]
- Khodaie, L.; Sharma, A.; Shah, P.J.; Surana, V. The relationship between the cold and dry nature of herbs and their tannin content: Bridging traditional knowledge and modern-day science. J. Res. Pharm. 2023, 27, p2487. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Murtijaya, J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT-Food Sci. Tech. 2007, 40, 1664–1669. [Google Scholar] [CrossRef]
- Abhiram, G.; Briyangari, A.; Eeswaran, R. Drying of Gymnema sylvestre Using Far-Infrared Radiation: Antioxidant Activity and Optimization of Drying Conditions. AgriEngineering 2023, 5, 611–622. [Google Scholar] [CrossRef]
- Prasert, W.; Suwannaporn, P. Optimization of Instant Jasmine Rice Process and Its Physicochemical Properties. J. Food Eng. 2009, 95, 54–61. [Google Scholar] [CrossRef]
- Fapetu, A.P.; Karigidi, K.O.; Akintimehin, E.S.; Olawuwo, T.; Adetuyi, F.O. Effect of partial substitution of wheat flour with Moringa oleifera leaf powder on physical, nutritional, antioxidant and antidiabetic properties of cookies. Bull. Natl. Res. Cent. 2022, 46, 53. [Google Scholar] [CrossRef]
- Wang, R.; Liu, J.; Zhang, J.; Li, G.; Ding, S. Effect of thermal blanching on the inactivation kinetics of polyphenol oxidase and peroxidase in lily bulb, and the functional properties of its flours. J. Food Meas. Charact. 2023, 17, 615–626. [Google Scholar] [CrossRef]
- Agbo, C.; Jakpa, W.; Sarkodie, B.; Boakye, A.; Fu, S. A review on the mechanism of pigment dispersion. J. Dispers. Sci. Technol. 2018, 39, 874–889. [Google Scholar] [CrossRef]
- Helgeson, M.E. Colloidal behavior of nanoemulsions: Interactions, structure, and rheology. Curr. Opin. Colloid Interface Sci. 2016, 25, 39–50. [Google Scholar] [CrossRef]
- Chettri, S.; Rizwana, R.; Mohite, A.M. Selected Physicochemical and Functional Properties of Extracted Soybean Starch. Bull. Transilv. Univ. Brasov. Ser. II For. Wood Ind. Agric. Food Eng. 2022, 15, 139–150. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Phosanam, A.; Stockmann, R. Perspectives on saponins: Food functionality and applications. Int. J. Mol. Sci. 2023, 24, 13538. [Google Scholar] [CrossRef]
- Ramírez-Fajardo, A.F.; Martín-Vizcaíno, C.; Rodríguez-García, I.; Guil-Guerrero, J.L. Vegetables Treated before Drying with Natural Antioxidants plus UV-C Improve Colour and Bioactive Compounds. AgriEngineering 2024, 6, 3635–3651. [Google Scholar] [CrossRef]
Treatment | Phenolic Content (mg GAEg−1) | Flavonoid Content (mg CAEg−1) | Tocopherol Content (mg/g) | Tannin Content (mg TAEg−1) |
---|---|---|---|---|
Fresh | 8.97 ± 0.04 a | 2.54 ± 0.06 b | 7.78 ± 0.01 a | 0.65 ± 0.04 c |
TDT1 | 4.65 ± 0.07 a | 2.03 ± 0.04 c | 5.72 ± 0.05 b | 0.17 ± 0.02 a |
TDT2 | 6.94 ± 0.03 b | 1.97 ± 0.07 a | 3.16 ± 0.02 a | 0.09 ± 0.07 a |
TDT3 | 7.57 ± 0.05 a | 1.09 ± 0.05 a | 1.96 ± 0.06 b | 0.07 ± 0.06 b |
RTDT1 | 4.38 ± 0.03 a | 2.16 ± 0.04 b | 5.98 ± 0.01 a | 0.32 ± 0.06 b |
RTDT2 | 6.18 ± 0.04 c | 1.87 ± 0.06 c | 4.65 ± 0.05 b | 0.18 ± 0.08 a |
RTDT3 | 7.51 ± 0.06 a | 1.06 ± 0.06 b | 3.37 ± 0.04 a | 0.08 ± 0.04 c |
VDT1 | 5.87 ± 0.05 b | 2.31 ± 0.05 a | 6.41 ± 0.07 b | 0.28 ± 0.01 a |
VDT2 | 6.97 ± 0.07 a | 1.98 ± 0.01 a | 4.86 ± 0.02 c | 0.15 ± 0.04 b |
VDT3 | 8.04 ± 0.02 c | 1.76 ± 0.06 c | 4.07 ± 0.04 c | 0.08 ± 0.03 a |
Treatment | L* | a* | b* | Hue | Chroma |
---|---|---|---|---|---|
Fresh | 6.73 ± 0.47 | −2.70 ± 0.27 | 3.46 ± 0.58 | 98.39 ± 3.84 | 3.94 ± 0.25 |
TDT1 | 5.87 ± 0.12 | −1.97 ± 0.41 | 1.89 ± 0.63 | 138.81 ± 4.15 | 4.89 ± 0.20 |
TDT2 | 3.73 ± 0.46 | −1.88 ± 0.08 | 4.76 ± 0.42 | 98.29 ± 5.87 | 3.53 ± 0.18 |
TDT3 | 3.67 ± 0.18 | −1.67 ± 0.03 | 4.98 ± 0.36 | 83.62 ± 4.93 | 3.13 ± 0.45 |
RTDT1 | 5.16 ± 0.42 | −2.16 ± 0.07 | 2.96 ± 0.41 | 114.27 ± 4.35 | 4.92 ± 0.39 |
RTDT2 | 4.83 ± 0.35 | −1.82 ± 0.12 | 3.75 ± 0.46 | 98.48 ± 2.73 | 3.58 ± 0.31 |
RTDT3 | 4.38 ± 0.54 | −1.70 ± 0.07 | 4.63 ± 0.52 | 83.37 ± 2.38 | 2.19 ± 0.29 |
VDT1 | 5.94 ± 0.53 | −2.44 ± 0.13 | 2.83 ± 0.62 | 113.64 ± 2.63 | 4.93 ± 0.14 |
VDT2 | 4.73 ± 0.47 | −1.97 ± 0.27 | 3.62 ± 0.58 | 93.39 ± 3.84 | 3.47 ± 0.25 |
VDT3 | 4.53 ± 0.46 | −1.74 ± 0.08 | 4.63 ± 0.29 | 81.53 ± 3.63 | 2.87 ± 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, N.; Sharma, N.; Mohite, A.M. Evaluating the Impact of Various Drying Processes on the Comprehensive Properties of Thyme Powder (Thymus vulgaris) for Retention of Its Bioactive Properties. AgriEngineering 2025, 7, 59. https://doi.org/10.3390/agriengineering7030059
Roy N, Sharma N, Mohite AM. Evaluating the Impact of Various Drying Processes on the Comprehensive Properties of Thyme Powder (Thymus vulgaris) for Retention of Its Bioactive Properties. AgriEngineering. 2025; 7(3):59. https://doi.org/10.3390/agriengineering7030059
Chicago/Turabian StyleRoy, Nisha, Neha Sharma, and Ashish M. Mohite. 2025. "Evaluating the Impact of Various Drying Processes on the Comprehensive Properties of Thyme Powder (Thymus vulgaris) for Retention of Its Bioactive Properties" AgriEngineering 7, no. 3: 59. https://doi.org/10.3390/agriengineering7030059
APA StyleRoy, N., Sharma, N., & Mohite, A. M. (2025). Evaluating the Impact of Various Drying Processes on the Comprehensive Properties of Thyme Powder (Thymus vulgaris) for Retention of Its Bioactive Properties. AgriEngineering, 7(3), 59. https://doi.org/10.3390/agriengineering7030059